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4.1 Introduction, Definitions and Notations.

Let f and g be two entire functions and
F(r) = maz{|f(2)| : z =r},G(r) = maz{|g(z)| : |z| =r}.

If f is non-constant then F(r) is strictly increasing and continuous and its
inverse

F=1 o ([f(0)], 00) — (0, 00)

exists and is such that

lim F~(s) = oo.

The results of this chapter have been published in International Mathematical Forum, see [21].



Bernal[3] introduced the definition of relative order of f with respect to g,
denoted by p,(f) as follows:

log G~1F(r
po(f) =inf{u > 0: F(r) < G(r*) for all r > ro(u) > 0} = limsup B ogr ( )

The definition coincides with the classical one[65] if
9(z)= expz.

Similarly one can define the relative lower order of f with respect to g denoted
by A,(f) as follows:

. JogGTIF(r)
A(f) = hﬁglf ogr

Somasundaram and Thamizharasi [63] introduced the notions of L-order, L-
lower order and L-type for entire functions where L = L(r) is a positive
continuous function increasing slowly i.e.

L(ar) ~ L(r) as r — o0
for every constant ‘a’. Their definitions are as follows:

Definition 4.1.1 [63] The L-order p% and the L-lower order A} of an entire
function f are defined as follows:

logl® M(r, f) minf 1980 M, /)
L _1: ) L = :
py = lim sup log[rL(r)] A log[rL(r)]

Definition 4.1.2 [63] The L-type o} of an entire function f with L-order
p§ is defined as

log M |
JJIJ = limsup—o—g——(ll-{—),() < pf < 00.

o [rL(r)
Similarly one can define the L-hyper order and L-hyper lower order of entire
functions. So with the help of the above notion one can easily define the
relative L-order and relative L-lower order of entire functions.

Definition 4.1.3 The relative L-order p}(f) and the relative L-lower order

)\5( f) of an entire function f with respect to another entire function g are
defined as

Lo 1 log G7L1F(r) .. JogGTE(r)
pyf) = hﬁs;gp log[rL(r)] and /\5 (f) = hﬂg}f log[rL(r)]
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Definition 4.1.4 The relative L-hyper order ﬁé‘ (f) and the relative L-hyper
lower order _):j( f) of an entire function f with respect to another entire func-

tion g are defined as

LAy = pimang 08D GTE@) sn o Jog® GUR(r)
() = ey ) = I e )

r—00

In this chapter we establish some results on the growth properties of entire
functions on the basis of relative L-order and relative L-lower order where
L = L(r) is a slowly changing function. In the sequel we use the following
notations:

[£]

log® 2 = log(logt~Yz) for k =1,2,3,......and log¥% z = z.

The more generalised concept of L-order and L-type of entire and meromor-
phic functions are respectively L*-order and L*-type. Their definitions are as
follows:

Definition 4.1.5 The L -order, L’ -lower order and L’ -type of a meromor-
phic function f are defined by

© . logT(r,f) .. . .logT(r,f)
Pf = ISP et = MR gl

T(r, f)

and af* = lim sup -0 < pr“* < 00.

r—00 [reL(’")]"’)é
When f is entire, one can easily verify that

- log® M(r, f) - log® M(r, f)
L ’ L s ’
=1 ==
Pt lgi:}p log[rel(r)] At hrrﬂglf log[re(r)]
log M(r, f *
g M1 1) < ot < o0

and O'f = lim sup
7—00 [ LT]P?
re

Definition 4.1.6 The relative L -order pg‘* (f) and the relative L -lower or-

der )\5* (f) of an entire function f with respect to another entire function g
are defined as
Iz logG™1F(r)

: . .. JogGIF(r)
= ] L — g
b )= Bmeup ety e () =lminf=2 oree.




Definition 4.1.7 The relative L -hyper order ﬁg (f) and the relative L -

hyper lower order Xﬁ (f) of an entire function f with respect to another entire
function g are defined as

. , log? G71F(r) <1t . log® G F(r)
-1 ____ —_
A ()= tmenp S o end X, () = mint

In order to develop our results we shall need various kinds of measures and
densities for sets of points on the positive azis. Let E be such a set and let
Ela,b] denote the part of E for which a < r < b. The linear and logarithmic
measures of E are defined to be

m(E) = [dr and Im(E) = [ %7: respectively.
E E(1,00)

These may be finite or infinite. We also define the lower and upper densities
of £ by

dens E(uppe’]") = lim SupTLEio’T))

and dens E(lower) = lim inf m(E(0,7))

and also the upper and lower logarithmic densities of E by

log densE(upper) = limsup lim (155(711, 7))

and log densE(lower) = lim inf lim (E(l,r))“

r-00 log r

Also let f(r) =m(r, f) = Ii?f | f(2)]
zl=r
which is known as the minimum modulus of an entire function f. In this
chapter we also estimate some growth properties of composite entire functions
in terms of their minimum modulus. In fact all the definitions in the chapter

can also be stated in terms of minimum modulus on a set of logarithmic
density 1.
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4.2 Lemma.
In this section we present a lemma which will be needed in the sequel.

Lemma 4.2.1 {/2], [36]}. Let f(z) be an entire function such that

: log M(r, f)
— < —
hin_)Soclxlp (log r)? ¢< 4e

If 0 < 4ec < § < 1 then outside a set of upper logarithmic density at most 9,

M) 5,0) = 2222 where 7 = exp { — 6/ (4ec)}.

M(r, f) 14227
If in particular ¢ = 0 then
m(r, f)
——= —=1lasr — 0
M(r, f)

on a set of logarithmic density 1.

4.3 Theorems.

In this section we present the main results of the chapter. In the
following theorems we see the application of relative L-order and relative
L-lower order in the growth properties of entire functions.

Theorem 4.3.1 Let f,g and h be three entire functions such that

0< Ag(f) < pﬁ(f) < o0 and 0 < /\ﬁ(h) < pg(h) < 00. Then

AL (f) logG'F(r) _ X;(f) logG-1F(r) _ p5(f)
9"~ < liminf < 2 < < 4=
pL(h) = 't log G-LH(r) ~ AL(h) = lm sup 3 G TH () S ML ()

Proof. From the definition of relative L-order and relative L-lower order we
have for arbitrary positive £ and for all large values of r,

log GT'F(r) > (AL(f) — €) log[r L(r)] (4.3.1)

and logG1H(r) < (pé(_h) + ¢) log[rL(r)]. (4.3.2)



=N
(4514

Now from (4.3.1) and (4.3.2) it follows for all large values of r,

M(f)—€
pE(h) +¢&

log G F(r)
log G-YH(r)

Z

As (> 0) is arbitrary, we obtain that

1 AL
ngglfi;’:ghl 2&3 > p;ég . (4.3.3)
Again for a sequence of values of r tending to infinity,
log GT'F(r) < (AX(f) +€) log[rL(r)] (4.3.4)
and for all large values of r,
log G H(r) > (A(h) —€)log . (4.3.5)

So combining (4.3.4) and (4.3.5) we get for a sequence of values of r tending
to infinity,

log G™'F(r) _ X (f) +e

log G1H(r) = AL(h) — ¢

Since (> 0) is arbitrary it follows that

log G F(r) _ A(f)

lim inf . 3.
"o log GTH(r) = AL(R) (43.6)
Also for a sequence of values of r tending to infinity,
log G™'H(r) < (AZ(h) + €) log[rL(r))]. (4.3.7)

Now from (4.3.1) and (4.3.7) we obtain for a sequence of values of r tending
to infinity,

log G~ F(r) N A(f)—e

logG=YH(r) = AL(h) + ¢

Choosing ¢ — 0 we get that

-1 L
limsuplogG Fir) > A (f)

P og GIH(r) = M(R)’ (438)
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Also for all large values of r,
log G F(r) < (pg‘(f) + ) log[r L(7)]. (4.3.9)
So from (4.3.5) and (4.3.9) it follows for all large values of 7,

log G1F(r) < pE(f)+e
logG~1H(r) = AL(h) —¢

As e(> 0) is arbitrary we obtain that

_ log GF(r) _ pE(f)
< .
lim supy” ET () = AL(h)

Thus the theorem follows from (4.3.3), (4.3.6), (4.3.8) and (4.3.10). m

(4.3.10)

Remark 4.3.1 Under the same conditions stated in Theorem 4.3.1, the con-
clusion of the theorem can also be drawn by using Lemma 4.2.1 in terms of
f(r),g(r) and h(r) instead of F(r),G(r) and H(r) on a set of logarithmic
density 1.

Theorem 4.3.2 Let f, g, h be three entire functions with
0<A(f) < pg(f) < o0 and 0 < ng(h) < 00. Then

. JdogGRYR(r) pE(f) log G~ F(r)

1 f <Ll <] .

pay log G-1H(r) = pk(h) — 1rlﬁfoul)log G-1H(r)
Proof. From the definition of relative L-order we get for a sequence of values
of r tending to infinity,

log G~ H(r) > (pg(h) — ¢€)log[rL(r)]. (4.3.11)

Now from (4.3.9) and (4.3.11) it follows for a sequence of values of r tending
to infinity,

log G™1F(r) - pE(f) +e

logG™1H(r) = pL(h) — ¢

As e(> 0) is arbitrary we obtain that

. JogGTIF(r) _ pg(f)
1 f < 4
o log GTH(r) = pE(R)’

(4.3.12)
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Again for a sequence of values of r tending to infinity,
log G1F(r) > (p2(f) — &) log[rL(r)]. (4.3.13)

So combining (4.3.2) and (4.3.13) we get for a sequence of values of r tending
to infinity,

log G~1F(r) S pe(f) —¢
logG1H(r) = pk(h)+¢
Since (> 0) is arbitrary it follows that
—1 1/ L
limsuplogG Fir) > Po (f)
roo 0g GTTH(r) = pL(h)

Thus the theorem follows from (4.3.12) and (4.3.14). m

(4.3.14)

Remark 4.3.2 Under the same conditions stated in Theorem 4.3.2, the con-
clusion of the theorem can also be deduced in view of Lemma 4.2.1 in terms
of f(r),g(r) and h(r) instead of F(r),G(r) and H(r) on a set of logarithmic
density 1.The following theorem is a natural consequence of Theorem 4.3.1
and Theorem 4.3.2.

Theorem 4.3.3 Let f,g and h be three entire functions with

0< )\g(f) < pﬁ(f) < oo and 0 < )\ﬁ(h) < p{;(h) < 00. Then

. logGT'F A
lim inf 122 G—lHE:)) < min {30y ﬁZ:(h) )
YANA . log G™1F(r)
< Sthy ok S B Py G ()

The proof is omitted.

Remark 4.3.3 Under the same conditions stated in Theorem 4.3.3, the con-
clusion of the theorem can also be drawn in view of Lemma 4.2.1 in terms
of f(r),g(r) and h(r) instead of F(r), G(r) and H(r) on a set of logarithmic
density 1. In the line of Theorem 4.3.1, Theorem 4.3.2 and Theorem 4.3.3

we may now prove similar results for relative hyper order and relative hyper
lower order.
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Theorem 4.3.4 Let f,g and h be three entire functions such that

~L _ ~L I
0 <A, (f) < pg(f) < 0o and 0 < A (h) <P, (h) < co. Then

Theorem 4.3.5 Let f,g and h be three entire functions with

—I _ I
0 <X, (f) <P(f) < oo and 0 < 7, (h) < co. Then

2 -1 S 2 -1
lim inflog2 G F(r) < fi(f) < lim suplOg2 G (r)
r—oo logl G-1H(r) ~ B (h) rooo - log® G-1H (r)

The following theorem is a natural consequence of Theorem 4.3.4 and Theo-
rem 4.3.5.

Theorem 4.3.6 Let f,g and h be three entire functions with

~L I ~L
0 <A (f) <py(f) <00 and 0 < A;(h) < co. Then

ming 08 GF0) A () 2y

L
r—00 logm G-'H(r) — - )\ﬁ(h)’ﬁﬁ(h)}
X, (f) PE(F)
= max {ij) F10

Remark 4.3.4 Under the same conditions respectively stated in Theorem
4.3.4, Theorem 4.3.5 and Theorem 4.3.6 the conclusions of the theorems can
also be drawn with the help of Lemma 4.2.1 in terms of f(r),g(r) and h(r)
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instead of F'(r),G(r) and H(r) on a set of logarithmic density 1. In the fol-
lowing theorems we see some comparative growth properties of entire functions
on the basis of relative L -order and relative L™ -lower order where L = L(r)
is a slowly changing function.

Theorem 4.3.7 Let f,g and h be three entire functions such that 0 < /\5* (f) <

pg* (f) <ooand 0 < )\{;* (h) < pg (h) < oco. Then
/\L* 1 )\L
i*(f) < hmlnflogG 1F(T) i( )
g (h) = oo log GTIH(r) T AL (R )

, logG'F(r) _ pE(f
<
= Bmsupi GTTH () < AP <h>

Proof. From the definition of relative L -order and relative L -lower order
we have for arbitrary positive ¢ and for all large values of r,

log G F(r) > (AL (f) — €) log[re™) (4.3.15)

)

<

and log G™'H(r) < (pg (h) + ¢) log[reX ™).
Now from (4.3.15) and (4.3.16) it follows for all large values of r,

GIF(r) A () —¢

: : 4.3.16
G-1H(r) = pL'(h) + ¢ ( )
As (> 0) is arbitrary, we obtain that
GF(r) _ AE(f)

lim inf > L 4.3.17
mIMEETH Y 2 o h) (43:17)

Again for a sequence of values of r tending to infinity,
logG'F(r) < ()\f;*(f) +¢) log[reX™] (4.3.18)

and for all large values of r,
log G H(r) > (/\5* (h) — €) log[rel™). (4.3.19)

So combining (4.3.18) and (4.3.19) we get for a sequence of values of r tending
to infinity,

log G-1F(r) AL
log G-1H(r)




Since £(> 0) is arbitrary it follows that

log G™1F(r) < /\5*(10)

im i . 4.3.20
I%Iilo‘o“flog GlH(r) = L (R) ( )

Also for a sequence of values of r tending to infinity,
log G H(r) < (AL (h) + &) log[re*™). (4.3.21)

Now from (4.3.15) and (4.3.21) we obtain for a sequence of values of r tending
to infinity,

log G™1F(r) S )\ﬁ*(f) —€
log G-1H(r) = M (h) + ¢

Choosing ¢ — 0 we get that

-1
lim sup log G~

msupy G (4.3.22)

E
Also for all large values of r,

log G F(r) < (Pg (f) + €) log[rel(™]. (4.3.23)
So from (4.3.19) and (4.3.23) it follows for all large values of r,

log G~1F(r) < pg*(f) +¢€
logG=1H(r) = M (h) —¢

As (> 0) is arbitrary, we obtain that

-1 L*
limsuplogG F(r) <P (/)

WS G S A (R) (4.3.24)

Thus the theorem follows from (4.3.17), (4.3.20), (4.3.22) and (4.3.24). =

Theorem 4.3.8 Let f, g and h be three entire functions with

0 < AL'(f) < pE (f) < o0 and 0 < gL (h) < co. Then



.. dogG7IF(r) P{(f) : log G~ F(r)
< < 1 )
lim inf logG™1H(r) = pt'(h) — 1rrfl»:’ouplOgG”"IH(T)

Proof. From the definition of relative L -order we get for a sequence of
values of r tending to infinity,

log GLH(r) > (p% (k) — &) log[re™]. (4.3.25)

g

Now from (4.3.9) and (4.3.11) it follows for a sequence of values of r tending
to infinity, |

logG™1F(r) < pé‘*(f) +¢€

logG1H(r) = pL'(h) — ¢

As (> 0) is arbitrary we obtain that

logGIF(r) _ pE(f)
lim inf < L= 4.3.2
ot logG=1H(r) = pL™(h) (4.3.26)
Again for a sequence of values of r tending to infinity,
logG~tF(r) > (pg*(f) — ¢) log[re!(™). (4.3.27)

So combining (4.3.16) and (4.3.27) we get for a sequence of values of r tending
to infinity,

logG™1F(r) S pﬁ*(f) —€
logG1H(r) = pL'(h) + ¢

Since (> 0) is arbitrary it follows that

-1 . L’
limsuplogG F(r) > P (f)

T —00 log G—lH(’r) - pg* (h) (4328)

Thus the theorem follows from (4.3.26) and (4.3.28). The following theorem
is a natural consequence of Theorem 4.3.7 and Theorem 4.3.8. =

Theorem 4.3.9 Let f,g and h be three entire functions with

0< /\5*(]”) < p{(f) < oo and 0 < )\é‘*(h) _<_p§*(h) < 00. Then



.. JogGiF(r) . /\L*(f) PL*(f)
bminty e G () = ™" Ag* ()’ pg*(h)}

AL(f) ok (f

Remark 4.3.5 Under the same conditions respectively stated in Theorem
4.3.7, Theorem 4.3.8 and Theorem 4.3.9 the conclusions of the theorems can
also be deduced by using Lemma 4.2.1 in terms of f(r),g(r) and h(r) instead
of F(r),G(r) and H(r) on a set of logarithmic density 1. We may prove
similar results for relative L -hyper order and relative L™ -hyper lower order.

Theorem 4.3.10 Let f,g and h be three entire functions such that

_L* _* ___L* _*
0< A, (f)gpg (f) <ooand0< A, (h)gpg (h) < 0o. Then

— -
A, () L L log GRG) A, (f)
—i* h B hﬂg}f logl? -1 = -—i*

Py (h) og” GTLH(r) = X (h)
logl® G-1F(r) < ﬁﬁ* (f)
r—o0 log? G-1H(r) ~ X;‘* (h)

Theorem 4.3.11 Let f,g and h be three entire functions with

0 <X, (f) SPE(f) < o0 and 0 < pL (k) < co. Then

[2] /-1 o [2] -1
liminflog G~ F(r) <pg () < limsu log ~ G™_F(r)

=00 log? G-1H(r) T pE(h) T reoo plog[2] G-1H(r)

The following theorem is a natural consequence of Theorem 4.3.10 and The-
orem 4.3.11.




Theorem 4.3.12 Let f,g and h be three entire functions with

L . L
0< X, (f) <P, (f) <ocoand 0 <A, (h) <oco. Then

Remark 4.3.6 Under the same hypothesis respectively stated in Theorem
4.83.10, Theorem 4.3.11 and Theorem 4.3.12 the conclusions of the theorems
can also be draun by using Lemma 4.2.1 in terms of f(r),g(r) and h(r) in-
stead of F(r),G(r) and H(r) on a set of logarithmic density 1.



