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RELATIVE L-ORDER AND RELATED 
COMPARATIVE GROWTH PROPERTIES 
OF ENTIRE FUNCTIONS ON THE BASIS 

OF THEIR MINIMUM MODULUS 

4.1 Introduction, Definitions and Notations. 

Let f and g be two entire functions and 

F(r) = max{lf(z)l: z = r},G(r) = max{lg(z)l: lzl = r}. 

Iff is non-constant then F(r) is strictly increasing and continuous and its 
Inverse 

p-l: (lf(O)I, oo) ·~ (0, oo) 

exists and is such that 
lim p-1(s) = oo. 

S-400 

The results of this chapter have been published in International Mathematical Forum, see [21]. 
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Bernal[3] introduced the definition of relative order of f with respect to g, 

denoted by pg(f) as follows: 

logG-1F(r) 
pg(f) = inf{M > 0: F(r) < G(rllo) for all r > ro(J-l) > 0} =lim sup 

1 
. 

r->oo ogr 

The definition coincides with the classical one[65] if 

g(z)= expz. 

Similarly one can define the relative lower order of f with respect to g denoted 
by Ag(f) as follows: 

, (f) 1. . flog c- 1 F(r) 
A = lffiln . 

g T->oo log r 

Somasundaram and Thamizharasi [63] introduced the notions of L-arder, L
lower order and L-type for entire functions where L = L(r) is a positive 
continuous function increasing slowly i.e. 

L(ar) t"V L(r) as r--+ oo 

for every constant 'a'. Their definitions are as follows: 

Definition 4.1.1 {63} The L-order PJ and the L-lower order >-.y of an entire 
function f are defined as follows: 

L . log[2
J M(r, f) L . . log[2

J M(r, f) 
p1 = hmsup 1 [ L( )] and >-.1 = hm1nf 1 [ L( )] 

r---+oo og r r r---+oo og r r 

Definition 4.1.2 {63} The L-type uf of an entire function f with L-order 
rf; is defined as . 

L . log M(r, f) L 
u1 = hmsup L , 0 < p1 < oo. 

r->oo [r L( r) )Pt 

Similarly one can define the L-hyper order and L-hyper lower order of entire 
functions. So with the help of the above notion one can easily define the 
relative L-order and relative L-lower order of entire functions. 

Definition 4.1.3 The relative L-order p~(f) and the relative L-lower order 
>-.~(f) of an entire function f with respect to another entire function g are 
defined as 

L _ . logG- 1F(r) L _ . . logG-1F(r) 
Pg (f) - hmsup 1 [ L( )] and )..g (f)- hm1nf 1 [ L( )] . 

r->oo og r r r->oo og r r 
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Definition 4.1.4 The relative L-hyper order p;(f) and the relative L-hyper 

lower order)..~ (f) of an entire function f with respect to another entire func
tion g are defined as 

-L . logf2l c-1 F(r) -L . . logf21 c-1 F(r) 
p9 (f) = hmsup 1 [ L( )] and )..9 (f)= hm1nf 1 [ L( )] . r->oo og r r r->oo og r r 

In this chapter we establish some results on the growth properties of entire 
functions on the basis of relative L-arder and relative L-lower order where 
L = L( r) is a slowly changing function. In the sequel we use the following 
notations: 

logfk] x = log(logfk-1
] x) fork= 1, 2, 3, ...... and logfOJ x = x. 

The more generalised concept of L-order and L-type of entire and meromor
phic functions are respectively L *-order and L *-type. Their definitions are as 
follows: 

Definition 4.1.5 The L* -order, L* -lower order and L* -type of a meromor
phic function f are defined by 

L* r log T(r, f) r . flog T(r, f) 
p f = 1~8!P log[reL(r)] = 1~~ log[reL(r)] 

d L* 
1
. T(r, f) L* 

an (}! = 1msup L* ,0 < p1 < oo. 
r->oo [reL(r)]Pt 

When f is entire, one can easily verify that 

L* r logf2
] M(r, f) )..L* r . f logf2

] M(r, f) 
PJ = ~~~p log[reL(r)] ' f = 1~~ log[reL(r)] 

L* . log M(r, f) L* 
and(}! = hmsup L* , 0 < PJ < oo. 

r->oo [reLrJPt 

Definition 4.1.6 The relative L* -order pL* (f) and the relative L* -lower or-
* g 

der )..; (f) of an entire function f with respect to another entire function g 
are defined as 



Definition 4.1.7 The relative L* -hyper order pf (j) and the relative L'

hyper lower order A.~* (f) of an entire function f with respect to another entire 

function g are defined as 

-L* . logl2l c- 1F(r) -L* . . log[2l c-1F(r) 
Pg (f)= hmsup 

1 
[ L( )] and A.g (f)= hm1nf 1 [ L(r)] . 

r-+oo og re r r-+oo og re 

In order to develop our results we shall need various kinds of measures and 
densities for sets of points on the positive axis. Let E be such a set and let 
E[a, b] denote the part of E for which a < r < b. The linear and logarithmic 
measures of E are defined to be 

m(E) = J dr and lm(E) = J dr respectively. 
E E(l,oo) r 

These may be finite or infinite. We also define the lower and upper densities 

of E by 

dens E(upper) = lim sup m(E(O, r)) 
r--->CX) r 

and dens E(lower) = liminf m(E(O, r)) 
r->00 r 

and also the upper and lower logarithmic densities of E by 

. lim ( E ( 1, r)) 
log densE(upper) = hmsup 

1 r-+oo og r 
. . lim ( E ( 1, r)) 

and log densE(lower) = hm1nf . 
· r-~oo log r 

Also let f(r) = m('r, f)= inf lf(z)l 
izl=r 

which is known as the minimum modulus of an entire function f. In this 
chapter we also estimate some growth properties of composite entire functions 
in terms of their minimum modulus. In fact all the definitions in the chapter 
can also be stated in terms of minimum modulus on a set of logarithmic 
density 1. 



!I 

4.2 Lemma. 

In this section we present a lemma which will be needed in the sequel. 

Lemma 4.2.1 {[2}, {36}}. Let f(z) be an entire function such that 

. log M(r, f) 1 
hm sup (l )2 < c < -4 . 

r-+oo ogr e 

If 0 < 4ec < 8 < 1 then outside a set of upper logarithmic density at most 8, 

:t'~ > k(8,c) = l-
2
·
27 

where T = exp{- 8/(4ec)}. 
r, 1 + 2.2T 

If in particular c = 0 then 

m(r, f) 
M(r,f) ---*1 asr---*OO 

on a set of logarithmic density 1. 

4.3 Theorems. 

In this section we present the main results of the chapter. In the 
following theorems we see the application of relative L-arder and relative 
L-lower order in the growth properties of entire functions. 

Theorem 4.3.1 Let f, g and h be three entire functions such that 

A~(f) < 
1
. . flog G-1 F(r) < A~(f) < 

1
. log c-1 F(r) < p~(f) 

1m1n 1msup . 
Pt(h) - r-+oo logG-1H(r)- At(h) - r-+oo logG-1H(r) - At(h) 

Proof. From the definition of relative L-arder and relative L-lower order we 
have for arbitrary positive c and for all large values of r, 

logG-1F(r) > (A;(J)- c) log[rL(r)] 

and log c-1 H(r) < (p;(h) +c) log[r L(r)]. 

(4.3.1) 

(4.3.2) 
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Now from (4.3.1) and (4.3.2) it follows for all large values ofT, 

log c-1 F(r) >.~(f) - c 
logG-1H(r) > p~(h) +c:· 

As c:(> 0) is arbitrary, we obtain that 

1
. . flogG- 1F(r) > >.~(!) 
lmln . 
r-+oo logG-1H(r) - p~(h) 

(4.3.3) 

Again for a sequence of values of r tending to infinity, 

logG-1F(r) <(>.~(.f) +c:)log[rL(r)] ( 4.3.4) 

and for all large values of r~ 

log c- 1 H(r) > (>.~(h)- c:) log r. (4.3.5) 

So combining (4.3.4) and (4.3.5) we get for a sequence of values of r tending 
to infinity, 

logG-1F(r) >.~(f)+c: 
----'-- < L . 
logG-1H(r) - >.g(h)- c 

Since c:(> 0) is arbitrary it follows that 

. . log c-1 F(r) >.~(f) 
h~~flogG·-1H(r) <>.~(h)" (4.3.6) 

Also for a sequence of values of r tending to infinity, 

logG-1H(r) <(>.~(h)+ c:) log[rL(r)]. (4.3.7) 

Now from (4.3.1) and (4.3.7) we obtain for a sequence of values of r tending 
to infinity, 

logG-1F(r) )..~(f)-c: 
logG-1H(r) ~)..~(h) +c:· 

Choosing c---+ 0 we get that 

1
. logG-1F(r) >.~(!) 
1m sup G 1 ( ) > L ( ) . 

r-+oo log - H r. Ag h 
(4.3.8) 



Also for all large values of r, 

log c-l F(r) < (p;(J) +E) log[rL(r)]. ( 4.3.9) 

So from ( 4.3.5) and ( 4.3.9) it follows for all large values of r, 

logG-1F(r) p~(f) + E 

log G-1 H(r) < >..~(h) - E · 

As E( > 0) is arbitrary we obtain that 

. log c-1 F(r) < p~(f) 
h~~plogG-1H(r) ->..~(h)" (4.3.10) 

Thus the theorem follows from (4.3.3), (4.3.6), (4.3.8) and (4.3.10). • 

Remark 4.3.1 Under the same conditions stated in Theorem 4.3.1, the con
clusion of the theorem can also be drawn by using Lemma 4.2.1 in terms of 
f(r),g(r) and h(r) instead of F(r),G(r) and H(r) on a set of logarithmic 
density 1. 

Theorem 4.3.2 Let f, g, h be three entire functions with 

0 < >..;(!) < p;(J) < oo and 0 < p;(h) < oo. Then 

.. logG-1F(r) p~(f) . logG-1F(r) 
h~~flogG-1H(r) < p~(h) < l~~!uplogG- 1 H(r)" 

Proof. From the definition of relative £-order we get for a sequence of values 
of r tending to infinity, 

logG-1H(r) > (p;(h)- E)log[rL(r)]. (4.3.11) 

Now from (4.3.9) and (4.3.11) it follows for a sequence of values of r tending 
to infinity, 

log G-1 F(r) p~(f) + E -----'---'- < ~--
logG-1H(r) - p~(h)- E. 

As E(> 0) is arbitrary we obtain that 

l 
.. flogG-- 1F(r) p~(f) 
lffiln < . 
r~oo logG-1H(r) - p~(h) 

(4.3.12) 
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Again for a sequence of values of r tending to infinity, 

(4.3.13) 

So combining ( 4.3.2) and ( 4.3.13) we get for a sequence of values of r tending 
to infinity, 

log c-1 F(r) > p;(f)- c. 

log G-1 H(r) - p~(h) + c 

Since c(> 0) is arbitrary it follows that 

. logG-1F(r) p;(f) 
hm supl Q-1H( ) > L(h). 
T~oo og r p9 

Thus the theorem follows from (4.3.12) and (4.3.14). • 

(4.3.14) 

Remark 4.3.2 Under the same conditions stated in Theorem 4.3.2, the con
clusion of the theorem can also be deduced in view of Lemma 4.2.1 in terms 
of f(r), g(r) and h(r) instead of F(r), G(r) and H(r) on a set of logarithmic 
density 1. The following theorem is a natural consequence of Theorem 4.3.1 
and Theorem 4.3.2. 

Theorem 4.3.3 Let f, g and h be three entire functions with 

0 <>-.;(f) < p;(f) < oo and 0 < >-.;(h) < p;(h) < oo. Then 

. logG-1F(r) 
hm sup1 0 _1 H( ) . 

r---+oo og r 

The proof is omitted. 

Remark 4.3.3 Under the same conditions stated in Theorem 4.3.3, the con
clusion of the theorem can also be drawn in view of Lemma 4.2.1 in terms 
of f(r),g(r) and h(r) instead of F(r), G(r) and H(r) on a set of logarithmic 
density 1. In the line of Theorem 4.3.1, Theorem 4.3.2 and Theorem 4.3.3 
we may now prove similar results for relative hyper order and relative hyper 
lower order. 
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Theorem 4.3.4 Let J, g and h be three entire functions such that 

0 < ;\~(!) < p;(J) < oo and 0 <;\~(h)< p;(h) < oo. Then 

Theorem 4.3.5 Let f, g and h be three entire functions with 

0 < ;\~(!) < p~(f) < oo and 0 < p~(h) < oo. Then 

. . log[2J c-1 F(r) pL(f) . log[2] c-1 F(r) 
hm1nf < 9 < hmsup [2] • 

r--too log[2lG-1H(r)- p~(h)- r--too log G-1H(r) 

The following theorem is a natural consequence of Theorem 4.3.4 and Theo
rem 4.3.5. 

Theorem 4.3.6 Let f, g and h be three entire functions with 

0 < ;\~(!) < p~(f) < oo and 0 <;\~(h)< oo. Then 

l 
.. flog[2lG-1F(r) < . {~~(!) p~(f)} 
liD In [ J min L , 
r--too log 2 G-1 H(r) - ;\

9 
(h) P~(h) 

-L L 
< {;\9 (!) P9 (f)} 

max L , L 
- ;\

9
(h) P9 (h) 

. log[2l c-1 F(r) 
< hmsup 

2 
. 

r--•oo log[ l G-1 H ( r) 

Remark 4.3.4 Under the same conditions respectively stated in Theorem 
4.3.4, Theorem 4.3.5 and Theorem 4.3.6 the conclusions of the theorems can 
also be drawn with the help of Lemma 4.2.1 in terms of f(r),g(r) and h(r) 
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instead of F(r), G(r) and H(r) on a set of logarithmic density 1. In the fol
lowing theorems we see some comparative growth properties of entire functions 
on the basis of relative L* -order and relative L* -lower order where L- L(r) 
is a slowly changing function. 

• 
Theorem 4.3. 7 Let j, g and h be three entire functions such that 0 < >.~ (f) < 
pf (.f) < oo and 0 < >.f (h) < pf (h) < oo. Then 

* L* 
>.~(f) < 

1
. . flogG- 1F(r) A9 (f) 
Im Ill < -"--:::-.-pf (h) - r-.oo log Q-1H(r) - ).~ (h) 

< . log c-I F(r) ~·(f) 
1~~!uplogG-1H(r) < >.f(h)' 

Proof. From the definition of relative L *-order and relative L *-lower order 
we have for arbitrary positive c and for all large values of r, 

logG-1F(T) >(>.~·(f)- c-) log[reL(r)] 

and logG-1H(r) < (pf (h) +c)log[reL(r)]. 

Now from (4.3.15) and (4.3.16) it follows for all large values of r, 

c-1 F(T) >,f (f) - c 
G-1 H(r) > -pf (h)+ c. 

As c(> 0) is arbitrary, we obtain that 

1
. . f c-1 F(T) >.f (f) 
Im In G 1 ( ) > . . 
T-+00 - H T - p~ (h) 

Again for a sequence of values of r tending to infinity, 

logG-1 F(r) <(>..~·(f)+ c) log[reL(r)] 

and for all large values ofT, 

logG-1H(T) > (>.f (h)- c)log[reL(r)]. 

(4.3.15) 

(4.3.16) 

( 4.3.17) 

(4.3.18) 

(4.3.19) 

So combining (4.3.18) and (4.3.19) we get for a sequence of values of r tending 
to infinity, 

logG-1F(T) >.f (f)+ c 
log G-1 H(r) < >.f (h)- c · 



Since s(> 0) is arbitrary it follows that 

(4.3.20) 

Also for a sequence of values of r tending to infinity, 

logG-1H(r) < p,f (h) +c:)log[reL(r)]. (4.3.21) 

Now from ( 4.3.15) and ( 4.3.21) we obtain for a sequence of values of r tending 
to infinity, 

log c-1 F(r) >.f (f) - E 

logG-1H(r) > >.f(h) + s· 

Choosing s -+ 0 we get that 

. log c-- 1 F(r) > >.f (f) 
hmsupl Q-1H( ) - L* ( )" r->oo og r )..g h 

(4.3.22) 

Also for all large values of r, 

log c-1 F(r) < (pf (f)+ s) log[reL(r)]. ( 4.3.23) 

So from (4.3.19) and (4.3.23) it follows for all large values of r, 

* 
log c-1 F(r) p~ (f)+ s 

) < * . 
log G-1 H(r - )..~ (h) - s 

As c(> 0) is arbitrary, we obtain that 

1
. logG-1F(r) pf (f) 
1m sup G 1 ( ) < * . 
r->oo log - H r - )..~ (h) 

( 4.3.24) 

Thus the theorem follows from (4.3.17), (4.3.20), (4.3.22) and (4.3.24). • 

Theorem 4.3.8 Let f, g and h be three entire functions with 

• * * 
0 < >-.; (f) < p; (f) < oo and 0 < p; (h) < oo. Then 
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. . log c-1 F(r) < pf (f) < . log G 1 F(r) 
hminf logG-1H(r)- pf(h)- 1~~!uplogG--- 1 H(r)" 

Proof. From the definition of relative L *-order we get for a sequence of 
values of r tending to infinity, 

(4.3.25) 

Now from (4.3.9) and (4.3.11) it follows for a sequence of values of r tending 
to infinity, 

logG-1F(r) _ pf (f)+ E 
---=----:----~ <. * • 
log G-1 H(r) -- p~ (h) - c 

As c(> 0) is arbitrary we obtain that 

. . log G- 1 F(r) < pf (f) 
hm1nf1 c-1H( ) _ L*( ) . 
r-->-oc; og T p g h 

Again for a sequence of values of r tending to infinity, 

(4.3.26) 

(4.3.27) 

So combining ( 4.3.16) and ( 4.3.27) we get for a sequence of values of r tending 
to infinity, 

log c- 1 F(r) pf (f) - c ___ .....;__;__ > * . 
log Q-1H(r) ·- p~ (h)+ c 

Since c(> 0) is arbitrary it follows that 

I
. log c-1 F(r) pf (f) 
1m sup 1 ( ) > * . 
r-.= logG- H,r -~(h) 

( 4.3.28) 

Thus the theorem follows from (4.3.26) and (4.3.28). The following theorem 
is a natural consequence of Theorem 4.3. 7 and Theorem 4.3.8. • 

Theorem 4.3.9 Let f, g and h be three entire functions with 

0 < >.f (f) < pf (f) < oo and 0 < >.f (h) < pf (h) < oo. Then 
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Remark 4.3.5 Under the same conditions respectively stated in Theorem 
4.3. 7, Theorem 4.3.8 and Theorem 4.3.9 the conclusions of the theorems can 
also be deduced by using Lemma 4.2.1 in terms of f(r), g(r) and h(r) instead 
of F(r), G(r) and H(r) on a set of logarithmic density 1. We may prove 
similar results for relative L *-hyper order and relative L *-hyper lower order. 

Theorem 4.3.10 Let f, g and h be three entire functions such that 

-L* * -L* * 
0 < A9 (f) < p; (f) < oo and 0 < A

9 
(h) < p; (h) < oo. Then 

"X~· (f) < 
1
. . f logf2l G-1 F(r) < "X~· (f) 

L* liD Ill [2] * 
(59 (h) - r->oo log G-1H(r) - A~ (h) 

. logf2
1 c- 1 F(r) PL* (f) 

< hm sup < ----=
9
'--:-.-

r-+oo logf2l Q-1 H ( r) A~ (h) 

Theorem 4.3.11 Let f, g and h be three entire functions with 

-~ * * 
0 < A9 (f) < p; (f) < oo and 0 < p; (h) < oo. Then 

. . logf2] c-l F(r) PL* (f) . logf2l c-1 F(r) 
hm1nf < 9 

* < hmsup . 
r->oo logf2l G-1H(r) p; (h) - r->oo logf2l Q-1H(r) 

The following theorem is a natural consequence of Theorem 4.3.10 and The
orem 4.3.11. 



Theorem 4.3.12 Let J, g and h be three entire functions with 

-L* * -L* 
0 < )..g (f) < 75; (.f) < oo and 0 < )..g (h) < oo. Then 

Remark 4.3.6 Under the same hypothesis respectively stated in Theorem 
4.3.10, Theorem 4.3.11 and Theorem 4.3.12 the conclusions of the theorems 
can also be drawn by using Lemma 4.2.1 in terms of f(r),g(r) and h(r) in
stead of F(r), G(r) and H(r) on a set of logarithmic density 1. 

----··-X-- -- --


