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Chapter 8

ON THE GROWTH ESTIMATES OF
ENTIRE FUNCTIONS SATISFYING
SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS

8.1 Introduction, Definitions and Notations.

For any two transcendental entire functions f and g defined in the open
complex plane C, Clunie [10] proved that
T(r,fog)

limM—o—g)zoo and lim——2 = oo.

roeo T(r, f) rooo T(r,g)

Singh [59] proved some comparative growth properties of log T'(r, f o g)
and T'(r, f). He [59] also raised the problem of investigating the comparative
growth of logT'(r, f o g) and T'(r, g) which he was unable to solve. However,
some results on the comparative growth of logT'(r, f o g) and T'(r,g) are
proved in [37].

Let f be an entire function defined in the open complex plane C.
Kwon [33] studied on the growth of an entire function f satisfying second
order linear differential equation. Later Chen [12] proved some results on the
growth of solutions of second order linear differential equations with mero-
morphic coefficents. Chen and Yang [13] established a few theorems on the
zeros and growths of entire solutions of second order linear differential equa-
tions. The purpose of this chapter is to study on the growth of the solution

The results of this chapter have been published in International Mathematical Forum,see [23].
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f # 0 of the second order linear differential equation
f"+A@)f +B(2)f =0,

where A(z) and B(z) # 0 are entire functions.
The following definitions are well known.

Definition 8.1.1 The order py and lower order Ay of an entire function f
is defined as

2 [2]
ps=lim suplog M(r, /) and As = liminf log™ M(r, f)
r—00 log r—00 logr

where logM z = log(log[k_” x) for k=1,2,3,... and log z = z.
If f is meromorphic, one can easily verify that

- log T'(r, f) log T'(r, f)
— = S f .
Pf lnrn sup log 7 and Aj = 11;11 in Tog

Definition 8.1.2 The hyper order ps and hyper lower order by 7 of an entire
function f is defined as follows

_ logl® M(r, f) . log® M(r, f )
— . b d — 1- . f
pr lnff;l.fp logr and Af it logr

If f is meromorphic, then

_ logl? T 2]
ps = limsup g™ T(r, /) and A, 5= lim mflog T, f)
r—+00 logr T—00 logr

Definition 8.1.3 [43] Let f be an entire function of order zero. Then the
quantities py, Ay and pf by 5 are defined in the following way :

logl® Af los pf
py = limsup o8 2(T’ f) , Ay = liminf 08 2(T’ )
r—00 log 7 roco Jogly
and g 3
% 1 -* 1 M
pf = limsup og M(r, f) Af =liminf o8 (r f).

r—00 log? r 00 log® r
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If f is meromorphic then clearly

p} = lim sup—logT(zr’ /) , } = lim inf _—logT(zr, f)
r—300 log[ P r—oo  Jogly
d
" 5, lim su logm T(r, f) ;\* lim inf log[2] T(r, f)
= 11 3 == .
P1 'r—aoop log® ¢ F e log r

Definition 8.1.4 The type o5 of an entire function f is defined as

log M :
of = limsume, 0 < py < oo.
r—co rP
When f is meromorphic, then
T
of = Iimsupﬂl, 0 < py <co.
7—00 rPr

Definition 8.1.5 Let ' be a complex number, finite or infinite. The Nevan-
- linna deficiency and the Valiron deficiency of '@ with respect to a meromor-
phic function f are defined as

P e 1 e e f) {6 f)

L L = Y

and Nir o -
Ala; f) =1 —liminf——M = limsupM.

roe T(r,f)  row T(f)

8.2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 8.2.1 [1] If f is meromorphic and g is entire then for all sufficiently
large values of T,

T(r,g)
log M(r, g)

Lemma 8.2.2 [4] Let f be meromorphic and g be entire and suppose that
0 < p < pg < 00. Then for a sequence of values of r tending to infinity,

T(r, f o g) 2 T(exp(r"), f).

T(r,fog) <{l+o(1)} T(M(r,g), f)-
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Lemma 8.2.3 [51]/Let f and g be two transcendental entire functions with
Pg < 00, N be a constant satisfying 0 < n < 1 and « be a positive number.
Then

T(r,fog)+O(1) =2 N(r,0; f o g)

> log (1) l N(M((gr)™=,g),0, f)
B n/ |log M{(nr)==,g) — O(1)

as r — oo through all values.

—0(1)

8.3 Theorems.

In this section we present the main results of the chapter.

Theorem 8.3.1 Let f be an entire function satisfying the second order linear
differential equation f* 4+ A(2)f + B(2)f = 0 where A(2) and B(2) # 0 are
entire functions. If (i) pa,ps are both finite, (i) Aa, Ay are both positive,
(i) pp < Aa and pp < Af i.e. pp < min{dg,As} and (i) B be of regular
growth i.e., Ag = pp then

2
im {logT(r, Ao B)} _o.
r-oo (1, )T (r, A)
Proof. It is well known that for an entire function B, T'(r, B) < log* M(r, B).
So in view of Lemma 8.2.1, we get for all sufficiently large values of r,
T(r, Ao B) < {1+ o(1)}T(M(r, B), )
i.e., logT(r,AoB) <log{l+o0(1)}+logT(M(r, B),A)
i.e., logT(r,AoB)<o(l)+ (pa+¢)logM(r,B)

ie., logT(r,AoB) <o(l)+ (pa+ e)rPe*e. (8.1)
Also we obtain for all sufficiently large values of 7,
T(r, A) > rra—¢, (8.2)

Now combining (8.1) and (8.2) it follows for all sufficiently large values of r,
log T(r, Ao B) _ o(1) + (pa+ ¢)rlpate)
T(r, A) - rAa—e

logT(r, Ao B 1 (pate)
i.e., limsup %% T((ij A)O ) < limsupo( )+ (iiAfﬁe)T )
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Since pp < A4, we can choose € (> 0) in such a way that pp+¢ < Ag—e€ and
so it follows from above that

1 AoB
ogT(rdoB) _, (8.3)

lim sup

=00 T('r, A)
Again we get for all sufficiently large values of r,

log T(r, ) > (As —€)logr
ie., T(r,f)>rM¢ (8.4)

Since pp < Ay, we can choose ¢ (> 0) in such a way that
PBF+eE< A —e (8.5)

Now combining (8.1), (8.4) and (8.5) it follows for all sufficiently large values
of 7,

logT(r,AoB) _ o(l)+ (pa + €)ries+e

<
T0hH S
) . logT(r, Ao B)
i.e., limsu =0
T—*OOP T(T: f)
, . logT(r,AoB)
t.e., lim = 0. 8.6
T (59)

Therefore in view of (8.3) and (8.6), we obtain that

lim {log T(r, Ao B)}*
r—o0  T(r, /)T (r, A)
logT(r,AoB) ., logT(r,AoB)

SELTT0 ) ek 10, A)
—0.
2
ie. limUBT(nAcB)Y o

r—co  T(r, f)T(r, A)
This proves the theorem. m

Remark 8.3.1 The condition pp < min {A4, As} in Theorem 8.3.1 is essen-
tial as we see in the following example.
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Example 8.3.1 Let f(z) = expz, A(z) =expz and
B(z) = exp z with 1 + 2¢* = 0.

Then pg = As =1, pB:)\B=1 and Ay = 1.

Also T(r,f) =T(r,expz) =

T(r,A) =T(r,expz) =~ and

exprT
(273r)z
i.e., logT(r,AoB)~r— —;—log'r + O(1).

T(r, Ao B) = T(r,exp? 2) ~

(r — o)

Therefore,

i {log T(r, A o B)}?
r—oo  T'(r.f)T(r, A)

{'r — llog'r'-l—O( )}2

= lim
r—00

1
> llm {2 (

00
= lim 72 {
T— 00

_4,

which contradicts Theorem 8.3.1.

Theorem 8.3.2 Let f be an entire function satisfying the second order linear
differential equation f + A(2)f + B(z)f = 0 where A(2) and B(z) £ 0 are
entire functions. If pg = 0 then paop > Aj.pp where 0 < 1 < pp.
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Proof. In view of Lemma 8.2.2 and for 0 < u < pp we get that

B
paop = lim sup logT(r, Ao B)
00 logr
I
T—00 logr
I log!? 7
> liminf log Tz(exp (r): 4) Jim inf og " (exp(r”))
r=eo logPl(exp(rr)) roee  logr
log r#

= A\}.liminf
AT e logr

= \j.Li.
Thus the theorem is established. m

Remark 8.3.2 The condition p < pp in Theorem 8.3.2 is necessary which
s evident from the following example.

Example 8.3.2 Let f =expz, A(z) =z and

B(z) =expz with 14+ 2+ ¢e*=0. Also let p = 2.
Then pg = Aa =0, A% =1 and paop = 1.
Thus paop = 1 < 2 = 1.2 = A}.u, which is contrary to Theorem 8.3.2.

Theorem 8.3.3 Let f be an entire function satisfying the second order linear
differential equation f + A(2)f + B(2)f = 0 where A(z) and B(z) # 0 are
entire functions. If pa, pp are both finite and X\; is positive then for any o €
(_OO: OO),

. [log{T(r, Ao B) lOg M(T‘, B)}]1+0’ ~
TILIE'O T(exp T, f) =0.

Proof. If 1 4+ a < 0, the theorem is obvious. So we suppose that 1 + a > 0.
In view of Lemma 8.2.1, we have for all sufficiently large values of r,

log{T'(r, Ao B)log M(r, B)}
<logT(r,B) +logT{M(r,B), A) + log{1 + o(1)}
< (pp + ) logr + (pa+ )r”"* + o(1)

<romied(py o) Lot DTN, )

rPBte
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Again we get for all sufficiently large values of r,

logT(expr, f) = (A\s —¢)log {expr}
i.e., T(expr,[) > exp{(Af —€)r}. (8.8)

Now combining (8.7) and (8.8) it follows for all sufficiently large values of r,

[log{T'(r, Ao B)log M(r, B)}]1+a
T(expr, f)

1 13y 1te
e

= exp{(As —€e)r}

4o
ic. limsup llog{T(r, Ao B)log M(r, B)}] —o,

r—=00 T(exp T, f)

from which the theorem follows. m

Remark 8.3.3 The condition Ay > 0 in the Theorem 8.3.3 is essential as we
see in the following example.

Example 8.3.3 Let f =2z, A(z) = B(z) = expz and a =0 with z+1 = 0.
Then pa= pp =1 and A\f = 0.

Also
T(r, Ao B) = T(r,exp¥ z) ~ exprl (r — 00),
(2m3r)2
M(r,B) = M(r,expz) = expr
and

T(expr, z) <log™ M(expr,2) = log(expr) = 1.
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Therefore,
. [log{T(r, Ao B)log M(r, B)}]'*®
lim
S T(expr, /)
— lim log T'(r, Ao B) + logi® M(r, B)
o T(expr, f)
r—tlogr+O(1) + log expr

r
r—slogr + O(1) + logr

r
r+ zlogr + O(1)
T

=1,
which contradicts Theorem 8.3.3.
Theorem 8.3.4 Let [ be an entire function satisfying the second order linear
differential equation f + A(z)f + B(z)f = 0 where A(z) and B(z) £ 0 are
entire functions. If pa, pp are both finite and A is positive then for any a ¢
('_'OO: OO),
1 14o
i (08T Ao B)log M(r, B)N ™ _ o g 140 L
r-soo T(expr, f) PB

Proof. If 1 +a < 0, the theorem is obvious. So we take 1 +a > (. We obtain
for all sufficiently large values of r,

logT(expr, f) > (Af —€) log {expr}
i.e., T(expr, f)>exp{(Af—e)r}. (8.9)
Now combining (8.7) and (8.9) it follows for all sufficiently large values of r,
[log{T'(r, A o B)log M(r, B)}|***

T(expr, f)
(Pt a+a){(pa+o+ CRTIrom ) T
< (8.10)
(Ar—er
Since 1 +a < ‘%, we can choose ¢ (> 0) in such a way that
(B +e)(1+ o) < 1. (8.11)

Thus the theorem follows from (8.10) and (8.11). m
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Theorem 8.3.5 If f be an entire function satisfying the second order linear
differential equation f" + A(2)f + B(2)f = 0 where A(z) and B(z) # 0 are
entire functions. If 0 < Agop < paop < 00 and 0 < ;_of < oc then for any
posttive number «,

log® T'(r, A o B)
e logPIT(re, f) = ap, T o log?T(re, f)

Proof. From the definition of hyper order we get for all sufficiently large
values of r, .

log? T(r, Ao B) < (paop + €) log . (8.12)

Again we have for a sequence of values of r tending to infinity,
log® T'(r<, f) > (p; — ¢) log ™
ie., logdT(re f) > a(ps — €)logr. (8.13)

Now combining (8.12) and (8.13) it follows for a sequence of values of 7 tend-
ing to infinity,
logP! T(r, Ao B) _ (paop +¢€)logr
log? T'(r=, f) alp; —e€)logr

Since ¢ (> 0) is arbitrary, it follows from above that

I

lim inf @ < === (8.14)
roco log T'(re, f) ap;
Also for arbitrary positive € and for all sufficiently large values of r,
log? T(1%, f) < (3; + €) log r®
ie., log@T(re f) < a(ps + €) log. (8.15)

Again for a sequence of values of r tending to infinity,

log T(r, Ao B) > (paop — €) log . (8.16)
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Now from (8.15) and (8.16) we obtain for a sequence of values of r tending
to infinity, -

lOg[2] T(T: Ao B) ~ (EAOB — E) IOgT_
log™T(re, f) ~ afp;+€)logr

As ¢ (> 0) is arbitrary, we have from above that

[2] P
lim suplog T(T: Ao B) > P 4oB .

> = (8.17)
"—00 log[g] T(‘r“, f) apf

Thus the theorem follows from (8.14) and (8.17). =

Remark 8.3.4 The sign ' <' in Theorem 8.3.5 cannot be replaced by ' <’
only as we see in the following example.

Example 8.3.4 Let f = expPz, A(z) = B(2) = expz and o = 1, with
1+e*=0.

Then Aop = paop = 1 and p; =1

Also
T(r, Ao B) = T(r,exp® z) ~ exp?"l (r — c0)
(2737)2
: 1
ie, logT(r,AoB)~r— 5 logr + O(1)
i.e., log®¥T(r, Ao B) ~ log(r — %logr + 0(1)).
Again
o . [2] -~ eXpT
T(T :f) - T(T: eXp Z) (27_‘_371)%

1
i.e, logT(r® f)~r— 5 logr +0O(1) -

1
ie., logP T, f) ~ log(r — 5 logr + O(1)):
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Therefore,

(2]
lim inf log 2T (r, Ao B)
e log? T(re, f)
1 — lI
— liminf og(r ogr + O(1))
r—oo log(r — 3logr + O(1))

=1
and
[2]
lim, Suplog ZT('r, Ao B)
oo log! ]T(ra F)
I 1
_ limsup og(r — 3logr + O(1))
roo log(r — 7 logr + O(1))
= 1.

Also

1
pAOB R 1

apy 1

Theorem 8.3.6 Let f be an entire function satisfying the second order linear
differential equation f + A(2)f + B(2)f = 0 where A(z) and B(z) Z 0 are
entire functions. If (1) 0 < py < oo, (it) o5 < o0, (1#t) pacp = py and (iv)
0 < 0405 < 0O then

.. T(T,AOB) T AoB (7’ AOB)
lim inf < < lim sup———+—=.
e T ) op o oroe T(r])

Proof. By the definition of type, we have for arbitrary positive ¢ and for all
sufficiently large values of r,

T(r,Ao B) < (04cp + €)rf4E. (8.18)
Again we get for a sequence of values of r tending to infinity,
T(r, f) > (o7 — )r*". (8.19)

Since paop = py from (8.18) and (8.19) it follows for a sequence of values of
r tending to infinity,
T(r,AoB)

I(r, f)

(CaoB + €)
(o —€)

<
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As € (> 0) is arbitrary, it follows from above that
T(‘T‘,AO B) < JAcB

lim inf 7 = < - (8.20)
Again for a sequence of values of r tending to infinity,
T(r, Ao B) > (0405 — €)1P42. (8.21)
Also for all sufficiently large values of r,
T(r, f) < (o7 +€)r. (8.22)

Now in view of condition (ii7) we get from (8.21) and (8.22) for a sequence
of values of r tending to infinity,

T(r, Ao B) S (GA0B — €)
T(T:f) - (af+€) .

Since € (> 0) is arbitrary, we obtain from above that

. T(T, A O B) O-AOB
> .
lim sup T(r,f) = o

Thus the theorem follows from (8.20) and (8.23). =

(8.23)

Remark 8.3.5 The sign ' <’ in Theorem 8.3.6 cannot be replaced by ' <’
only as we see in the following example.

Example 8.3.5 Let f = expz, A(z) =expz, B(z) =z and

a=1withl+z+e*=0.
Thenpf=1, pAole: O’f"—‘l and O‘A°B=1.

Also r
T(r,AoB)=T(r,expz) = -
and ,
T, f)=T(r,expz) = —.
T
Therefore, .
liminf 2 A0 B) o ingE g

—00 T (’f’, f) T—00 %
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and T(r, Ao B) r
T o -
lim sup————— = limsup = 1.
r—00 T(’T‘, f) r—boop;
Also
0 AoB . l —1
of 1

Theorem 8.3.7 Let f be an entire function satisfying the second order linear
differential equation f + A(2)f + B(2)f = 0 where A(z) and B{z) £ 0 are
entire functions. If (1) 0 < Ap < pp < 00, (it) Mg > 0, (%48) py < oo and (iv)
A(0; A) < 1 then
lim logT(r,Ao B)
roco log T'(r?, f)

where f is a real constant.

= 0O,

Proof. We suppose that 8 > 0 because otherwise the theorem is obvious.
For given € (0 < e <1 — A(0; A4)),

N(r,0; A) > (1 — A(0; A) — €)T(r, A)

for all sufficiently large values of r.
So from Lemma 8.2.3 we get for all large values of r,

T(r,Ao B) + 0(1)
(1 - A0; A) — T { M{nr)™s B),A}
log M((nr) ==, B) — O(1)

> (log l)
7

- 0(1)} . (8.24)

Since for all large values of r, log M (r, B) < r#5+¢ it follows from (8.23) that
for all sufficiently large values of 7,

T(r, Ao B) +O(1) > O(logr) + log T {M((m)ﬁ,B), A}

+ log [1 - log M((nr)™=, B)O(1) |
(1—A(0;4) — E)T{M(m)l—;.-,B),A}

Since f is transcendental, it follows that

i 08 M ((?7?‘) =%, B)
'r—rooT { nT 1+ct A}
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So from above we get for all large values of r,
logT(r,Ao B) > O(logr) + logT {M((nr)ﬁ,B), A} +o(1). (8.25)
Also we see that for all large values of r,
M(r,B) > exp {('r)(l/z))‘ﬂ} ,
logT(r, A) > %)\A logr
“and T(r, f) <rfrtl

So from (8.25) we obtain for all sufficiently large values of r,

logT(r,Ao B) S O(logr) Aa (mn)ﬁffzy
].OgT('rﬁ,f) ’ ﬁ(l-i—pjg)log'r 2 ﬂ(1—|—pB) logfp
which implies that

+o(1),

lim log T'(r, Ao B)
r—oo logT'(r?, f)
This proves the theorem. u

= Q.

Remark 8.3.6 The condition Ay > 0 in Theorem 8.3.7 is necessary as we
see in the following ezample.

Example 8.3.6 Let f =expz, A(z) =z, B(z) = expz and

B=1withl4+2z4+e*=0.
Then pf=1, Aa=0, Ap=pp=1and A(O,A) <L

Also ,
T(r,AoB)=T(r,expz) = p
and
T
T(rP, f) = T(r,expz) = -
Then

. logT(r,AoB) . logr + O(1)
1 = lim—= =1
i logT(rP, f)  rowlogZ  rologr + O(1)
which is contrary to Theorem 8.3.7.

=1,

Remark 8.3.7 If we consider ps > 0 instead of A4 > 0, the theorem remains
true with 'limit 'replaced by ' limit superior’ as we see in the following theorem.



151

Theorem 8.3.8 Let f be an entire function satisfying the second order linear
differential equation f + A(z)f + B(2)f = 0 where A(2) and B(z) £ 0 are
entire functions. If (i) 0 < Ap < pp < 00, (it) pa > 0, (i) py < oo and (iv)
A(0; A) < 1 then

: logT(r; Ao B)
lim sup . = 00,
r—oo logT(rf, f)

LI
where 8 is a real constant.

Proof. For all sufficiently large values of r,
M(r,B) > exp {(7‘)(1/2))‘5}
and T(r,f) <rfrtl
Also for a sequence of values of r tending to infinity,
log T'(r, A) > %pA log r.
So from (8.25) we obtain for a sequence of values of r tending to infinity,

log T'(r, Ao B) - O(logr) PA (W)ﬁf‘a
logT(rf,f) ~ B(1+ps)logr = 2 B (1+pp)logr

which implies that

+ o(1),

T B
lim suplog (r, Ao B) = 00

rooo logT(r?, f)
Thus the theorem is established. =

Remark 8.3.8 The conclusion of Theorem 8.3.8 can also be drawn under
the condition 6(0; A) < 1 instead of A(0; A) < 1 and the other conditions
remaining the same as we see in the next theorem.

Theorem 8.3.9 Let f be an entire functlion satisfying the second order linear
differential equation f + A(z)f + B(z)f = 0 where A(z) and B(z) # 0 are
entire functions. If (i) 0 < Ag < pp < 00, (1) Aa > 0, (24%) py < oo and (iv)
0(0; A) < 1 then

. logT(r,AoB) _
o’ logT(r,f)

where By 1s a real constant.
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Proof. We suppose that 5y > 0 because otherwise the theorem is obvious.
For given € (0 < ¢ < 1 —6(0; A)),

N(r,0;4) > (1 -46(0; A) — e)T(r, A)

for a sequence of values of r tending to infinity,
So from Lemma 8.2.3 we get for a sequence of values of r tending to infinity,

T(r, Ao B) + O(1)
. {(1 — 6(0; 4) — T { M(nr)™s, B), A}

=08 | T g MGy, B)— 00

- 0(1)J . (826)

Since for all large values of r,
log M(r, B) < rP8te,

it follows from (8.26)that for a sequence of values of r tending to infinity,
T(r, Ao B) +O(1) > O(logr) +log T {M((nr)ﬁ, B),A}

log M ((nr) ™=, B)O() ] |
(1—6(0; A) — )T {M(nr)u%a,B),A}

+ log [1 —

Since f is transcendental, it follows that

_1
m sup_ 08 M ()™, B)

1 = 0.
r—oo T M((nr)H_Q,B),A}

So from above we get for a sequence of values of r tending to infinity,
log T'(r, Ao B) > O(logr) + log T {M((nr)ﬁ,B),A} +o(l).  (8.27)
Also we see that for all large values of ,
M(r,B) > exp {(T)(l/z)’\B} ,

log T(r, A) > %)\A logr

and T(r, f) <rftl,
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So from (8.27) we obtain for a sequence of values of r tending to infinity,

logT(r, Ao B) - O(log ) + A4 (nr)ﬂ%fa_)
logT(rfo, f) = Bo(l+pp)logr = 2 Bo(l+ pp)logr

which implies that

+ o(1),

I logT(r,AoB) _
ey logT(rho, f)

This proves the theorem. =

Q.
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