


Chapter 8 

ON THE GROWTH ESTIMATES OF 
ENTIRE FUNCTIONS SATISFYING 
SECOND ORDER LINEAR 
DIFFERENTIAL EQUATIONS 

8.1 Introduction, Definitions and Notations. 

For any two transcendental entire functions f and g defined in the open 
complex plane C, Clunie [10] proved that 

. T(r,fog) 
}!_.~ T(r, f) = oo and 

lim T(r, fog) = oo. 
r->oo T(r,g) 

Singh [59] proved some comparative growth properties of logT(r, fog) 
and T(r, f). He [59] also raised the problem of investigating the comparative 
growth of logT(r, fog) and T(r, g) which he was unable to solve. However, 
some results on the comparative growth of logT(r, f o g) and T(r, g) are 
proved in [37]. 

Let f be an entire function defined in the open complex plane C. 
Kwon [33] studied on the growth of an entire function f satisfying second 
order linear differential equation. Later Chen [12] proved some results on the 
growth of solutions of second order linear differential equations with mero
morphic coefficents. Chen and Yang [13] established a few theorems on the 
zeros and growths of entire solutions of second order linear differential equa
tions. The purpose of this chapter is to study on the growth of the solution 

The results of this chapter have been published in International Mathematical Forum,see [23]. 



f =/= 0 of the second order linear differential equation 

II I 

f + A(z)f + B(z)f = 0, 

where A(z) and B(z) =/= 0 are entire functions. 
The following definitions are well known. 
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Definition 8.1.1 The order Pi and lower order )..i of an entire function f 
is defined as 

. logl21 M(r, f) 
Pi= hmsup 

1 r--->oo og r 
d ' - l. . flogi2J M(r, f) 

an Ai- 1mm 
1 

, 
r--->oo og r 

where loglk] x = log(loglk-l] x) for k = 1, 2, 3, ... and logiO] x = x. 
If f is meromorphic, one can easily verify that 

l
. logT(r, f) 

Pi= 1msup 
1 r--->oo ogr 

d 
, _ 

1
. . flogT(r, f) 

an Ai- 1mm 
1 

. 
r--->oo og r 

Definition 8.1.2 The hyper order Pi and hyper lower order >.i of an entire 
function f is defined as follows 

- . logl31 M(r, f) 
pi = hm sup --==:......,--

1 
----''---'-''--'-

r--->oo og r 
and 

- . . logl31 M(r, f) 
)..i = hmmf 

1 
. 

r--->oo og r 

If f is meromorphic, then 

- . logl21 T(r, f) 
pi = hm su p--==:...,

1
:---...:.....:...::....:. 

r--->oo og r 
d 

; _ 
1
. . flogl21 T(r, f) 

an Ai- 1mm 
1 

. 
r--->oo og r 

Definition 8.1.3 {43} Let f be an entire function of order zero. Then the 
* - * 

quantities pj, ).. j and Pi , ).. i are defined in the following way : 

* . logl21 M(r, f) 
Pi= hmsup 121 , 

r--->oo log r 

,. 
1
. . flogl21 M(r, f) 

Ai = lillln 
r--->oo logl2] r 

and 
_ • . logl31 M(r, f) 
Pi = hmsup 121 , 

r--->oo log r 

* . . logl3l M(r, f) 
)..i = hmmf 121 r--->oo log r 
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Iff is meromorphic then clearly 

* . logT(r, f) 
PJ = hmsup [2] , 

r-->oo log r 

, * 1. . flog T(r, f) 
Aj = Imln 

r-->oo log[2] r 

and 
-* . log[2] T(r, f) 
PJ = hmsup [2] , 

r-->oo log r 

, * li . flog[2] T(r, f) 
A = mrn ~~~~~ 

f r->oo log[2] r 

Definition 8.1.4 The type O"j of an entire function f is defined as 

1
. log M(r, f) 

Of= rmsup , 0 < PJ < oo. 
r->oo rPJ 

When f is meromorphic, then 

T(r, f) 
CTJ =lim sup , 0 < PJ < oo. 

r-->oo rPJ 

Definition 8.1.5 Let' a be a complex number, finite or infinite. The Nevan
. linna deficiency and the Valiron deficiency of' a with respect to a meromor

phic function f are defined as 

'( . f) - 1 -1· N(r, a; f) - 1' . fm(r, a; f) 
u a, - rmsup T( f) - r~m T( f) 

T-700 T, T 00 T, 

and 

( ) 
. . N(r, a; f) 

1
. m(r, a; f) 

b., a; f = 1- hmmf T( f) = rmsup T( f) . 
T-700 T, r--+oo T, 

8.2 Lemmas. 

In this section we present some lemmas which will be needed in the sequel. 

Lemma 8. 2.1 [ 1 J Iff is meromorphic and g is entire then for all sufficiently 
large values of r, 

T(r,fog) < {1+o(1)}
1 

Tt't) {(M(r,g),f). 
og r,g 

Lemma 8.2.2 [4] Let f be meromorphic and g be entire and suppose that 
0 < 11 < Pg < oo. Then for a sequence of values of r tending to infinity, 

T(r, fog)> T(exp(r~"), f). 
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Lemma 8.2.3 [51]Let f and g be two transcendental entire functions with 
p9 < oo, TJ be a constant satisfying 0 < TJ < 1 and a be a positive number. 
Then 

T(r, fog)+ 0(1) > N(r, 0; fog) 

>log(~) [ N(M((ryr)~, g), 0, f) - 0(1)] 
., log M( (ryr) I+a, g) - 0(1) 

as r ---> oo through all values. 

8.3 Theorems. 

In this section we present the main results of the chapter. 

Theorem 8.3.1 Let f be an entire function satisfying the second order linear 
differential equation j'' + A(z)j' + B(z)f = 0 where A(z) and B(z) =/'- 0 are 
entire functions. If (i) PA, PB are both finite, (ii) AA, AJ are both positive, 
(iii) PB < AA and PB < AJ i.e. PB < min{,\A,AJ} and (iv) B be of regular 
growth i.e., .As= PB then 

lim {logT(r, A o B)p = 0 
r-+oo T(r, f)T(r, A) · 

Proof. It is well known that for an entire function B, T(r, B) <log+ M(r, B). 
So in view of Lemma 8.2.1, we get for all sufficiently large values of r, 

T(r, A o B) < {1 + o(1)}T(M(r, B), A) 

~.e., logT(r, A o B) < log{1 + o(1)} + logT(M(r, B), A) 

~.e., logT(r, A o B) < o(l) + (PA +E) log M(r, B) 
u., logT(r, A o B)< o(l) + (PA + E)rPB+<. (8.1) 

Also we obtain for all sufficiently large values of r, 

T(r, A) > r>.A-<. (8.2) 

Now combining (8.1) and (8.2) it follows for all sufficiently large values of r, 

logT(r, A o B) < o(1) + (PA + E)r(PB+<) 
T(r, A) - r>-A-< 

l
. logT(r, A o B) 

1
. o(1) + (PA + E)r(PB+<) 

~.e., 1msup T( A) < 1msup >.A-< 
T~OO T' T--+00 T 
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Since PB < AA, we can choose E (> 0) in such a way that PB + E < AA- E and 
so it follows from above that 

l
. logT(r, A o B) _ O 
Imsup T( A) - . 

T-tOO T, 

Again we get for all sufficiently large values of r, 

logT(r, f) > (AJ- r:) logr 

i.e., T(r, f)> r>-.r'. 

Since PB < Af> we can choose E (> 0) in such a way that 

(8.3) 

(8.4) 

(8.5) 

Now combining (8.1), (8.4) and (8.5) it follows for all sufficiently large values 
of r, 

logT(r,AoB) < o(1)+(PA+r:)r(PB+•) 
T(r, f) - r>-.r' 

. . logT(r, A o B) 
~.e., hmsup T( f) = 0 

r-too r, 
. . logT(r, A o B) 
~.e., J~~ T(r, f) = 0. 

Therefore in view of (8.3) and (8.6), we obtain that 

lim {logT(r, A o B)}2 

r-+oo T(r, f)T(r, A) 

·= lim logT(r, A o B) .lim logT(r, A o B) 
r-+oo T(r, f) r-+oo T(r, A) 

= 0. 

~.e., 
lim {logT(r, A o B)p = 0 
r-+oo T(r, f)T(r, A) · 

This proves the theorem. • 

(8.6) 

Remark 8.3.1 The condition p3 < min{.\A,AJ} in Theorem 8.3.1 is essen
tial as we see in the following example. 



Example 8.3.1 Let f(z) = exp z, A(z) = exp z and 
B(z) = expz with 1 + 2ez = 0. 

Then PA = AA = 1, PB = AB = 1 and AJ = 1. 
Also T(r, f) = T(r, exp z) = ;:, 

T(r, A) = T(r, exp z) =;: and 

%.e., 

Therefore, 

[2] expr 
T(r, A o B) = T(r, exp z) ,...., , 

(27r3r)2 
1 

logT(r, A o B),...., r- 21ogr + 0(1). 

l
. {logT(r,AoB)}2 

lill -'--=:::-:--~=-:-----:7-"----
r--+oo T(r.f)T(r, A) 

. {r-!logr+0(1)}
2 

= hm r r 
T--+00 - -

7r"7r 

. 7r2{!r+0(1)}
2 

:> l1m 2 T-H)Q r 

. = lim 7f2 {~ + 0(1) }2 
r--+oo 2 r 
7f2 

- 4' 

which contradicts Theorem 8.3.1. 
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(r ----? oo) 

Theorem 8.3.2 Let f be an entire function satisfying the second order linear 
differential equation J" + A(z)J' + B(z)f = 0 where A(z) and B(z) "¥= 0 are 
entire functions. If PB = 0 then PAoB :> XA_.f..L where 0 < f..L < PB· 
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Proof. In view of Lemma 8.2.2 and for 0 < p, < PB we get that 

l
. logT(r,A o B) 

PAoB = lmSUp l 
r->oo ogr 

l
. . flogT(exp(r~'),A) > 1m m --=-'---'o.....:._--'-'--'-

- r->oo logr 

l
. . flogT(exp(r~'),A) 

1
. . flog[2l(exp(r~')) > 1m m . 1m m ----'=:........,:'----''---'----'-'-

- r->oo log[2l(exp(r~')) r->oo logr 

, * 
1
. . flog r~' 

= AA· 1m1n l 
r->oo ogr 

= AA·f1· 

Thus the theorem is established. • 

Remark 8.3.2 The condition p, < PB in Theorem 8.3.2 is necessary which 
is evident from the following example. 

Example 8.3.2 Let f = expz, A(z) = z and 

B(z) = expz with 1 + z + ez = 0. Also let p, = 2. 
Then PA = AA = 0, AA = 1 and PAoB = 1. 
Thus PAoB = 1 < 2 = 1.2 = >.:4.p,, which is contrary to Theorem 8:3.2. 

Theorem 8.3.3 Let f be an entire function satisfying the second order linear 
differential equation j" + A(z)j' + B(z)f = 0 where A(z) and B(z) of= 0 are 
entire functions. If PA, PB are both finite and AJ is positive then for any a E 

(-oo,oo), 

l
. [log{T(r, A o B) log M(r, B) }]1+"' 
rm =0 

r->oo T( exp r, f) . 

Proof. If 1 + a < 0, the theorem is obvious. So we suppose that 1 + a > 0. 
In view of Lemma 8.2.1, we have for all sufficiently large values of r, 

log{T(r, A o B) log M(r, B)} 
< logT(r, B)+ logT(M(r, B), A)+ log{1 + o(1)} 

< (PB +E) logr + (PA + E)rPB+< + o(1) 

< PB+'{( ) (pB+E)logr+o(1)} _ r PA + E + + . rPB f 
(8.7) 



Again we get for all sufficiently large values of r, 

logT(expr,f) > (.At-E)log{expr} 

i.e., T(expr,f)>exp{(AJ-E)r}. 
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(8.8) 

Now combining (8.7) and (8.8) it follows for all sufficiently large values of r, 

~.e., 

[log{T(r, A o B) log M(r, B)}]l+"' 
T(expr, f) 

exp{(.AJ- c:)r} 

l
. [log{T(r, A o B) log M(r, B) }]1+"' 
1m sup = 0, 

r->oo T( exp r, f) 

from which the theorem follows. • 

Remark 8.3.3 The condition .>. 1 > 0 in the Theorem 8.3.3 is essential as we 
see in the following example. 

Example 8.3.3 Let f = z, A(z) = B(z) = exp z and a= 0 with z + 1 = 0. 
Then PA = PB = 1 and AJ = 0. 

Also 

and 

T(r, A o B) = T(r, exp!2l z) "' exp r 
1 

(r -4 oo), 
(27r3r)> 

M(r, B) = M(r, exp z) = exp r 

T(expr,z) <log+ M(expr,z) = log(expr) = r. 
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Therefore, 

l
. [log{T(r, A o B) log M(r, B)}]l+a 
Im ;__:::_o__:_:.___,=-:---'---=--:;:-'---'-~::.....__ 

r->oo T(expr, f) 

= lim logT(r, A o B)+ logl2l M(r, B) 
r->oo T(expr, f) 

r- ~ logr + 0(1) + logl2l expr 
-

r 
r- ~ logr + 0(1) + logr 

-
r 

r+~logr+0(1) 
-

r 
=1 ) 

which contradicts Theorem 8.3.3. 

Theorem 8.3.4 Let f be an entire function satisfying the second order linear 
differential equation j" + A(z)j' + B(z)f = 0 where A(z) and B(z) ¢. 0 are 
entire functions. If PA, PB are both finite and AJ is positive then for any a E 

(-oo,oo), 

l
. [log{T(r,AoB)logM(r,B)}]l+a 

0 
.f 

0 1 
1 

1m = 2 < +a<-. 
r->oo T(expr, f) . PB 

Proof. If 1 +a < 0, the theorem is obvious. So we take 1 +a > 0. We obtain 
for all sufficiently large values of r, · 

logT(expr,f) > (:>..1 - E)log{expr} 

i.e., T(expr,f)>exp{(:>..J-E)r}. (8.9) 

Now combining (8.7) and (8.9) it follows for all sufficiently large values of r, 

[log{T(r, A o B) log M(r, B) }]1+"' 
T(expr, f) 

T(pa+<)(l+a){ (pA+<)+ (PR+;~~i:+o(l)} !+a 

<--------~--~---------
(:>..!- E)r 

Since 1 +a< .l, we can choose E (> 0) in such a way that 
PB 

(PB + E)(1 +a) < 1. 

Thus the theorem follows from (8.10) and (8.11). • 

(8.10) 

(8.11) 
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Theorem 8.3.5 Iff be an entire function satisfying the second order linear 
differential equation j'' + A(z)J' + B(z)f = 0 where A(z) and B(z) ¢. 0 are 

entire functions. If 0 < AAoB < p AoB < oo and 0 < p f < oo then for any 
positive number a, 

l
. . flogl21 T(r, A o B) < PAoB 

1
. logl21 T(r, A o B) 

lmlll _ -- < Imsup . 
r---+oo logl21 T(r", f) apf r---+oo logl21 T(r", f) 

Proof. From the definition of hyper order we get for all sufficiently large 
values of r, 

Again we have for a sequence of values of r tending to infinity, 

logl21T(~",f) > (p1 - E)logr" 

u., logl21T(r",f) > a(p1 - E)logr. 

(8.12) 

(8.13) 

Now combining (8.12) and (8.13) it follows for a sequence of values of r tend
ing to infinity, 

logl21 T(r, A o B) < (PAoB +E) logr 

logl21 T(r", f) - a(p1 - E) logr 

Since E (> 0) is arbitrary, it follows from above that 

. . flogl21 T(r, A o B) P AoB 
hmm <-

r-->oo logl21 T(r", f) - apf 

Also for arbitrary positive E and for all sufficiently large values of r, 

logl21 T(r", f) < (p f + E) log r" 

~.e., logl21 T(r", f) < a(p1 +E) logr. 

Again for a sequence of values of r tending to infinity, 

logl21 T(r, A o B) > (PAoB - E) log r. 

(8.14) 

(8.15) 

(8.16) 
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Now from (8.15) and (8.16) we obtain for a sequence of values of r tending 
to infinity, · 

logl21 T(r, A o B) (PAoB- E) logr 
~ > : 

log T(r"', f) a(p1 +E) logr 

As E (> 0) is arbitrary, we have from above that 

l
. logl21 T(r, A o B) PAoB 
1m sup 

121 
> --

r->oo log T(r"', f) apf 
(8.17) 

Thus the theorem follows from (8.14) and (8.17). • 

Remark 8.3.4 The sign 1 <1 in Theorem 8.3.5 cannot be replaced by 1 <1 

only as we see in the following example. 

Example 8.3.4 Let f = expl21 z, A(z) = B(z) = expz and a = 1, with 
1 + ez = 0. 

Then AAoB = PAoB = 1 and P! = 1. 
Also 

Again 

T(r,AoB)=T(r,expl2lz),...., expr
1 

(r~oo) 
(27r3r)'> 

z.e., 

z.e., 

1 
logT(r, A o B),...., r- 21ogr + 0(1) 

1 
logl21 T(r, A o B),...., log(r- 21ogr + 0(1)). 

T(r"', f)= T(r, expl21 z),...., expr 
1 (27r3r) 2 

1 
z.e., logT(r"', f),...., r- 21ogr + 0(1) · 

1 
z.e., logl21 T(r"', f),...., log(r- 21ogr + 0(1))·. 



Therefore, 

and 

Also 

. . logl2l T(r, A o B) 
hm mf--=___,.,,....:-"'----'

r->oo logl2] T(r"', f) 
. . log(r- ~ logr + 0(1)) 

= hm mf::-=..:..._---'i'-:----::-:---:-:-
r->oo log(r- pogr + 0(1)) 

=1 

. logl2l T(r, A o B) 
lim sup --=___,.,

12
,.....:--'------'-

r->oo log l T(r"', f) 
. log(r- ~ logr + 0(1)) 

=hmsup--=..:..._~1c-:--~--::-:---:-:
r->oo log(r- zlogr + 0(1)) 

-1 - . 

PAoB = _!_ = 1. 
apf 1.1 
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Theorem 8.3.6 Let f be an entire function satisfying the second order linear 
differential equation/"+ A(z)j' + B(z)f = 0 where A(z) and B(z) =/= 0 are 
entire functions. If (i) 0 < PJ < oo, (ii) Of< oo, (iii) PAoB = PJ and (iv) 
0 < GAoB < oo then 

.. T(r,AoB) aAoB . T(r,AoB) 
hmmf T( f) <- < hmsup T( f) . 

r->oo r, a f r->oo r, 

Proof. By the definition of type, we have for arbitrary positive E and for all 
sufficiently large values of r, 

(8.18) 

Again we get for a sequence of values of r tending to infinity, 

(8.19) 

Since PAoB = PJ from (8.18) and (8.19) it follows for a sequence of values of 
r tending to infinity, 

T(r,AoB) (lTAoB+E) 
T(r, f) < (O"J- E) · 
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As E (> 0) is arbitrary, it follows from above that 

l
. . fT( r, A o B) O" AoB 
lmlll < --. 
r---+oo T(r, f) - O"J 

(8.20) 

Again for a sequence of values of r tending to infinity, 

T(r, A o B) > ( 0" AoB - E )rPAoB. (8.21) 

Also for all sufficiently. large values of r, 

(8.22) 

Now in view of condition (iii) we get from (8.21) and (8.22) for a sequence 
of values of r tending to infinity, 

T(r,AoB) (O"AoB-E) 

T(r, f) > (O"J +E) · 

Since E (> 0) is arbitrary, we obtain from above that 

l
. T(r, A o B) 0" AoB 
1msup > --. 

r---+oo T(r, f) - O" f 
(8.23) 

Thus the theorem follows from (8.20) and (8.23). • 

Remark 8.3.5 The sign 1 <1 in Theorem 8.3.6 cannot be replaced by 1 <1 

only as we see in the following example. 

Example 8.3.5 Let f = expz, A(z) = expz, B(z) = z and 

a = 1 with 1 + z + ez = 0. 
Then PJ = 1, PAoB = 1, O"J = 1 and O"AoB = 1. 
Also 

and 

Therefore, 

r 
T(r,AoB) =T(r,expz) =-

. 7f 

r 
T(r,f) =T(r,expz) = -. 

7f 

l
. . fT(r, A o B) 1

. . f; 
1mm T( f) = 1m1n r- = 1 
r---+oo r r---+oo -

' 7r 
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and 
. T(r, A o B) . ~ 

hmsup T( f) = hmsup.!:. = 1. 
T---400 T' r--+oo 1T' 

Also 
CJAoB = ~ = 1. 

(Jf 1 

Theorem 8.3. 7 Let f be an entire function satisfying the second order linear 
differential equation/'+ A(z)/ + B(z)f = 0 where A(z) and B(z) ¢. 0 are 
entire functions. If(i) 0 < AB < PB < oo, (ii) AA > 0, (iii) P! < oo and (iv) 
b.(O; A) < 1 then 

lim log T(r, A o B) = 
00 

r-->oo log T ( r!3, f) ' 
where (3 is a real constant. 

Proof. We suppose that (3 > 0 because otherwise the theorem is obvious. 
For given E (0 < E < 1- b.(O; A)), 

N(r, 0; A) > (1- b.(O; A)- E)T(r, A) 

for all sufficiently large values of r. 
So from Lemma 8.2.3 we get for all large values of r, 

T(r, A o B) + 0(1) 

1 [(1-b.(O;A)-E)T{M(ryr) 1~",B),A} l 
>(log-) 1 -0(1). 

'TJ logM((ryr)~+.,,B)- 0(1) 
(8.24) 

Since for all large values of r, log M (r, B) < rPs+•, it follows from (8.23) that 
for all sufficiently large values of r, 

T(r, A o B)+ 0(1) > O(logr) + logT { M((ryr)~~.,, B), A} 

+log[1 - logM((ryr)-d:a,B)0(1) ] 
(1-b.(O;A)-E)T{M(ryr)~~",B),A} . 

Since f is transcendental, it follows that 
I 

l
. logM((ryr)1+.,,B) 

0 Im -
r-->ooT{M((ryr)~~",B),A}-. 
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So from above we get for all large values of r, 

logT(r, A o B) > O(logr) + logT { M((17r) ~~Q, B), A}+ o(1). (8.25) 

Also we see that for all large values of r, 

M(r, B) > exp { (r)(1/ 2).An}, 
1 

logT(r,A) > 2>.Alogr 

and T(r, f)< rPt+l. 

So from (8.25) we obtain for all sufficiently large values of r, 

logT(r,AoB) O(logr) AA (17r)•<~~Q) 
logT(r!3,f) > /J(l+pB)logr +2.jJ(1+PB)logr +o(

1
), 

which implies that 
lim logT(r, A o B) = 

00 
r->oo log T ( r!3, f) · 

This proves the theorem. • 

Remark 8.3.6 The condition AA > 0 in Theorem 8.3. 7 is necessary as we 
see in the following example. 

Example 8.3.6 Let f = expz, A(z) = z, B(z) = expz and 

/) = 1 with 1 + z + ez = 0. 
Then Pi= 1, AA = 0, AB = PB = 1 and .6.(0;A) < 1. 
Also 

and 

Then 

r 
T(r,AoB) =T(r,expz) =-

7f 

T(rf3,J) =T(r,expz) = r_ 
7f 

lim logT(r,AoB) =lim log~= lim logr+0(1) = 1 
r->oo· logT(rf3, f) r->oolog ~ r->oologr + 0(1) ' 

which is ,contrary to Theorem 8.3. 7. 

Remark 8.3. 7 If we consider PA > 0 instead of AA > 0, the theorem remains 
true with 'limit 'replaced by' limit superior 1 as we see in the following theorem. 
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Theorem 8.3.8 Let f be an entire function satisfying the second order linear 
differential equation J" + A(z)J' + B(z)f = 0 where A(z) and B(z) :f= 0 are 
entire functions. If (i) 0 < AB < PB < oo, (ii) PA > 0, (iii) Pi< oo and (iv) 
.6.(0; A) < 1 then 

1
. logT(r, A o B) 
rmsup , = oo, 
r->oo log T(rf3 , f) 

where (3' is a real constant. 

Proof. For all sufficiently large values of r, 

M(r, B) > exp { (r)C112)>.B} 
and T(r, f) < rPJ+l. 

Also for a sequence of values of r tending to infinity, 

1 
logT(r, A)> 2PAlogr. 

So from (8.25) we obtain for a sequence of values of r tending to infinity, 

..28_ 
logT(r, A o B) O(logr) PA (7Jr) 2<I+a) 

, > '( ) +-. '( ) +o(1), logT(rf3, f) (3 1 + PB logr 2 (3 1 + PB logr 

which implies that 

1
. logT(r, A o B) _ 
rmsup , - oo. 

r->oo logT(rf3 ,f) 
Thus the theorem is established. • 

Remark 8.3.8 The conclusion of Theorem 8.3.8 can also be drawn under 
the condition 6(0; A) < 1 instead of .6.(0; A) < 1 and the other conditions 
remaining the same as we see in the next theorem. 

Theorem 8.3.9 Let f be an entire function satisfying the second order linear 
differential equation!''+ A(z)J' + B(z)f = 0 where A(z) and B(z) =/= 0 are 
entire functions. If (i) 0 < AB < PB < oo, (ii) AA > 0, (iii) Pi < oo and (iv) 
6(0; A) < 1 then 

. logT(r, A o B) 
hm sup T( 13 f) = oo, 

r-.oo log r 0 , 

where (30 is a real constant. 
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Proof. We suppose that f3o > 0 because otherwise the theorem is obvious. 
For given E (0 < E < 1- 6(0; A)), 

N(r, 0; A) > (1 - 6(0; A) - c)T(r, A) 

for a sequence of values of r tending to infinity, 
So from Lemma 8.2.3 we get for a sequence of values of r tending to infinity, 

T(r, A o B)+ 0(1) 

1 [(1-6(0;A)-c)T{M(1Jr)'~a,B),A} l 
>(log-) 1 -0(1) . 

1J logM((1Jr)I+a,B)- 0(1) 
(8.26) 

Since for all large values of r, 

log M(r, B) < rPB+<, 

it follows from (8.26)that for a sequence of values of r tending to infinity, 

T(r, A o B)+ 0(1) > O(logr) + logT { M((1]r) ~~a, B), A} 

l 
[ 

logM((1]r)-d:a,B)0(1) l 
+ og 1- 1 } • 

(1- 6(0; A) - c)T { M(1]r) !+a, B), A 

Since f is transcendental, it follows that 
I 

l
. logM((1]r)l+<i,B) 

0 lmsup I = . 
r---.oo T { M( (W) Ha, B), A} 

So from above we get for a sequence of values of r tending to infinity, 

logT(r, A o B) > O(logr) + logT { M((1]r) 1~a, B), A}+ o(1). (8.27) 

Also we see that for all large values of r, 

M(r, B) > exp { (r)(112).AB}, 
1 

logT(r,A) > 2>.Alogr 

and T(r, f) < rPI+l. 
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So from (8.27) we obtain for a sequence of values of r tending to infinity, 

logT(r, A o B) O(logr) AA (1Jr) 2<~-f!aJ 
logT(rf3o,J) > fJo(l+pB)logr +2.,60(l+pB)logr +o(l), 

which implies that 
. logT(r, A o B) 

lrm sup 1 T( f3 f) = oo. 
r->oo og r 0 , 

This proves the theorem. • 

******X****** 


