


Chapter 8 

ON THE GROWTH ESTIMATES OF 
ENTIRE FUNCTIONS SATISFYING 
SECOND ORDER LINEAR 
DIFFERENTIAL EQUATIONS 

8.1 Introduction, Definitions and Notations. 

For any two transcendental entire functions f and g defined in the open 
complex plane C, Clunie [10] proved that 

. T(r,fog) 
}!_.~ T(r, f) = oo and 

lim T(r, fog) = oo. 
r->oo T(r,g) 

Singh [59] proved some comparative growth properties of logT(r, fog) 
and T(r, f). He [59] also raised the problem of investigating the comparative 
growth of logT(r, fog) and T(r, g) which he was unable to solve. However, 
some results on the comparative growth of logT(r, f o g) and T(r, g) are 
proved in [37]. 

Let f be an entire function defined in the open complex plane C. 
Kwon [33] studied on the growth of an entire function f satisfying second 
order linear differential equation. Later Chen [12] proved some results on the 
growth of solutions of second order linear differential equations with mero­
morphic coefficents. Chen and Yang [13] established a few theorems on the 
zeros and growths of entire solutions of second order linear differential equa­
tions. The purpose of this chapter is to study on the growth of the solution 

The results of this chapter have been published in International Mathematical Forum,see [23]. 



f =/= 0 of the second order linear differential equation 

II I 

f + A(z)f + B(z)f = 0, 

where A(z) and B(z) =/= 0 are entire functions. 
The following definitions are well known. 
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Definition 8.1.1 The order Pi and lower order )..i of an entire function f 
is defined as 

. logl21 M(r, f) 
Pi= hmsup 

1 r--->oo og r 
d ' - l. . flogi2J M(r, f) 

an Ai- 1mm 
1 

, 
r--->oo og r 

where loglk] x = log(loglk-l] x) for k = 1, 2, 3, ... and logiO] x = x. 
If f is meromorphic, one can easily verify that 

l
. logT(r, f) 

Pi= 1msup 
1 r--->oo ogr 

d 
, _ 

1
. . flogT(r, f) 

an Ai- 1mm 
1 

. 
r--->oo og r 

Definition 8.1.2 The hyper order Pi and hyper lower order >.i of an entire 
function f is defined as follows 

- . logl31 M(r, f) 
pi = hm sup --==:......,--

1 
----''---'-''--'-

r--->oo og r 
and 

- . . logl31 M(r, f) 
)..i = hmmf 

1 
. 

r--->oo og r 

If f is meromorphic, then 

- . logl21 T(r, f) 
pi = hm su p--==:...,

1
:---...:.....:...::....:. 

r--->oo og r 
d 

; _ 
1
. . flogl21 T(r, f) 

an Ai- 1mm 
1 

. 
r--->oo og r 

Definition 8.1.3 {43} Let f be an entire function of order zero. Then the 
* - * 

quantities pj, ).. j and Pi , ).. i are defined in the following way : 

* . logl21 M(r, f) 
Pi= hmsup 121 , 

r--->oo log r 

,. 
1
. . flogl21 M(r, f) 

Ai = lillln 
r--->oo logl2] r 

and 
_ • . logl31 M(r, f) 
Pi = hmsup 121 , 

r--->oo log r 

* . . logl3l M(r, f) 
)..i = hmmf 121 r--->oo log r 
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Iff is meromorphic then clearly 

* . logT(r, f) 
PJ = hmsup [2] , 

r-->oo log r 

, * 1. . flog T(r, f) 
Aj = Imln 

r-->oo log[2] r 

and 
-* . log[2] T(r, f) 
PJ = hmsup [2] , 

r-->oo log r 

, * li . flog[2] T(r, f) 
A = mrn ~~~~~ 

f r->oo log[2] r 

Definition 8.1.4 The type O"j of an entire function f is defined as 

1
. log M(r, f) 

Of= rmsup , 0 < PJ < oo. 
r->oo rPJ 

When f is meromorphic, then 

T(r, f) 
CTJ =lim sup , 0 < PJ < oo. 

r-->oo rPJ 

Definition 8.1.5 Let' a be a complex number, finite or infinite. The Nevan­
. linna deficiency and the Valiron deficiency of' a with respect to a meromor­

phic function f are defined as 

'( . f) - 1 -1· N(r, a; f) - 1' . fm(r, a; f) 
u a, - rmsup T( f) - r~m T( f) 

T-700 T, T 00 T, 

and 

( ) 
. . N(r, a; f) 

1
. m(r, a; f) 

b., a; f = 1- hmmf T( f) = rmsup T( f) . 
T-700 T, r--+oo T, 

8.2 Lemmas. 

In this section we present some lemmas which will be needed in the sequel. 

Lemma 8. 2.1 [ 1 J Iff is meromorphic and g is entire then for all sufficiently 
large values of r, 

T(r,fog) < {1+o(1)}
1 

Tt't) {(M(r,g),f). 
og r,g 

Lemma 8.2.2 [4] Let f be meromorphic and g be entire and suppose that 
0 < 11 < Pg < oo. Then for a sequence of values of r tending to infinity, 

T(r, fog)> T(exp(r~"), f). 
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Lemma 8.2.3 [51]Let f and g be two transcendental entire functions with 
p9 < oo, TJ be a constant satisfying 0 < TJ < 1 and a be a positive number. 
Then 

T(r, fog)+ 0(1) > N(r, 0; fog) 

>log(~) [ N(M((ryr)~, g), 0, f) - 0(1)] 
., log M( (ryr) I+a, g) - 0(1) 

as r ---> oo through all values. 

8.3 Theorems. 

In this section we present the main results of the chapter. 

Theorem 8.3.1 Let f be an entire function satisfying the second order linear 
differential equation j'' + A(z)j' + B(z)f = 0 where A(z) and B(z) =/'- 0 are 
entire functions. If (i) PA, PB are both finite, (ii) AA, AJ are both positive, 
(iii) PB < AA and PB < AJ i.e. PB < min{,\A,AJ} and (iv) B be of regular 
growth i.e., .As= PB then 

lim {logT(r, A o B)p = 0 
r-+oo T(r, f)T(r, A) · 

Proof. It is well known that for an entire function B, T(r, B) <log+ M(r, B). 
So in view of Lemma 8.2.1, we get for all sufficiently large values of r, 

T(r, A o B) < {1 + o(1)}T(M(r, B), A) 

~.e., logT(r, A o B) < log{1 + o(1)} + logT(M(r, B), A) 

~.e., logT(r, A o B) < o(l) + (PA +E) log M(r, B) 
u., logT(r, A o B)< o(l) + (PA + E)rPB+<. (8.1) 

Also we obtain for all sufficiently large values of r, 

T(r, A) > r>.A-<. (8.2) 

Now combining (8.1) and (8.2) it follows for all sufficiently large values of r, 

logT(r, A o B) < o(1) + (PA + E)r(PB+<) 
T(r, A) - r>-A-< 

l
. logT(r, A o B) 

1
. o(1) + (PA + E)r(PB+<) 

~.e., 1msup T( A) < 1msup >.A-< 
T~OO T' T--+00 T 
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Since PB < AA, we can choose E (> 0) in such a way that PB + E < AA- E and 
so it follows from above that 

l
. logT(r, A o B) _ O 
Imsup T( A) - . 

T-tOO T, 

Again we get for all sufficiently large values of r, 

logT(r, f) > (AJ- r:) logr 

i.e., T(r, f)> r>-.r'. 

Since PB < Af> we can choose E (> 0) in such a way that 

(8.3) 

(8.4) 

(8.5) 

Now combining (8.1), (8.4) and (8.5) it follows for all sufficiently large values 
of r, 

logT(r,AoB) < o(1)+(PA+r:)r(PB+•) 
T(r, f) - r>-.r' 

. . logT(r, A o B) 
~.e., hmsup T( f) = 0 

r-too r, 
. . logT(r, A o B) 
~.e., J~~ T(r, f) = 0. 

Therefore in view of (8.3) and (8.6), we obtain that 

lim {logT(r, A o B)}2 

r-+oo T(r, f)T(r, A) 

·= lim logT(r, A o B) .lim logT(r, A o B) 
r-+oo T(r, f) r-+oo T(r, A) 

= 0. 

~.e., 
lim {logT(r, A o B)p = 0 
r-+oo T(r, f)T(r, A) · 

This proves the theorem. • 

(8.6) 

Remark 8.3.1 The condition p3 < min{.\A,AJ} in Theorem 8.3.1 is essen­
tial as we see in the following example. 



Example 8.3.1 Let f(z) = exp z, A(z) = exp z and 
B(z) = expz with 1 + 2ez = 0. 

Then PA = AA = 1, PB = AB = 1 and AJ = 1. 
Also T(r, f) = T(r, exp z) = ;:, 

T(r, A) = T(r, exp z) =;: and 

%.e., 

Therefore, 

[2] expr 
T(r, A o B) = T(r, exp z) ,...., , 

(27r3r)2 
1 

logT(r, A o B),...., r- 21ogr + 0(1). 

l
. {logT(r,AoB)}2 

lill -'--=:::-:--~=-:-----:7-"----
r--+oo T(r.f)T(r, A) 

. {r-!logr+0(1)}
2 

= hm r r 
T--+00 - -

7r"7r 

. 7r2{!r+0(1)}
2 

:> l1m 2 T-H)Q r 

. = lim 7f2 {~ + 0(1) }2 
r--+oo 2 r 
7f2 

- 4' 

which contradicts Theorem 8.3.1. 
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(r ----? oo) 

Theorem 8.3.2 Let f be an entire function satisfying the second order linear 
differential equation J" + A(z)J' + B(z)f = 0 where A(z) and B(z) "¥= 0 are 
entire functions. If PB = 0 then PAoB :> XA_.f..L where 0 < f..L < PB· 
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Proof. In view of Lemma 8.2.2 and for 0 < p, < PB we get that 

l
. logT(r,A o B) 

PAoB = lmSUp l 
r->oo ogr 

l
. . flogT(exp(r~'),A) > 1m m --=-'---'o.....:._--'-'--'-

- r->oo logr 

l
. . flogT(exp(r~'),A) 

1
. . flog[2l(exp(r~')) > 1m m . 1m m ----'=:........,:'----''---'----'-'-

- r->oo log[2l(exp(r~')) r->oo logr 

, * 
1
. . flog r~' 

= AA· 1m1n l 
r->oo ogr 

= AA·f1· 

Thus the theorem is established. • 

Remark 8.3.2 The condition p, < PB in Theorem 8.3.2 is necessary which 
is evident from the following example. 

Example 8.3.2 Let f = expz, A(z) = z and 

B(z) = expz with 1 + z + ez = 0. Also let p, = 2. 
Then PA = AA = 0, AA = 1 and PAoB = 1. 
Thus PAoB = 1 < 2 = 1.2 = >.:4.p,, which is contrary to Theorem 8:3.2. 

Theorem 8.3.3 Let f be an entire function satisfying the second order linear 
differential equation j" + A(z)j' + B(z)f = 0 where A(z) and B(z) of= 0 are 
entire functions. If PA, PB are both finite and AJ is positive then for any a E 

(-oo,oo), 

l
. [log{T(r, A o B) log M(r, B) }]1+"' 
rm =0 

r->oo T( exp r, f) . 

Proof. If 1 + a < 0, the theorem is obvious. So we suppose that 1 + a > 0. 
In view of Lemma 8.2.1, we have for all sufficiently large values of r, 

log{T(r, A o B) log M(r, B)} 
< logT(r, B)+ logT(M(r, B), A)+ log{1 + o(1)} 

< (PB +E) logr + (PA + E)rPB+< + o(1) 

< PB+'{( ) (pB+E)logr+o(1)} _ r PA + E + + . rPB f 
(8.7) 



Again we get for all sufficiently large values of r, 

logT(expr,f) > (.At-E)log{expr} 

i.e., T(expr,f)>exp{(AJ-E)r}. 
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(8.8) 

Now combining (8.7) and (8.8) it follows for all sufficiently large values of r, 

~.e., 

[log{T(r, A o B) log M(r, B)}]l+"' 
T(expr, f) 

exp{(.AJ- c:)r} 

l
. [log{T(r, A o B) log M(r, B) }]1+"' 
1m sup = 0, 

r->oo T( exp r, f) 

from which the theorem follows. • 

Remark 8.3.3 The condition .>. 1 > 0 in the Theorem 8.3.3 is essential as we 
see in the following example. 

Example 8.3.3 Let f = z, A(z) = B(z) = exp z and a= 0 with z + 1 = 0. 
Then PA = PB = 1 and AJ = 0. 

Also 

and 

T(r, A o B) = T(r, exp!2l z) "' exp r 
1 

(r -4 oo), 
(27r3r)> 

M(r, B) = M(r, exp z) = exp r 

T(expr,z) <log+ M(expr,z) = log(expr) = r. 
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Therefore, 

l
. [log{T(r, A o B) log M(r, B)}]l+a 
Im ;__:::_o__:_:.___,=-:---'---=--:;:-'---'-~::.....__ 

r->oo T(expr, f) 

= lim logT(r, A o B)+ logl2l M(r, B) 
r->oo T(expr, f) 

r- ~ logr + 0(1) + logl2l expr 
-

r 
r- ~ logr + 0(1) + logr 

-
r 

r+~logr+0(1) 
-

r 
=1 ) 

which contradicts Theorem 8.3.3. 

Theorem 8.3.4 Let f be an entire function satisfying the second order linear 
differential equation j" + A(z)j' + B(z)f = 0 where A(z) and B(z) ¢. 0 are 
entire functions. If PA, PB are both finite and AJ is positive then for any a E 

(-oo,oo), 

l
. [log{T(r,AoB)logM(r,B)}]l+a 

0 
.f 

0 1 
1 

1m = 2 < +a<-. 
r->oo T(expr, f) . PB 

Proof. If 1 +a < 0, the theorem is obvious. So we take 1 +a > 0. We obtain 
for all sufficiently large values of r, · 

logT(expr,f) > (:>..1 - E)log{expr} 

i.e., T(expr,f)>exp{(:>..J-E)r}. (8.9) 

Now combining (8.7) and (8.9) it follows for all sufficiently large values of r, 

[log{T(r, A o B) log M(r, B) }]1+"' 
T(expr, f) 

T(pa+<)(l+a){ (pA+<)+ (PR+;~~i:+o(l)} !+a 

<--------~--~---------
(:>..!- E)r 

Since 1 +a< .l, we can choose E (> 0) in such a way that 
PB 

(PB + E)(1 +a) < 1. 

Thus the theorem follows from (8.10) and (8.11). • 

(8.10) 

(8.11) 
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Theorem 8.3.5 Iff be an entire function satisfying the second order linear 
differential equation j'' + A(z)J' + B(z)f = 0 where A(z) and B(z) ¢. 0 are 

entire functions. If 0 < AAoB < p AoB < oo and 0 < p f < oo then for any 
positive number a, 

l
. . flogl21 T(r, A o B) < PAoB 

1
. logl21 T(r, A o B) 

lmlll _ -- < Imsup . 
r---+oo logl21 T(r", f) apf r---+oo logl21 T(r", f) 

Proof. From the definition of hyper order we get for all sufficiently large 
values of r, 

Again we have for a sequence of values of r tending to infinity, 

logl21T(~",f) > (p1 - E)logr" 

u., logl21T(r",f) > a(p1 - E)logr. 

(8.12) 

(8.13) 

Now combining (8.12) and (8.13) it follows for a sequence of values of r tend­
ing to infinity, 

logl21 T(r, A o B) < (PAoB +E) logr 

logl21 T(r", f) - a(p1 - E) logr 

Since E (> 0) is arbitrary, it follows from above that 

. . flogl21 T(r, A o B) P AoB 
hmm <-­

r-->oo logl21 T(r", f) - apf 

Also for arbitrary positive E and for all sufficiently large values of r, 

logl21 T(r", f) < (p f + E) log r" 

~.e., logl21 T(r", f) < a(p1 +E) logr. 

Again for a sequence of values of r tending to infinity, 

logl21 T(r, A o B) > (PAoB - E) log r. 

(8.14) 

(8.15) 

(8.16) 
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Now from (8.15) and (8.16) we obtain for a sequence of values of r tending 
to infinity, · 

logl21 T(r, A o B) (PAoB- E) logr 
~ > : 

log T(r"', f) a(p1 +E) logr 

As E (> 0) is arbitrary, we have from above that 

l
. logl21 T(r, A o B) PAoB 
1m sup 

121 
> --

r->oo log T(r"', f) apf 
(8.17) 

Thus the theorem follows from (8.14) and (8.17). • 

Remark 8.3.4 The sign 1 <1 in Theorem 8.3.5 cannot be replaced by 1 <1 

only as we see in the following example. 

Example 8.3.4 Let f = expl21 z, A(z) = B(z) = expz and a = 1, with 
1 + ez = 0. 

Then AAoB = PAoB = 1 and P! = 1. 
Also 

Again 

T(r,AoB)=T(r,expl2lz),...., expr
1 

(r~oo) 
(27r3r)'> 

z.e., 

z.e., 

1 
logT(r, A o B),...., r- 21ogr + 0(1) 

1 
logl21 T(r, A o B),...., log(r- 21ogr + 0(1)). 

T(r"', f)= T(r, expl21 z),...., expr 
1 (27r3r) 2 

1 
z.e., logT(r"', f),...., r- 21ogr + 0(1) · 

1 
z.e., logl21 T(r"', f),...., log(r- 21ogr + 0(1))·. 



Therefore, 

and 

Also 

. . logl2l T(r, A o B) 
hm mf--=___,.,,....:-"'----'­

r->oo logl2] T(r"', f) 
. . log(r- ~ logr + 0(1)) 

= hm mf::-=..:..._---'i'-:----::-:---:-:-
r->oo log(r- pogr + 0(1)) 

=1 

. logl2l T(r, A o B) 
lim sup --=___,.,

12
,.....:--'------'-

r->oo log l T(r"', f) 
. log(r- ~ logr + 0(1)) 

=hmsup--=..:..._~1c-:--~--::-:---:-:­
r->oo log(r- zlogr + 0(1)) 

-1 - . 

PAoB = _!_ = 1. 
apf 1.1 
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Theorem 8.3.6 Let f be an entire function satisfying the second order linear 
differential equation/"+ A(z)j' + B(z)f = 0 where A(z) and B(z) =/= 0 are 
entire functions. If (i) 0 < PJ < oo, (ii) Of< oo, (iii) PAoB = PJ and (iv) 
0 < GAoB < oo then 

.. T(r,AoB) aAoB . T(r,AoB) 
hmmf T( f) <- < hmsup T( f) . 

r->oo r, a f r->oo r, 

Proof. By the definition of type, we have for arbitrary positive E and for all 
sufficiently large values of r, 

(8.18) 

Again we get for a sequence of values of r tending to infinity, 

(8.19) 

Since PAoB = PJ from (8.18) and (8.19) it follows for a sequence of values of 
r tending to infinity, 

T(r,AoB) (lTAoB+E) 
T(r, f) < (O"J- E) · 
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As E (> 0) is arbitrary, it follows from above that 

l
. . fT( r, A o B) O" AoB 
lmlll < --. 
r---+oo T(r, f) - O"J 

(8.20) 

Again for a sequence of values of r tending to infinity, 

T(r, A o B) > ( 0" AoB - E )rPAoB. (8.21) 

Also for all sufficiently. large values of r, 

(8.22) 

Now in view of condition (iii) we get from (8.21) and (8.22) for a sequence 
of values of r tending to infinity, 

T(r,AoB) (O"AoB-E) 

T(r, f) > (O"J +E) · 

Since E (> 0) is arbitrary, we obtain from above that 

l
. T(r, A o B) 0" AoB 
1msup > --. 

r---+oo T(r, f) - O" f 
(8.23) 

Thus the theorem follows from (8.20) and (8.23). • 

Remark 8.3.5 The sign 1 <1 in Theorem 8.3.6 cannot be replaced by 1 <1 

only as we see in the following example. 

Example 8.3.5 Let f = expz, A(z) = expz, B(z) = z and 

a = 1 with 1 + z + ez = 0. 
Then PJ = 1, PAoB = 1, O"J = 1 and O"AoB = 1. 
Also 

and 

Therefore, 

r 
T(r,AoB) =T(r,expz) =-

. 7f 

r 
T(r,f) =T(r,expz) = -. 

7f 

l
. . fT(r, A o B) 1

. . f; 
1mm T( f) = 1m1n r- = 1 
r---+oo r r---+oo -

' 7r 
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and 
. T(r, A o B) . ~ 

hmsup T( f) = hmsup.!:. = 1. 
T---400 T' r--+oo 1T' 

Also 
CJAoB = ~ = 1. 

(Jf 1 

Theorem 8.3. 7 Let f be an entire function satisfying the second order linear 
differential equation/'+ A(z)/ + B(z)f = 0 where A(z) and B(z) ¢. 0 are 
entire functions. If(i) 0 < AB < PB < oo, (ii) AA > 0, (iii) P! < oo and (iv) 
b.(O; A) < 1 then 

lim log T(r, A o B) = 
00 

r-->oo log T ( r!3, f) ' 
where (3 is a real constant. 

Proof. We suppose that (3 > 0 because otherwise the theorem is obvious. 
For given E (0 < E < 1- b.(O; A)), 

N(r, 0; A) > (1- b.(O; A)- E)T(r, A) 

for all sufficiently large values of r. 
So from Lemma 8.2.3 we get for all large values of r, 

T(r, A o B) + 0(1) 

1 [(1-b.(O;A)-E)T{M(ryr) 1~",B),A} l 
>(log-) 1 -0(1). 

'TJ logM((ryr)~+.,,B)- 0(1) 
(8.24) 

Since for all large values of r, log M (r, B) < rPs+•, it follows from (8.23) that 
for all sufficiently large values of r, 

T(r, A o B)+ 0(1) > O(logr) + logT { M((ryr)~~.,, B), A} 

+log[1 - logM((ryr)-d:a,B)0(1) ] 
(1-b.(O;A)-E)T{M(ryr)~~",B),A} . 

Since f is transcendental, it follows that 
I 

l
. logM((ryr)1+.,,B) 

0 Im -
r-->ooT{M((ryr)~~",B),A}-. 
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So from above we get for all large values of r, 

logT(r, A o B) > O(logr) + logT { M((17r) ~~Q, B), A}+ o(1). (8.25) 

Also we see that for all large values of r, 

M(r, B) > exp { (r)(1/ 2).An}, 
1 

logT(r,A) > 2>.Alogr 

and T(r, f)< rPt+l. 

So from (8.25) we obtain for all sufficiently large values of r, 

logT(r,AoB) O(logr) AA (17r)•<~~Q) 
logT(r!3,f) > /J(l+pB)logr +2.jJ(1+PB)logr +o(

1
), 

which implies that 
lim logT(r, A o B) = 

00 
r->oo log T ( r!3, f) · 

This proves the theorem. • 

Remark 8.3.6 The condition AA > 0 in Theorem 8.3. 7 is necessary as we 
see in the following example. 

Example 8.3.6 Let f = expz, A(z) = z, B(z) = expz and 

/) = 1 with 1 + z + ez = 0. 
Then Pi= 1, AA = 0, AB = PB = 1 and .6.(0;A) < 1. 
Also 

and 

Then 

r 
T(r,AoB) =T(r,expz) =-

7f 

T(rf3,J) =T(r,expz) = r_ 
7f 

lim logT(r,AoB) =lim log~= lim logr+0(1) = 1 
r->oo· logT(rf3, f) r->oolog ~ r->oologr + 0(1) ' 

which is ,contrary to Theorem 8.3. 7. 

Remark 8.3. 7 If we consider PA > 0 instead of AA > 0, the theorem remains 
true with 'limit 'replaced by' limit superior 1 as we see in the following theorem. 
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Theorem 8.3.8 Let f be an entire function satisfying the second order linear 
differential equation J" + A(z)J' + B(z)f = 0 where A(z) and B(z) :f= 0 are 
entire functions. If (i) 0 < AB < PB < oo, (ii) PA > 0, (iii) Pi< oo and (iv) 
.6.(0; A) < 1 then 

1
. logT(r, A o B) 
rmsup , = oo, 
r->oo log T(rf3 , f) 

where (3' is a real constant. 

Proof. For all sufficiently large values of r, 

M(r, B) > exp { (r)C112)>.B} 
and T(r, f) < rPJ+l. 

Also for a sequence of values of r tending to infinity, 

1 
logT(r, A)> 2PAlogr. 

So from (8.25) we obtain for a sequence of values of r tending to infinity, 

..28_ 
logT(r, A o B) O(logr) PA (7Jr) 2<I+a) 

, > '( ) +-. '( ) +o(1), logT(rf3, f) (3 1 + PB logr 2 (3 1 + PB logr 

which implies that 

1
. logT(r, A o B) _ 
rmsup , - oo. 

r->oo logT(rf3 ,f) 
Thus the theorem is established. • 

Remark 8.3.8 The conclusion of Theorem 8.3.8 can also be drawn under 
the condition 6(0; A) < 1 instead of .6.(0; A) < 1 and the other conditions 
remaining the same as we see in the next theorem. 

Theorem 8.3.9 Let f be an entire function satisfying the second order linear 
differential equation!''+ A(z)J' + B(z)f = 0 where A(z) and B(z) =/= 0 are 
entire functions. If (i) 0 < AB < PB < oo, (ii) AA > 0, (iii) Pi < oo and (iv) 
6(0; A) < 1 then 

. logT(r, A o B) 
hm sup T( 13 f) = oo, 

r-.oo log r 0 , 

where (30 is a real constant. 
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Proof. We suppose that f3o > 0 because otherwise the theorem is obvious. 
For given E (0 < E < 1- 6(0; A)), 

N(r, 0; A) > (1 - 6(0; A) - c)T(r, A) 

for a sequence of values of r tending to infinity, 
So from Lemma 8.2.3 we get for a sequence of values of r tending to infinity, 

T(r, A o B)+ 0(1) 

1 [(1-6(0;A)-c)T{M(1Jr)'~a,B),A} l 
>(log-) 1 -0(1) . 

1J logM((1Jr)I+a,B)- 0(1) 
(8.26) 

Since for all large values of r, 

log M(r, B) < rPB+<, 

it follows from (8.26)that for a sequence of values of r tending to infinity, 

T(r, A o B)+ 0(1) > O(logr) + logT { M((1]r) ~~a, B), A} 

l 
[ 

logM((1]r)-d:a,B)0(1) l 
+ og 1- 1 } • 

(1- 6(0; A) - c)T { M(1]r) !+a, B), A 

Since f is transcendental, it follows that 
I 

l
. logM((1]r)l+<i,B) 

0 lmsup I = . 
r---.oo T { M( (W) Ha, B), A} 

So from above we get for a sequence of values of r tending to infinity, 

logT(r, A o B) > O(logr) + logT { M((1]r) 1~a, B), A}+ o(1). (8.27) 

Also we see that for all large values of r, 

M(r, B) > exp { (r)(112).AB}, 
1 

logT(r,A) > 2>.Alogr 

and T(r, f) < rPI+l. 
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So from (8.27) we obtain for a sequence of values of r tending to infinity, 

logT(r, A o B) O(logr) AA (1Jr) 2<~-f!aJ 
logT(rf3o,J) > fJo(l+pB)logr +2.,60(l+pB)logr +o(l), 

which implies that 
. logT(r, A o B) 

lrm sup 1 T( f3 f) = oo. 
r->oo og r 0 , 

This proves the theorem. • 

******X****** 


