

ON THE GROWTH ESTIMATES OF LNITRE FUNCTIONSSAIISFYING SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Chapter 8

ON THE GROWTH ESTIMATES OF ENTIRE FUNCTIONS SATISFYING SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

8.1 Introduction, Definitions and Notations.

For any two transcendental entire functions f and g defined in the open complex plane \mathbb{C}, Clunie [10] proved that

$$
\lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, f)}=\infty \quad \text { and } \quad \lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, g)}=\infty .
$$

Singh [59] proved some comparative growth properties of $\log T(r, f \circ g)$ and $T(r, f)$. He [59] also raised the problem of investigating the comparative growth of $\log T(r, f \circ g)$ and $T(r, g)$ which he was unable to solve. However, some results on the comparative growth of $\log T(r, f \circ g)$ and $T(r, g)$ are proved in [37].

Let f be an entire function defined in the open complex plane \mathbb{C}. Kwon [33] studied on the growth of an entire function f satisfying second order linear differential equation. Later Chen [12] proved some results on the growth of solutions of second order linear differential equations with meromorphic coefficents. Chen and Yang [13] established a few theorems on the zeros and growths of entire solutions of second order linear differential equations. The purpose of this chapter is to study on the growth of the solution

[^0]$f \not \equiv 0$ of the second order linear differential equation
$$
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0
$$
where $A(z)$ and $B(z) \not \equiv 0$ are entire functions.
The following definitions are well known.
Definition 8.1.1 The order ρ_{f} and lower order λ_{f} of an entire function f is defined as
$$
\rho_{f}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log r} \text { and } \lambda_{f}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log r},
$$
where $\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right)$ for $k=1,2,3, \ldots$ and $\log ^{[0]} x=x$. If f is meromorphic, one can easily verify that
$$
\rho_{f}=\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, f)}{\log r} \text { and } \lambda_{f}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

Definition 8.1.2 The hyper order $\bar{\rho}_{f}$ and hyper lower order $\bar{\lambda}_{f}$ of an entire function f is defined as follows

$$
\overline{\rho_{f}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r} \text { and } \overline{\lambda_{f}}=\liminf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log r}
$$

If f is meromorphic, then

$$
\overline{\rho_{f}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log r} \text { and } \overline{\lambda_{f}}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log r}
$$

Definition 8.1.3 [43] Let f_{*} be an entire function of order zero. Then the quantities $\rho_{f}^{*}, \lambda_{f}^{*}$ and $\bar{\rho}_{f}^{*}, \bar{\lambda}_{f}^{*}$ are defined in the following way:

$$
\rho_{f}^{*}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]} r}, \quad \lambda_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]} r}
$$

and

$$
\bar{\rho}_{f}^{*}=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[3]} M(r, f)}{\log ^{[2]} r}, \quad \bar{\lambda}_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log ^{[2]} r}
$$

If f is meromorphic then clearly

$$
\rho_{f}^{*}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]} r}, \quad \lambda_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]} r}
$$

and

$$
\bar{\rho}_{f}^{*}=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[2]} T(r, f)}{\log ^{[2]} r}, \quad \bar{\lambda}_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log ^{[2]} r} .
$$

Definition 8.1.4 The type σ_{f} of an entire function f is defined as

$$
\sigma_{f}=\underset{r \rightarrow \infty}{\limsup } \frac{\log M(r, f)}{r^{\rho_{f}}}, \quad 0<\rho_{f}<\infty
$$

When f is meromorphic, then

$$
\sigma_{f}=\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho_{f}}}, \quad 0<\rho_{f}<\infty .
$$

Definition 8.1.5 Let 'a'be a complex number, finite or infinite. The Nevanlinna deficiency and the Valiron deficiency of ' a ' with respect to a meromorphic function f are defined as

$$
\delta(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)}=\liminf _{r \rightarrow \infty} \frac{m(r, a ; f)}{T(r, f)}
$$

and

$$
\Delta(a ; f)=1-\liminf _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)}=\underset{r \rightarrow \infty}{\limsup } \frac{m(r, a ; f)}{T(r, f)}
$$

8.2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.
Lemma 8.2.1 [1] If f is meromorphic and g is entire then for all sufficiently large values of r,

$$
T(r, f \circ g) \leq\{1+o(1)\} \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f)
$$

Lemma 8.2.2 [4] Let f be meromorphic and g be entire and suppose that $0<\mu \leq \rho_{g} \leq \infty$. Then for a sequence of values of r tending to infinity,

$$
T(r, f \circ g) \geq T\left(\exp \left(r^{\mu}\right), f\right)
$$

Lemma 8.2.3 [51]Let f and g be two transcendental entire functions with $\rho_{g}<\infty, \eta$ be a constant satisfying $0<\eta<1$ and α be a positive number. Then

$$
\begin{aligned}
T(r, f \circ g)+O(1) & \geq N(r, 0 ; f \circ g) \\
& \geq \log \left(\frac{1}{\eta}\right)\left[\frac{N\left(M\left((\eta r)^{\frac{1}{1+\alpha}}, g\right), 0, f\right)}{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, g\right)-O(1)}-O(1)\right]
\end{aligned}
$$

as $r \rightarrow \infty$ through all values.

8.3 Theorems.

In this section we present the main results of the chapter.
Theorem 8.3.1 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If (i) ρ_{A}, ρ_{B} are both finite, $(i i) \lambda_{A}, \lambda_{f}$ are both positive, (iii) $\rho_{B}<\lambda_{A}$ and $\rho_{B}<\lambda_{f}$ i.e. $\rho_{B}<\min \left\{\lambda_{A}, \lambda_{f}\right\}$ and (iv) B be of regular growth i.e., $\lambda_{B}=\rho_{B}$ then

$$
\lim _{r \rightarrow \infty} \frac{\{\log T(r, A \circ B)\}^{2}}{T(r, f) T(r, A)}=0
$$

Proof. It is well known that for an entire function $B, T(r, B) \leq \log ^{+} M(r, B)$. So in view of Lemma 8.2.1, we get for all sufficiently large values of r,

$$
\begin{align*}
& T(r, A \circ B) \leq\{1+o(1)\} T(M(r, B), A) \\
& \text { i.e., } \log T(r, A \circ B) \leq \log \{1+o(1)\}+\log T(M(r, B), A) \\
& \text { i.e., } \quad \log T(r, A \circ B) \leq o(1)+\left(\rho_{A}+\epsilon\right) \log M(r, B) \\
& \text { i.e., } \log T(r, A \circ B) \leq o(1)+\left(\rho_{A}+\epsilon\right) r^{\rho_{B}+\epsilon} \text {. } \tag{8.1}
\end{align*}
$$

Also we obtain for all sufficiently large values of r,

$$
\begin{equation*}
T(r, A) \geq r^{\lambda_{A}-\epsilon} \tag{8.2}
\end{equation*}
$$

Now combining (8.1) and (8.2) it follows for all sufficiently large values of r,

$$
\frac{\log T(r, A \circ B)}{T(r, A)} \leq \frac{o(1)+\left(\rho_{A}+\epsilon\right) r^{\left(\rho_{B}+\epsilon\right)}}{r^{\lambda_{A}-\epsilon}}
$$

i.e., $\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, A \circ B)}{T(r, A)} \leq \underset{r \rightarrow \infty}{\limsup } \frac{o(1)+\left(\rho_{A}+\epsilon\right) r^{\left(\rho_{B}+\epsilon\right)}}{r^{\lambda_{A}-\epsilon}}$.

Since $\rho_{B}<\lambda_{A}$, we can choose $\epsilon(>0)$ in such a way that $\rho_{B}+\epsilon<\lambda_{A}-\epsilon$ and so it follows from above that

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, A \circ B)}{T(r, A)}=0 \tag{8.3}
\end{equation*}
$$

Again we get for all sufficiently large values of r,

$$
\begin{align*}
\log T(r, f) & \geq\left(\lambda_{f}-\epsilon\right) \log r \\
\text { i.e., } T(r, f) & \geq r^{\lambda_{f}-\epsilon} . \tag{8.4}
\end{align*}
$$

Since $\rho_{B}<\lambda_{f}$, we can choose $\epsilon(>0)$ in such a way that

$$
\begin{equation*}
\rho_{B}+\epsilon<\lambda_{f}-\epsilon \tag{8.5}
\end{equation*}
$$

Now combining (8.1), (8.4) and (8.5) it follows for all sufficiently large values of r,

$$
\begin{gather*}
\frac{\log T(r, A \circ B)}{T(r, f)} \leq \frac{o(1)+\left(\rho_{A}+\epsilon\right) r^{\left(\rho_{B}+\epsilon\right)}}{r^{\lambda_{f}-\epsilon}} \\
\text { i.e., } \limsup _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{T(r, f)}=0 \\
\text { i.e., } \lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{T(r, f)}=0 . \tag{8.6}
\end{gather*}
$$

Therefore in view of (8.3) and (8.6), we obtain that

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{\{\log T(r, A \circ B)\}^{2}}{T(r, f) T(r, A)} \\
& =\lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{T(r, f)} \lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{T(r, A)} \\
& =0
\end{aligned}
$$

$$
\text { i.e., } \quad \lim _{r \rightarrow \infty} \frac{\{\log T(r, A \circ B)\}^{2}}{T(r, f) T(r, A)}=0 .
$$

This proves the theorem.
Remark 8.3.1 The condition $\rho_{B}<\min \left\{\lambda_{A}, \lambda_{f}\right\}$ in Theorem 8.3.1 is essential as we see in the following example.

Example 8.3.1 Let $f(z)=\exp z, A(z)=\exp z$ and
$B(z)=\exp z$ with $1+2 e^{z}=0$.
Then $\rho_{A}=\lambda_{A}=1, \rho_{B}=\lambda_{B}=1$ and $\lambda_{f}=1$.
Also $T(r, f)=T(r, \exp z)=\frac{r}{\pi}$,
$T(r, A)=T(r, \exp z)=\frac{r}{\pi}$ and

$$
\begin{aligned}
T(r, A \circ B) & =T\left(r, \exp ^{[2]} z\right) \sim \frac{\exp r}{\left(2 \pi^{3} r\right)^{\frac{1}{2}}} \quad(r \rightarrow \infty) \\
\text { i.e., } \log T(r, A \circ B) & \sim r-\frac{1}{2} \log r+O(1) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{\{\log T(r, A \circ B)\}^{2}}{T(r \cdot f) T(r, A)} \\
& =\lim _{r \rightarrow \infty} \frac{\left\{r-\frac{1}{2} \log r+O(1)\right\}^{2}}{\frac{r}{\pi} \cdot \frac{r}{\pi}} \\
& \geq \lim _{r \rightarrow \infty} \frac{\pi^{2}\left\{\frac{1}{2} r+O(1)\right\}^{2}}{r^{2}} \\
& =\lim _{r \rightarrow \infty} \pi^{2}\left\{\frac{1}{2}+\frac{O(1)}{r}\right\}^{2} \\
& =\frac{\pi^{2}}{4}
\end{aligned}
$$

which contradicts Theorem 8.3.1.

Theorem 8.3.2 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If $\rho_{B}=0$ then $\rho_{A \circ B} \geq \lambda_{A}^{*} . \mu$ where $0<\mu<\rho_{B}$.

Proof. In view of Lemma 8.2.2 and for $0<\mu<\rho_{B}$ we get that

$$
\begin{aligned}
\rho_{A \circ B} & =\limsup _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log r} \\
& \geq \liminf _{r \rightarrow \infty} \frac{\log T\left(\exp \left(r^{\mu}\right), A\right)}{\log r} \\
& \geq \liminf _{r \rightarrow \infty} \frac{\log T\left(\exp \left(r^{\mu}\right), A\right)}{\log ^{[2]}\left(\exp \left(r^{\mu}\right)\right)} \cdot \liminf _{r \rightarrow \infty} \frac{\log ^{[2]}\left(\exp \left(r^{\mu}\right)\right)}{\log r} \\
& =\lambda_{A}^{*} \cdot \liminf _{r \rightarrow \infty}^{\log r^{\mu}} \frac{\log r}{} \\
& =\lambda_{A}^{*} \cdot \mu .
\end{aligned}
$$

Thus the theorem is established.
Remark 8.3.2 The condition $\mu<\rho_{B}$ in Theorem 8.3.2 is necessary which is evident from the following example.

Example 8.3.2 Let $f=\exp z, A(z)=z$ and
$B(z)=\exp z$ with $1+z+e^{z}=0$. Also let $\mu=2$.
Then $\rho_{A}=\lambda_{A}=0, \lambda_{A}^{*}=1$ and $\rho_{A \circ B}=1$.
Thus $\rho_{A \circ B}=1<2=1.2=\lambda_{A}^{*} \cdot \mu$, which is contrary to Theorem 8.3.2.
Theorem 8.3.3 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If ρ_{A}, ρ_{B} are both finite and λ_{f} is positive then for any $\alpha \epsilon$ $(-\infty, \infty)$,

$$
\lim _{r \rightarrow \infty} \frac{[\log \{T(r, A \circ B) \log M(r, B)\}]^{1+\alpha}}{T(\exp r, f)}=0
$$

Proof. If $1+\alpha \leq 0$, the theorem is obvious. So we suppose that $1+\alpha>0$. In view of Lemma 8.2.1, we have for all sufficiently large values of r,

$$
\begin{align*}
& \log \{T(r, A \circ B) \log M(r, B)\} \\
& \leq \log T(r, B)+\log T(M(r, B), A)+\log \{1+o(1)\} \\
& \leq\left(\rho_{B}+\epsilon\right) \log r+\left(\rho_{A}+\epsilon\right) r^{\rho_{B}+\epsilon}+o(1) \\
& \leq r^{\rho_{B}+\epsilon}\left\{\left(\rho_{A}+\epsilon\right)+\frac{\left(\rho_{B}+\epsilon\right) \log r+o(1)}{r^{\rho_{B}+\epsilon}}\right\} \tag{8.7}
\end{align*}
$$

Again we get for all sufficiently large values of r,

$$
\begin{align*}
\log T(\exp r, f) & \geq\left(\lambda_{f}-\epsilon\right) \log \{\exp r\} \\
\text { i.e., } T(\exp r, f) & \geq \exp \left\{\left(\lambda_{f}-\epsilon\right) r\right\} . \tag{8.8}
\end{align*}
$$

Now combining (8.7) and (8.8) it follows for all sufficiently large values of r,

$$
\begin{gathered}
\frac{[\log \{T(r, A \circ B) \log M(r, B)\}]^{1+\alpha}}{T(\exp r, f)} \\
\leq \frac{r^{\left(\rho_{B}+\epsilon\right)(1+\alpha)\left\{\left(\rho_{A}+\epsilon\right)+\frac{\left(\rho_{B}+\epsilon \log r+o(1)\right.}{r^{\prime} P^{+\epsilon}}\right\}^{1+\alpha}}}{\exp \left\{\left(\lambda_{f}-\epsilon\right) r\right\}} \\
\text { i.e., } \limsup _{r \rightarrow \infty} \frac{[\log \{T(r, A \circ B) \log M(r, B)\}]^{1+\alpha}}{T(\exp r, f)}=0,
\end{gathered}
$$

from which the theorem follows.

Remark 8.3.3 The condition $\lambda_{f}>0$ in the Theorem 8.3.3 is essential as we see in the following example.

Example 8.3.3 Let $f=z, A(z)=B(z)=\exp z$ and $\alpha=0$ with $z+1=0$. Then $\rho_{A}=\rho_{B}=1$ and $\lambda_{f}=0$.

Also

$$
\begin{gathered}
T(r, A \circ B)=T\left(r, \exp ^{[2]} z\right) \sim \frac{\exp r}{\left(2 \pi^{3} r\right)^{\frac{1}{2}}} \quad(r \rightarrow \infty) \\
M(r, B)=M(r, \exp z)=\exp r
\end{gathered}
$$

and

$$
T(\exp r, z) \leq \log ^{+} M(\exp r, z)=\log (\exp r)=r
$$

Therefore,

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{[\log \{T(r, A \circ B) \log M(r, B)\}]^{1+\alpha}}{T(\exp r, f)} \\
& =\lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)+\log ^{[2]} M(r, B)}{T(\exp r, f)} \\
& =\frac{r-\frac{1}{2} \log r+O(1)+\log ^{[2]} \exp r}{r} \\
& =\frac{r-\frac{1}{2} \log r+O(1)+\log r}{r} \\
& =\frac{r+\frac{1}{2} \log r+O(1)}{r} \\
& =1
\end{aligned}
$$

which contradicts Theorem 8.3.3.
Theorem 8.3.4 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If ρ_{A}, ρ_{B} are both finite and λ_{f} is positive then for any $\alpha \epsilon$ $(-\infty, \infty)$,

$$
\lim _{r \rightarrow \infty} \frac{[\log \{T(r, A \circ B) \log M(r, B)\}]^{1+\alpha}}{T(\exp r, f)}=0 \text { if } 0<1+\alpha<\frac{1}{\rho_{B}}
$$

Proof. If $1+\alpha \leq 0$, the theorem is obvious. So we take $1+\alpha>0$. We obtain for all sufficiently large values of r,

$$
\begin{align*}
\log T(\exp r, f) & \geq\left(\lambda_{f}-\epsilon\right) \log \{\exp r\} \\
\text { i.e., } T(\exp r, f) & \geq \exp \left\{\left(\lambda_{f}-\epsilon\right) r\right\} . \tag{8.9}
\end{align*}
$$

Now combining (8.7) and (8.9) it follows for all sufficiently large values of r,

$$
\begin{align*}
& \frac{[\log \{T(r, A \circ B) \log M(r, B)\}]^{1+\alpha}}{T(\exp r, f)} \\
& \leq \frac{r^{\left(\rho_{B}+\epsilon\right)(1+\alpha)\left\{\left(\rho_{A}+\epsilon\right)+\frac{\left(\rho_{B}+\epsilon \log r+o(1)\right.}{r^{\rho} B^{+\epsilon}}\right\}^{1+\alpha}}}{\left(\lambda_{f}-\epsilon\right) r} \tag{8.10}
\end{align*}
$$

Since $1+\alpha<\frac{1}{\rho_{B}}$, we can choose $\epsilon(>0)$ in such a way that

$$
\begin{equation*}
\left(\rho_{B}+\epsilon\right)(1+\alpha)<1 \tag{8.11}
\end{equation*}
$$

Thus the theorem follows from (8.10) and (8.11).

Theorem 8.3.5 If f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If $0<\bar{\lambda}_{A \circ B} \leq \bar{\rho}_{A \circ B}<\infty$ and $0<\bar{\rho}_{f}<\infty$ then for any positive number α,

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \leq \frac{\bar{\rho}_{A \circ B}}{\alpha \bar{\rho}_{f}} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)}
$$

Proof. From the definition of hyper order we get for all sufficiently large values of r,

$$
\begin{equation*}
\log ^{[2]} T(r, A \circ B) \leq\left(\bar{\rho}_{A \circ B}+\epsilon\right) \log r \tag{8.12}
\end{equation*}
$$

Again we have for a sequence of values of r tending to infinity,

$$
\begin{array}{ll}
& \log ^{[2]} T\left(r^{\alpha}, f\right) \geq\left(\bar{\rho}_{f}-\epsilon\right) \log r^{\alpha} \\
i . e ., & \log ^{[2]} T\left(r^{\alpha}, f\right) \geq \alpha\left(\bar{\rho}_{f}-\epsilon\right) \log r . \tag{8.13}
\end{array}
$$

Now combining (8.12) and (8.13) it follows for a sequence of values of r tending to infinity,

$$
\frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \leq \frac{\left(\bar{\rho}_{A \circ B}+\epsilon\right) \log r}{\alpha\left(\bar{\rho}_{f}-\epsilon\right) \log r}
$$

Since $\epsilon(>0)$ is arbitrary, it follows from above that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \leq \frac{\bar{\rho}_{A \circ B}}{\alpha \bar{\rho}_{f}} \tag{8.14}
\end{equation*}
$$

Also for arbitrary positive ϵ and for all sufficiently large values of r,

$$
\begin{align*}
& \log ^{[2]} T\left(r^{\alpha}, f\right) \leq\left(\bar{\rho}_{f}+\epsilon\right) \log r^{\alpha} \\
i . e ., & \log ^{[2]} T\left(r^{\alpha}, f\right) \leq \alpha\left(\bar{\rho}_{f}+\epsilon\right) \log r . \tag{8.15}
\end{align*}
$$

Again for a sequence of values of r tending to infinity,

$$
\begin{equation*}
\log ^{[2]} T(r, A \circ B) \geq\left(\bar{\rho}_{A \circ B}-\epsilon\right) \log r . \tag{8.16}
\end{equation*}
$$

Now from (8.15) and (8.16) we obtain for a sequence of values of r tending to infinity,

$$
\frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \geq \frac{\left(\bar{\rho}_{A \circ B}-\epsilon\right) \log r}{\alpha\left(\bar{\rho}_{f}+\epsilon\right) \log r}
$$

As $\epsilon(>0)$ is arbitrary, we have from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \geq \frac{\bar{\rho}_{A \circ B}}{\alpha \bar{\rho}_{f}} \tag{8.17}
\end{equation*}
$$

Thus the theorem follows from (8.14) and (8.17).

Remark 8.3.4 The sign ${ }^{\prime} \leq$ in Theorem 8.3.5 cannot be replaced by ${ }^{\prime}<$ ' only as we see in the following example.

Example 8.3.4 Let $f=\exp ^{[2]} z, A(z)=B(z)=\exp z$ and $\alpha=1$, with $1+e^{z}=0$.

Then $\bar{\lambda}_{A \circ B}=\bar{\rho}_{A \circ B}=1$ and $\bar{\rho}_{f}=1$.
Also

$$
\begin{aligned}
& T(r, A \circ B)=T\left(r, \exp ^{[2]} z\right) \sim \frac{\exp r}{\left(2 \pi^{3} r\right)^{\frac{1}{2}}} \quad(r \rightarrow \infty) \\
& \text { i.e., } \quad \log T(r, A \circ B) \sim r-\frac{1}{2} \log r+O(1) \\
& \text { i.e., } \quad \log ^{[2]} T(r, A \circ B) \sim \log \left(r-\frac{1}{2} \log r+O(1)\right) .
\end{aligned}
$$

Again

$$
\left.\begin{array}{rl}
T\left(r^{\alpha}, f\right) & =T\left(r, \exp ^{[2]} z\right)
\end{array}\right) \frac{\exp r}{\left(2 \pi^{3} r\right)^{\frac{1}{2}}}, ~=(1) .
$$

Therefore,

$$
\begin{aligned}
& \liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \\
& =\liminf _{r \rightarrow \infty} \frac{\log \left(r-\frac{1}{2} \log r+O(1)\right)}{\log \left(r-\frac{1}{2} \log r+O(1)\right)} \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, A \circ B)}{\log ^{[2]} T\left(r^{\alpha}, f\right)} \\
& =\limsup _{r \rightarrow \infty} \frac{\log \left(r-\frac{1}{2} \log r+O(1)\right)}{\log \left(r-\frac{1}{2} \log r+O(1)\right)} \\
& =1
\end{aligned}
$$

Also

$$
\frac{\bar{\rho}_{A \circ B}}{\alpha \overline{\rho_{f}}}=\frac{1}{1.1}=1
$$

Theorem 8.3.6 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If (i) $0<\rho_{f}<\infty$, (ii) $\sigma_{f}<\infty$, (iii) $\rho_{A \circ B}=\rho_{f}$ and (iv) $0<\sigma_{A \circ B}<\infty$ then

$$
\liminf _{r \rightarrow \infty} \frac{T(r, A \circ B)}{T(r, f)} \leq \frac{\sigma_{A \circ B}}{\sigma_{f}} \leq \limsup _{r \rightarrow \infty} \frac{T(r, A \circ B)}{T(r, f)}
$$

Proof. By the definition of type, we have for arbitrary positive ϵ and for all sufficiently large values of r,

$$
\begin{equation*}
T(r, A \circ B) \leq\left(\sigma_{A \circ B}+\epsilon\right) r^{\rho_{A \circ B}} \tag{8.18}
\end{equation*}
$$

Again we get for a sequence of values of r tending to infinity,

$$
\begin{equation*}
T(r, f) \geq\left(\sigma_{f}-\epsilon\right) r^{\rho_{f}} \tag{8.19}
\end{equation*}
$$

Since $\rho_{A o B}=\rho_{f}$ from (8.18) and (8.19) it follows for a sequence of values of r tending to infinity,

$$
\frac{T(r, A \circ B)}{T(r, f)} \leq \frac{\left(\sigma_{A \circ B}+\epsilon\right)}{\left(\sigma_{f}-\epsilon\right)}
$$

As $\epsilon(>0)$ is arbitrary, it follows from above that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{T(r, A \circ B)}{T(r, f)} \leq \frac{\sigma_{A \circ B}}{\sigma_{f}} \tag{8.20}
\end{equation*}
$$

Again for a sequence of values of r tending to infinity,

$$
\begin{equation*}
T(r, A \circ B) \geq\left(\sigma_{A \circ B}-\epsilon\right) r^{\rho_{A \circ B}} \tag{8.21}
\end{equation*}
$$

Also for all sufficiently large values of r,

$$
\begin{equation*}
T(r, f) \leq\left(\sigma_{f}+\epsilon\right) r^{\rho_{f}} \tag{8.22}
\end{equation*}
$$

Now in view of condition (iii) we get from (8.21) and (8.22) for a sequence of values of r tending to infinity,

$$
\frac{T(r, A \circ B)}{T(r, f)} \geq \frac{\left(\sigma_{A \circ B}-\epsilon\right)}{\left(\sigma_{f}+\epsilon\right)}
$$

Since $\epsilon(>0)$ is arbitrary, we obtain from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, A \circ B)}{T(r, f)} \geq \frac{\sigma_{A \circ B}}{\sigma_{f}} \tag{8.23}
\end{equation*}
$$

Thus the theorem follows from (8.20) and (8.23).
Remark 8.3.5 The sign ' \leq ' in Theorem 8.3.6 cannot be replaced by ${ }^{\prime}<$ ' only as we see in the following example.

Example 8.3.5 Let $f=\exp z, A(z)=\exp z, B(z)=z$ and

$$
\alpha=1 \text { with } 1+z+e^{z}=0
$$

Then $\rho_{f}=1, \rho_{A \circ B}=1, \sigma_{f}=1$ and $\sigma_{A \circ B}=1$.
Also

$$
T(r, A \circ B)=T(r, \exp z)=\frac{r}{\pi}
$$

and

$$
T(r, f)=T(r, \exp z)=\frac{r}{\pi}
$$

Therefore,

$$
\liminf _{r \rightarrow \infty} \frac{T(r, A \circ B)}{T(r, f)}=\liminf _{r \rightarrow \infty} \frac{\frac{r}{\pi}}{\frac{r}{\pi}}=1
$$

and

$$
\limsup _{r \rightarrow \infty} \frac{T(r, A \circ B)}{T(r, f)}=\limsup _{r \rightarrow \infty} \frac{\frac{r}{r}}{\frac{\pi}{\pi}}=1
$$

Also

$$
\frac{\sigma_{A \circ B}}{\sigma_{f}}=\frac{1}{1}=1
$$

Theorem 8.3.7 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If (i) $0<\lambda_{B} \leq \rho_{B}<\infty$, (ii) $\lambda_{A}>0$, (iii) $\rho_{f}<\infty$ and (iv) $\Delta(0 ; A)<1$ then

$$
\lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta}, f\right)}=\infty
$$

where β is a real constant.
Proof. We suppose that $\beta>0$ because otherwise the theorem is obvious.
For given $\epsilon(0<\epsilon<1-\Delta(0 ; A))$,

$$
N(r, 0 ; A)>(1-\Delta(0 ; A)-\epsilon) T(r, A)
$$

for all sufficiently large values of r.
So from Lemma 8.2.3 we get for all large values of r,

$$
\begin{align*}
& T(r, A \circ B)+O(1) \\
& \geq\left(\log \frac{1}{\eta}\right)\left[\frac{\left.(1-\Delta(0 ; A)-\epsilon) T\left\{M(\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}}{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right)-O(1)}-O(1)\right] . \tag{8.24}
\end{align*}
$$

Since for all large values of $r, \log M(r, B)<r^{\rho_{B}+\epsilon}$, it follows from (8.23) that for all sufficiently large values of r,

$$
\begin{aligned}
T(r, A \circ B)+O(1) & \geq O(\log r)+\log T\left\{M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\} \\
& +\log \left[1-\frac{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right) O(1)}{\left.(1-\Delta(0 ; A)-\epsilon) T\left\{M(\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}}\right]
\end{aligned}
$$

Since f is transcendental, it follows that

$$
\lim _{r \rightarrow \infty} \frac{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right)}{T\left\{M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}}=0
$$

So from above we get for all large values of r,

$$
\begin{equation*}
\log T(r, A \circ B) \geq O(\log r)+\log T\left\{M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}+o(1) \tag{8.25}
\end{equation*}
$$

Also we see that for all large values of r,

$$
\begin{aligned}
M(r, B) & >\exp \left\{(r)^{(1 / 2) \lambda_{B}}\right\}, \\
\log T(r, A) & >\frac{1}{2} \lambda_{A} \log r \\
\text { and } \quad T(r, f) & <r^{\rho_{f}+1}
\end{aligned}
$$

So from (8.25) we obtain for all sufficiently large values of r,

$$
\frac{\log T(r, A \circ B)}{\log T\left(r^{\beta}, f\right)}>\frac{O(\log r)}{\beta\left(1+\rho_{B}\right) \log r}+\frac{\lambda_{A}}{2} \cdot \frac{(\eta r)^{\frac{\lambda_{B}}{2(1+\alpha)}}}{\beta\left(1+\rho_{B}\right) \log r}+o(1)
$$

which implies that

$$
\lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta}, f\right)}=\infty
$$

This proves the theorem.
Remark 8.3.6 The condition $\lambda_{A}>0$ in Theorem 8.3.7 is necessary as we see in the following example.

Example 8.3.6 Let $f=\exp z, A(z)=z, B(z)=\exp z$ and

$$
\beta=1 \text { with } 1+z+e^{z}=0 .
$$

Then $\rho_{f}=1, \lambda_{A}=0, \lambda_{B}=\rho_{B}=1$ and $\Delta(0 ; A)<1$.
Also

$$
T(r, A \circ B)=T(r, \exp z)=\frac{r}{\pi}
$$

and

$$
T\left(r^{\beta}, f\right)=T(r, \exp z)=\frac{r}{\pi}
$$

Then

$$
\lim _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta}, f\right)}=\lim _{r \rightarrow \infty} \frac{\log \frac{r}{\pi}}{\log \frac{r}{\pi}}=\lim _{r \rightarrow \infty} \frac{\log r+O(1)}{\log r+O(1)}=1
$$

which is contrary to Theorem 8.3.7.
Remark 8.3.7 If we consider $\rho_{A}>0$ instead of $\lambda_{A}>0$, the theorem remains true with'limit'replaced by'limit superior' as we see in the following theorem.

Theorem 8.3.8 Let f be an entire function satisfying the second order linear differential equation $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If (i) $0<\lambda_{B} \leq \rho_{B}<\infty$, (ii) $\rho_{A}>0$, (iii) $\rho_{f}<\infty$ and (iv) $\Delta(0 ; A)<1$ then

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta^{\prime}}, f\right)}=\infty
$$

where β^{\prime} is a real constant.
Proof. For all sufficiently large values of r,

$$
\begin{aligned}
M(r, B) & >\exp \left\{(r)^{(1 / 2) \lambda_{B}}\right\} \\
\text { and } \quad T(r, f) & <r^{\rho_{f}+1}
\end{aligned}
$$

Also for a sequence of values of r tending to infinity,

$$
\log T(r, A)>\frac{1}{2} \rho_{A} \log r
$$

So from (8.25) we obtain for a sequence of values of r tending to infinity,

$$
\frac{\log T(r, A \circ B)}{\log T\left(r^{\beta^{\prime}}, f\right)}>\frac{O(\log r)}{\beta^{\prime}\left(1+\rho_{B}\right) \log r}+\frac{\rho_{A}}{2} \cdot \frac{(\eta r)^{\frac{\lambda_{B}}{2(1+\alpha)}}}{\beta^{\prime}\left(1+\rho_{B}\right) \log r}+o(1)
$$

which implies that

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta^{\prime}}, f\right)}=\infty
$$

Thus the theorem is established.
Remark 8.3.8 The conclusion of Theorem 8.3.8 can also be drawn under the condition $\delta(0 ; A)<1$ instead of $\Delta(0 ; A)<1$ and the other conditions remaining the same as we see in the next theorem.

Theorem 8.3.9 Let f be an entire function satisfying the second order linear differential equation' $f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0$ where $A(z)$ and $B(z) \not \equiv 0$ are entire functions. If $(i) 0<\lambda_{B} \leq \rho_{B}<\infty$, (ii) $\lambda_{A}>0$, (iii) $\rho_{f}<\infty$ and (iv) $\delta(0 ; A)<1$ then

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta_{0}}, f\right)}=\infty
$$

where β_{0} is a real constant.

Proof. We suppose that $\beta_{0}>0$ because otherwise the theorem is obvious. For given $\epsilon(0<\epsilon<1-\delta(0 ; A))$,

$$
N(r, 0 ; A)>(1-\delta(0 ; A)-\epsilon) T(r, A)
$$

for a sequence of values of r tending to infinity,
So from Lemma 8.2.3 we get for a sequence of values of r tending to infinity,

$$
\begin{align*}
& T(r, A \circ B)+O(1) \\
& \geq\left(\log \frac{1}{\eta}\right)\left[\frac{\left.(1-\delta(0 ; A)-\epsilon) T\left\{M(\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}}{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right)-O(1)}-O(1)\right] \tag{8.26}
\end{align*}
$$

Since for all large values of r,

$$
\log M(r, B)<r^{\rho_{B}+\epsilon}
$$

it follows from (8.26)that for a sequence of values of r tending to infinity,

$$
\begin{aligned}
T(r, A \circ B)+O(1) & \geq O(\log r)+\log T\left\{M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\} \\
& +\log \left[1-\frac{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right) O(1)}{\left.(1-\delta(0 ; A)-\epsilon) T\left\{M(\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}}\right]
\end{aligned}
$$

Since f is transcendental, it follows that

$$
\limsup _{r \rightarrow \infty} \frac{\log M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right)}{T\left\{M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}}=0
$$

So from above we get for a sequence of values of r tending to infinity,

$$
\begin{equation*}
\log T(r, A \circ B) \geq O(\log r)+\log T\left\{M\left((\eta r)^{\frac{1}{1+\alpha}}, B\right), A\right\}+o(1) \tag{8.27}
\end{equation*}
$$

Also we see that for all large values of r,

$$
\begin{aligned}
M(r, B) & >\exp \left\{(r)^{(1 / 2) \lambda_{B}}\right\}, \\
\log T(r, A) & >\frac{1}{2} \lambda_{A} \log r \\
\text { and } \quad T(r, f) & <r^{\rho_{f}+1}
\end{aligned}
$$

So from (8.27) we obtain for a sequence of values of r tending to infinity,

$$
\frac{\log T(r, A \circ B)}{\log T\left(r^{\beta_{0}}, f\right)}>\frac{O(\log r)}{\beta_{0}\left(1+\rho_{B}\right) \log r}+\frac{\lambda_{A}}{2} \cdot \frac{(\eta r)^{\frac{\lambda_{B}}{2(1+\alpha)}}}{\beta_{0}\left(1+\rho_{B}\right) \log r}+o(1)
$$

which implies that

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, A \circ B)}{\log T\left(r^{\beta_{0}}, f\right)}=\infty
$$

This proves the theorem.

$$
* * * * * * X * * * * * *
$$

[^0]: The results of this chapter have been published in International Mathematical Forum,see [23].

