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Chapter 7 

ON THE DEFINITION OF WEAK 
TYPE OF A MEROMORPHIC 
FUNCTION OF LOWER ORDER 
ZERO OR INFINITY AND SOME 
RELATED GROWTH PROPERTIES 

7.1 Introduction, Definitions and Notations. · 

Let f be a meromorphic function defined in the open complex plane C. In 
the sequel we use the following two notations: 

log[k] x =log (log[k-1] x) for k . 1, 2, 3, ... and logl0l x = x; and explk] x = 

exp(explk-11 x) fork= 1, 2, 3, ... and expl0l x = x. 
The lower order and weak type of a meromorphic function f are defined in 
the following way : 

Definition 7.1.1 The lower order AJ of a meromorphic function f are de
fined as 

, li . flogT (r, f) 
/\f = mm 

r->oo logr 

Iff is entire, one can easily verify that 

, _ 
1
. . flogl21 M (r, f) 

/\f- lffilll 1 . 
r->oo ogr 

Some results of this chapter have been published in International Journal of Mathematical Sciences 
and Engineering Applications, see (24] and the remaining in International Jour.nal of Contempo-
rary Mathematical Sciences, see (25]. · 
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Definition 7.1.2 {15]The weak type TJ of a meromorphic function f is de
fined as follows : 

. . T (r, f) 
TJ=hmmf A , O<>.,<oo. 

r-J>oo r t 

When f is entire, then 

l
. . flog M (r, f) 

0 
, 

Tf= lffilll A , <AJ<OO. 
r--+oo r f 

But when a meromorphic function f is of lower order zero or 
infinity, the weak type of f cannot be defined. In this chapter we introduce 
the definition of weak type of a meromorphic function of lower order zero or 
infinity and deduce its integral representation. In order to do this we just 
recall the definition of zero lower order of a meromorphic function. In this 
connection Liao and Yang [43] gave the following definition : 

Definition 7.1.3 {4-3] Let f be a meromorphic function of order zero. Then 
the quantity A j is defined as 

'* 1. . flogT (r, f) 
/\! = lffilll 

r--->oo logl2l r 

Iff is entire then clearly 

'* 1. . flogl21 M (r, f) 
/\! = lffilll 

r--->oo logl2] r 

The following definition is also well known. 

Definition 7.1.4 The hyper lower order AJ of a meromorphic function f is 
defined as follows : 

,- li . flogl21 T (r, f) 
Af= mrn . 

r--->oo log r 

If f is entire, then 
- . . logl31 M (r, f) 
AJ = hmmf 

1 r--->oo og r 
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In this chapter we introduce the following definitions. 
Definition 7.1.A The weak type Tj of a meromorphic function of order 

zero is defined by 

* l' . f T (r, f) 
Tf = 1m1n .A*' 

r->oo (log r) 1 
0 < >-j < 00. 

Definition 7.1.B A meromorphic function f of order zero is said to be 
00 

of weak type Tj if the integral J [ exp{T(r!.]t1 dr (ro > 0) is convergent for 
ro exp(log r) f 

k > Tj and divergent for k < Tj where 0 < A j < oo. 

Definition 7.1.C The weak type it of a meromorphic function of lower 
order infinity is defined as follows : 

- .. logT(r,f) -
TJ=hmmf _ , O<AJ<oo. 

T---+00 A r 1 

Definition 7.1.D A meromorphic function f of lower order infinity is 
00 

said to be of weak type it if the integral J [ T((:~f)l] •+1 dr (r0 > 0) converges 
To exp rf 

for k > it and diverges for k < it . 

In this chapter we establish the equivalence of Definition 7.1.A and Defin
ition 7.1.C with Definition 7.1.B and Definition &7.1.D respectively. Further 
we duduce the relationship between the respective weak types of an entire 
function f and that of its kth derivative for k = 0, 1, 2, 3, ... Some growth 
properties of Nevanlinna's characteristic function of composite meromorphic 
and entire functions with that of their left and right factors in terms of their 
weak types are also established in this chapter with examples. Also in the 
chapter, using the concept of weak type we establish some results related to 
the growth properties of composite entire functions. 

7.2 Lemmas. 

In this section we present some lemmas which will be needed in the sequel. 



00 

Lemm a 7.2.1 Let the integral J [ exp{T{r!.)]>+' dr (ro > 0) converges for 
To exp{(logT) I} 

0 < k < oo. Then 

l
. . f exp {T ( r, f)} _ 

0 lmlll k- . 
T-> [exp{(log r)-\i }] 

P roof. Since the integral J [ exp{T{r!.)]'+' dr (ro > 0) is convergent for 
To exp{(log T) /} 

0 < k < oo, given E(> 0) there exists a number R = R (c) such that 

00 

J exp {T (r, f)} 
----=---=-__..:..._~-dr < E for r > R 

* k+l 0 

7
_
0 

[exp{ (logr)-\t}] 

i.e. , for ro > R, 

).* 

ro+exp{(logr) /} 

J exp {T (r, f )} d 
k+I r <E. 

To [ exp{ (log r )-\i } J 

As exp {T ( r, f)} is an increasing function of r, so 

). ' 

7"o+exp{(logr) /} 
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J exp {T (r, f)} 
-----'---=--c.....:._k+-1 dr > 
[exp{(log r)-\i }] · -

exp {T (ro, f )} [ {(l , )-\i}] 
* k+I. exp og 1 o 

[ exp{ (log r 0)-\t }] 
ro 

exp {T (ro, f)} 

[ exp{ (log r 0)-\i} J k 

. exp {T (ro , f)} 
2.e., k < E for ro > R, 

[ exp{ (log r 0 )-\i } J · 

from which it follows that 

l
. . f exp { T ( r, f)} _ 

0 Imm k- . 
r-+ [ exp{ (log r )-\i} J 

This proves the lemma. • 
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00 

Lemma 7.2.2 If the integralf [ T((:~f))]•+Idr(ro > 0) is convergent for 
To exp Tf 

0 < k < oo, then 

00 

Proof. Since the integral J [ T((:~f))]•+Idr converges for 0 < k < oo, given 
To exp Tf 

E(> 0) there exists a number R = R(E) such that 

-
To+{exp(T~1 )} 

J T(r~f) dr> T(r~f) .{exp(r[1 )} 

{ exp(r;1) }k+l { exp(r;') }k+l 

~.e., 

To 

T (ro, f) 
-

>. { exp(r0')}k 

T (ro, f) 
~.e., ---'---'-'-_ ~ < c: for ro > R. 

{ exp(r;')}k 

Now from above it follows that 

from which the lemma follows. • 

Lemma 7.2.3 {39} Iff is a non"constant entire function, then 

T (r, f) <log M (r, f) < logT (2r, f)+ o(l) 

as r-> oo. 
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Lemma 7.2.4 {10}If f be andg are entire functions, for all sufficiently large 

values ofr, 

M(~M G,g) -lg (O)I, f)< M(r, fog)< M (M (r, g), f). 

Lemma 7.2.5 [24-]Let f be an entire function such that 0 < AJ < oo. If TJ 
and Tj(k) be the respective weak types off and f(k) then Tj(k) < (2k)>.ITJ Where 

k = 0, 1, 2, 3, ..... 

Lemma 7.2.6 {35] Let f be an entire function of fi'TJ,ite lower order. If there 
exist entire functions a; ( i = 1, 2, 3, · · · , n; n < oo) satisfying 

n 
T(r,a;) = o{T(r,f)} and 'L5(a;,f) = 1, then lim 1 TY;(lf) = 1.. 

. T-l>OO og r, 7r 
•=1 

7.3 Theorems. 

In this section we present the main results of the chapter. 

Theorem 7.3.1 Let f be meromorphic with lower order zero. Also let 
0 < >.j < oo. Then Definition 7.1.A and Definition 7.1.B are equivalent. 

Proof. Case I. Tj = oo. 
Definition 7.1.A=> Definition 7.1.B 
As Tj = oo, from Definition 7.1.A we obtain for arbitrary positive G and for 
all sufficiently large values of r that 

T (r, f) > G(log r )>-i 

~.e., exp[T (r, !)] > [exp{(logr)>-i}]
0

. 

00 

If possible, let the integral J [ exp{T(r~!)Ja+Idr (ro > 0) be converge. 
r 0 exp{(logr) /} 

Then by Lemma 7.2.1, 

l
. . f exp {T (r, f)} 

0 1m1n 0 = . 
r-->oo [exp{(logr)>-i}] 

So for a sequence of values of r tending to infinity that 

exp {T (r, f)}< [exp{(logr)>-i}(+l. 

(7.1) 

(7.2) 
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Now from (7.1) and (7.2) we arrive at a contradiction. 
00 

Hence J exp{T(r~!)]G+ldr (ro > 0) diverges whenever G is finite, which is 
ro [exp{(logr) /} 

Definition 7.1.B. 
Definition 7.l.B=? Definition 7.1.A. 
Let G be any positive number. Since Tj = oo, from Definition 7.1.B the diver-

co 

gence of the integral J [ exp{T(r,!)Ja+1 dr (ro > 0) gives for arbitrary positive 
ro exp{(log r)!. f'} 

c and for all sufficiently large values of r, 

This gives that 

exp{T(r,f)} > [exp{(logr).Ai}]G-E 

i.e., T(r,f) > (G-c)(logr).Ai. 

. . T (r, f) 
lrmmf .A* > (G- c). 

r--->oo (log r) t -

Since G > 0 is arbitrary, it follows that 

liminf T (r, f}. = oo. 
r--->oo (log r) t 

Thus Definition 7.1.A follows. 
Case II. 0 < Tj < oo. 
Definition 7.1.A=? Definition 7.1.B. 
Subcase (a). 
Let f be of weak type Tj where 0 < Tj < oo. Then for arbitrary positive 
c(> 0) and for a sequence of values of r tending to infinity that 

T (r, f) * ____:__.:_::_,:.,.. < Tf + c 
(log r ).At 

i.e., T(r,f) < (Tj+c)(logr).Ai 

z.e., exp {T (r, f)}< exp { (Tj + c)(logr).Ai} 

u., exp {T (r, f)}< [exp { (logr).Ai }ri+" 
. exp{T(r,f)} [exp{(logr).Ai}ri+" 
z.e., [exp { (logr).Ai }Jk < [exp { (logr).Ai }Jk 
. exp {T (r, f)} 1 
u., [exp{(logr).Ai}]k < [exp{(logr).Ai}]k-(rj+o)" 
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00 

Therefore J r{T(r~f)} dr (ro > 0) converges for k > Tj and diverges if 
ro [exp (logr) I Jk+l 

k < Tj. 
Subcase (b). . 
When f is of weak type Tj(= 0), Definition 7.l.A gives for a sequence of 
values of r tending to infinity that 

T (r, f) 
{(logr)>.i} <c. 

00 

Then as before we obtain that J [ exp{T(r:~)J•+J dr (ro > 0) converges fork > 0 
ro exp{(logr) I} 

and diverges for k < 0. 
Thus combining Subcase (a) and Subcase (b), Definition 7.l.B follows. 

Definition 7.l.B=? Definition 7.l.A 

Since f is of weak type Tj, by Definition 7.l.B, for arbitrary positive c:(> 0), 
00 

th . t l J exp{T(r,/)} d e m egra ,.. <r +H'l r converges. 
r0 [exp{(logr) I}] 1 

Then by Lemma 7.2.1, 

liminf exp {T (r, f)}. = 0. 
r->oo [ exp{ (log r )>.i}] h+E) 

i.e., for a sequence of values of r tending to infinity that 

-_ex-=-p_,{~T_,_( r...:.., "----'!)+}-::-:-;-
[ exp{ (log r )>.i}] (Tj+€) 

<c: 

~.e., exp[T (r, f)] < c:. [exp{(logrli}fi+€) 

i.e., T (r, f)< loge:+ (Tj + c:) (logr)>.i 

. T (r, f) log c; * 
~.e., (l )>.* < (l )>.* + h + c:) ogr 1 ogr 1 

l . . f T (r, f) * 
~.e., 1mm >.· <T1 +c. 

r->oo (log r) 1 -

Since c; (> 0) is arbitrary, it follows from above that 

l . . f T (r, f) * 
Imm ·• < T. 
r->oo (logr)>.1 - 1 (7.3) 



Again by Definition 7.l.B, the divergence of the integral 
00 

J exp{T(r,f)~ dr(ro > 0) 
ro [ exp{ (log r f•i}] (r/+1-<) 

implies that for all sufficiently large values of r, 

exp {T (r, f)} 1 
__ _:___::___.:_'-'--7~.,------.,.->----------,-.,------,-

[ exp{ (log r f·i}] (rj+l-<) [ exp{ (log r ).Xi}] (1+<) 

i.e., exp {T (r, f)}> [exp{(logr).Xi}] (rj-
2

<) 

i.e., T (r, f) > (Tj- 2~::) (logr).Xi 

. T (r, f) ( * ) 2.e., .x· > Tf - 2c . 
(logr) 1 

As c (> 0) is arbitrary, we get that 

l . . f T (r, f) * 
lmlll .X* > Tj. 
r-+oo (log r) f -

So from (7.3) and (7.4) it follows that 

l . . f T (r, f) * 
lmlll • = Tf. 
r-+oo (log r ).X! 

Thus we obtain Definition 7.l.A. 
Now combining Case I and Case II, the theorem follows. • 
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(7.4) 

00 

Theorem 7.3.2 The integral J exp{T~~f)~T*+!Jdr (ro > 0) converges if and 
ro [exp{(logr) f}] 1 

. 00 

only if the integral J M(r!.) (T*+!Jdr (ro > 0) converges. 
r0 [exp{(logr) !}] 1 

. 00 

Proof. Let the integral J M(r,{~ T*+I dr (r0 > 0) converges. Then by the 
r0 [exp{(logr) !}] 1 

first part of Lemma 7.2.3 we obtain that 
00 00 

J __ ex-'-p--'{_T....:..(r_, f'-')_,_}.,...,....,..,.dr < j M (r, f) dr 
ro [ exp{ (log r ).Xi}] (rj+l) - ro [ exp{ (log r ).Xi}] (rj+l) 
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. ()() 

i.e., J exp{T(~!)} T +I dr converges. 
ro [exp{(logr) !} ] 1 

()() 

Next let J exp{T(~!)}T*+i dr (ro > O)be convergent. Then by the second part 
r0 [exp{(logr) t}] 1 

of Lemma 7.2.3 we get that 

()() 

J M(r,f) dr 
• (r*+1 

ro [ exp{(log r ).\!} J f ) 

()() ()() 

< j exp {T (2r, f)} dr + j o(l) dr 
- ro [exp{(logr).\j}](rj+l) ro [exp{(logr).\j}tj+l) 

()() 

= __ 1--.----,. J exp {T (r, f)} d (I) 
..._., 1 *+1 r + o . 
2[exp(z.Aj)] [exp{(logr).\j}p 

ro 

Thus, 
()() 

J M(r,f) d 
.\* (rj+l) r 

ro [ exp {(log) I} J 
(ro > 0) 

is convergent. This proves the theorem. • 

Now in veiw of Theorem 7.3.1 and Theorem7.3.2, we may give an alterna
tive definition of weak type Tj of an entire function f with lower order zero 
as follows: 
An entire function f with lower order zero is said to be of weak type Tj if 

()() 

the integral J M(r,{~ T*+i dr (r0 > 0) converges for k > Tj and diverges 
r0 [exp{(logr) /}] 1 

fork< Tj 

Theorem 7.3.3 Iff be a meromorphic function of infinite lower order and 

0 < AJ < oo. Then Definition 7.1.C and Definition7.1.D are equivalent. 

Proof. Case I. ij = oo. 
Definition 7.1.C=;. Definition 7.1.D .. 
As ij = oo, from Definition 7.1.C we obtain for arbitrary positive G and for 



all sufficiently large values of r that 

-
logT (r, f) > G(r>-I) 

i.e., T(r,f) > [exp(r~')r 
00 

If possible, let the integral J [ T(~fl] G+l dr (r0 > 0) be converge. 
ro exp(r~f) 

Then by Lemma 7.2.2, 

l. . f T (r, f) 0 nnm G = . 

r-.oo [exp(r~I)] 

So for a sequence of values of r, 

[ 

- ] G+l 
T (r, f) < exp(r>-') 

Now from (7.5) and (7.6) , we arrive at a contradiction. 
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(7.5) 

(7.6) 

00 

Hence J [ T(~f)]a+Idr (ro > 0) diverges whenever G is finite, which is Defi-
ro exp(r~f) 

nition 7.1.D. 
Definition 7.1.D=?- Definition 7.1.C. 
Let G be any positive number. Since ij = oo, from Definition 7.1.D the di-

. 00 

vergence of the integral J [ T(~fl] G+l dr (ro > 0) gives for arbitrary positive 
ro exp(r~f) 

t: and for all sufficiently large values of r that 

This gives that 

T(r,f) > [exp(r>-')r-c 

~.e., logT(r,f) > (G-c:)r>-t. 

l. . flogT (r, f) > (G ) lmm - - -t:. 
r--+oo A r I 
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Since G is arbitrary, this shows that 

1
. . flog T (r, f) 
1m~n _ = oo. 
T--->00 

Thus Definition 7.l.C follows. 

Case II. 0 < 7j < oo. 
Definition 7.l.C=} Definition 7.l.D. 
Let G be any positive number. Since 7j = oo, from Definition 7.l.D the di-

oo 

vergence of the integral J [ T(~f)] G+I dr (ro > 0) gives for arbitrary positive 
ro exp(r>./) 

r:; and for all large values of r tending to infinity, 

This gives that 

r (r, n > [exp(r.x')r-" 

%.e., logT(r,f) > (G-.r::)r>-'. 

liminflogT(r,f) > (G -r::). 
r~oo A r 1 

Since G is arbitrary, this shows that 

1
. . flog T (r, f) 
lffilll - =00. 
T--->00 

Thus Definition 7.l.C follows. 
Case II. 0 < 7j < oo. 
Definition 7.l.C=} Definition 7.l.D. 
Subcase (a) . 
Let f be of weak type if where 0 < TJ < oo. Then for arbitrary positive r:; 
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and for a sequence of values of r tending to infinity that 

- -
logT(r,f) < (TJ+c)r"'1 

-

i.e., T (r, f) < exp[(Tj + c)r"'IJ 

i.e., T (r, f) < [exp(r"'I)]Cif+e) 

T (r, f) [exp(r"'I)]if+e 
z. e. , < .:_____::.___:____:_.:___ 

[exp(r"'I)]k' [exp(r"'I)]k' 
T (r, f) 1 

z.e., < ------
[exp(r"'I)]k' [exp(r"'I)]k' -(i/+e) 

00 

Therefore, J T(T.!) dr (ro > 0) converges if k' >it and diverges if k' <it
To [exp(T"f)jk' 

00 

i.e., J T(T,/) dr (ro > 0) converges if k' >it and diverges if k' <it-
To [exp(T"f)jk' +1 

Subcase (b). 

When f is of weak type it = 0, Definition 7.1.C gives for a sequence of 
values of r tending to infinity, 

logT (r,f) 
- <c. 

r"'J 

00 

Then as before, we obtain that J T(~f) k'+> dr (ro > 0) converges fork' > 0 

To["] exp(T f) 

and diverges for k' < 0. 
Thus combining Subcase (a) and Subcase (b), Definition 7.1.D follows. 

Definition 7.1.D::::} Definition 7.1.C. 

Since f is of weak type it, by Definition 7.1.D for arbitrary positive c(> 0), 
00 

the integral J T(T,/) dr converges 

[ ] 

Tj+J+< ro >..-
exp(T f) 
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Then by Lemma 7:2.2, we obtain that 

lim in£ T (r, f) = 0 , 
r-->oo [ _ ] (rt+<) 

exp(r>-t) 

i.e., for a sequence of values of r tending to infinity that 

T (r, f) 

[ 

- ] (Tj+<) 
i.e., T (r, f) < c. exp(r>.') 

i.e., log T (r, f) <loge+ (ii +c) r.\' 

. logT(r,f) loge(- ) 
%.e., < -_- + TJ + c 

r>-t r>-t 
. . . logT (r, f) -
%.e., limmf _ < (TJ +c). 

r~oo A r t 

Since c (> 0) is arbitrary, it follows from above that 

l 
.. flogT(r,f) -
1m1n _ <Tf· 
r--+oo A r t 

(7.7) 
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Again by Definition 7.l.D, for arbitrary positive c the divergence of the 
00 

integral J T(r,J) dr implies that for all sufficiently large values of r, 

[ 

- ] (Tj+l-<) 
ro " exp(r I) 

T(r,f) 1 

[ exp(r-'') l h+H > [ oxp(r-'') r· 
i.e., T (r, f) > [ exp(r.\1)] Cii-

2

•) 

i.e., logT (r, f)::> (if- 2c) r.\1 

. logT(r,f) (- ) 
~.e., > TJ - 2c 

r>.J 

. . . log T (r, f) (- ) 
~.e.,limmf _ > TJ- 2c . 

r---+oo A r 1 

As c (> 0) is arbitrary, we obtain from above that 

l 
.. flogT(r,f) -

.lmlll >Tj. 
r-+oo A r 1 

Now from (7.7) and (7.8) it follows that 

l
. . fT (r, f) -
lmlll _ =Tj. 
r-+oo A r 1 

Thus we get Definition 7.l.C. 
Hence combining Case I and Case II, the theorem follows. • 

(7.8) 

00 

Theorem 7.3.4 The integral J T(r,J) dr (r0 > 0) converges if and only 

[ ] 

Tj+l ro >.-
exp(r I) 

00 

if the integral J IogM(r,J) dr (ro > 0) converges. 

[ ] 

(Tj+l) 
ro ; 

exp(r I) 
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00 

Proof. Let J logM(r,J) dr (ro > 0) be convergent. Then by the first part 

[ 

_ ] (Tf+J) . ro -' exp(r I) 

of Lemma 7.2.3 we obtain that 
00 00 

J T (r, f) dr < j log M (r, ~) dr 

[ ] 

Tt+l [ ] (Tt+l) 
ro exp(r>-t) ro exp(r>-t) 

00 

i.e., J T(r,Jl dr (ro > 0) converges. 

ro [exp(r"ff'+l 
00 

Next, let J T(r,J) dr (ro > 0) convergent. Then by the second part of 
ro [ exp(r"'tft+l 

Lemma 7.2.3 we get that 
00 

J logM(r,~) dr 

[ 
- ] (T,+l) 

ro exp(r>-t) 

00 00 

< J T (2r, f)_ . dr + J o(l) - dr 

ro [exp(r>-t)rt+l ro [exp(r>-t)rt+l 

00 

1 - J T(r,f) dr+o(I). 

P 2 f ro exp(r>-t) 2[ex (1). )] [ _ ] Tt+l 

00 

Thus J logM(r,J) dr (ro > 0) is convergent. 
ro [exp(r"'t)] (Tt+l) 

This proves the theorem. • 
Now in veiw of Theorem 7.3.3 and Theorem 7.3.4, we may give an 

alternative definition of the weak type 7j of an entire function, f with infinite 
order as follows : 
An entire function f with infinite order is said to be of weak type ry if the 
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00 

integral J [ logM~r,]f2+1 dr (ro > 0) converges fork >it and diverges for k < ij 
ro exp(r'f) 

In the subsequent theorems we establish some growth properties of 
composite entire and meromorphic functions on the basis of their weak types. 

Theorem 7.3.5 Let f be an entire function such that 0 < AJ < oo. If TJ 
and TJ(•l be the respective weak types off and j(k) then TJ(•l < (2k)>-.ITJ where 
k = 0, 1, 2, 3, ..... 

Proof. It is known from G.Valiron {[64],p.35} that 

~{M(r, f) -lf(O)i} < M(r, f) < ~M(2r, f). 
T T 

Noting that >..1,., = AJ we get from the second part ofthe inequality for r > 1, 

M(r, f(k)) < M(2kr, f) 

. log M(r, f(k)) log M(2kr, f) ( k)>-. 
z.e., >-. < ( k )>-. .. 2 1 r 1,., 2 r 1 

. 
1
. . flog M(r, J(k)) < (

2
k)>-.11. . flog M(2kr, f) 

z.e., 1mm >-. _ 1mm ( k )>-. 
r->oo r 1,., r->oo 2 r 1 

i.e., TJ(k) < (2k))..!Tf, 

which proves the theorem. • 

Theorem 7.3.6 Let f be meromorphic and g be entire such that 
(i) 0 < Ag < oo, (ii) 0 < Tg < oo, (iii) Tfog = Tg and (iv) 0 < AJog < oo. 
Then 

l .. fT(r,fog) < Tfog <l" T(r,Jog) 1m m - 1m sup--::':-':-''--~ 
r->oo T (r, g) - Tg - r-->oo T (r, g) 

Proof. From the definition of weak type of a composite meromorphic func
tion we have for arbitrary positive E and for a sequence of values of r tending 
to infinity that 

T (r, f 0 g) < (TJog +c) rAJog . (7.9) 

Also for all large values of r, 

T (r, g) > (Tg- c) r>-.• . (7.10) 
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As Afog = Ag from (7.9) and (7.10) it follows for a sequence of values of r 
tending to infinity, 

T (r, fog) (TJog +c) 
T(r,g) · < (Tg-c) · 

As c (> 0) is arbitrary, we obtain that 

l
. . fT (r, fog) < Tjog lmlll -. 
r-->oo T(r,g) - Tg 

(7.11) 

Again for all sufficiently. large values of r, 

T (r, fog) > hog- c) r>.fog (7.12) 

and for a sequence of values of r tending to infinity that 

(7.13) 

By condition (iii) we obtain from (7.12) and (7.13) for a sequence of values . 
of r tending to infinity that 

T(r,fog) hog-c) 
T(r,g) > (Tg+c) · 

Since c (> 0) is arbitrary, we get that 

l
. T (r, fog) > Tfog 
1msup -. 

r-->oo T (r, g) - Tg 

Thus the theorem follows from (7.11) and (7.14). • 

(7.14) 

Remark 7.3.1 The sign '<'in Theorem 7.3.6 cannot be replaced by '<'only 
as we see in the following example. 

Example 7.3.1 Let f = z and g = expz. Then Ag = AJog = Tg = Tfog = 1. 
Also T (r, fog) = T (r, g) = ;. 
Therefore 

l .. fT(r,fog) 
1 
.. f; 

1 
Tjog 

lmln = lmln -= =-
T->00 T (r, g) r-->oo ; Tg 

. T(r,fog) 
= hmsup T( ) . 

r-->oo r, g 
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Remark 7.3.2 Iff and g be both entire and the other conditions remain the 
same then the conclusion of Theorem 7.3.6 is still valid with T (r, fog) and 
T (r, g) respectively replaced by log M (r, fog) and log M (r, g) as we see in 
the following theorem. 

Theorem 7.3.7 Let f and g be two entire functions such that 
(i) 0 < Ag < oo, (ii) 0 < Tg < oo, (iii) Tjog = Tg and (iv) 0 < Ajog < 00. 

Then 

I 
.. flogM(r,fog) < Tfog < li logM(r,fog) 
1mm - msup . 
r--->oo logM(r,g) - Tg- r--->oo logM(r,g) 

Proof. From the definition of weak type of a composite meromorphic nmc
tion we have for arbitrary positive E and for a sequence of values of r tending 
to infinity that 

log M (r, fog) < hog+ c) r>.fog . (7.15) 

Also for all large values of r, 

(7.16) 

As Afog = Ag from (7.15) and (7.16) it follows for a sequence of values of r 
tending to infinity, 

log M (r, fog) (TJog +c) 
logM (r,g) < (Tg- c) · 

As c (> 0) is arbitrary, we obtain that 

I
. . flog M (r, fog) < Tjog 
lmm -
r--->oo logM(r,g) - Tg 

Again for all sufficiently large values of r, 

log M (r, fog) > hog- c) r>.Joo 

and for a sequence of values of r tending to infinity that 

log M (r, g) < (Tg +c) r>.• . 

(7.17) 

(7.18) 

(7.19) 

By condition (iii) we obtain from (7.18) and (7.19) for a sequence of values 
of r tending to infinity that 

logM(r,fog) (TJog-c) 

logM(r,g) · > (T9+c) · 
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Since c (> 0) is arbitrary, we get that 

l
. log M (r, fog) Tfog 
rmsup >-. 

r->oo log M (r, g) - T9 

(7.20) 

Thus the theorem follows from ( 7 .17) and ( 7. 20). • 

Remark 7.3.3 The sign'<' in Theorem 7.3.7 cannot be replaced by'<' only 
which is evident from the following example. 

Example 7.3.2 Let f = z and g = expz. Then )..9 = Afog = T9 = Tfog = 1. 
Also log M (r, fog)= log M (r, g)= log(expr) = r. 
Therefore 

liminflog M (r, f 0 g) = liminf:C = 1 = Tfog 
r->oo log M (r, g) r->oo r Tg 

l
. logM (r, fog) 

= rmsup 
r->oo log M (r, g) 

Theorem 7.3.8 Let f and g be two non-constant entire functions satisfying 
(i) 0 < A.t < Pt < oo, (ii) 0 < A.9 < oo, (iii) Af = A.9 , (iv) Tf > 0 and 
(v) Tg < oo. Then 

.. logT(r,fog) Tg · Tg 
hmmf T ( f) <Pi·-= P9·-· 

r->oo r, Tf Tf 

Proof. It is well known that [29] for an entire function f and for r > 0, 

T(r, f) <log+ M(r, f). (7.21) 

Also by the second part of Lemma 7.2.4 

log M(r.f o g) <log M(M(r, g), f). (7.22) 

Now from (7.21) and (7.22) we get for all sufficiently large values of r that 

T (r, fog) <log M(M(r, g), f)< {M(r, g)}Pt+• 

. logT(r,fog) ( )logM(r,g) 
z.e., T (r, f) < Pt + E T (r, f) 

. . . logT(r,fog) .. logM(r,g) 
z.e.,hmmf T( f) < (PJ+E)hmmf T( f) . (7.23) 

T--+CO T' r-.oo T) · 



Also for a sequence of values of r tending to infinity we have 

log M(r, g) < (T9 + c)r>-9 

and for all large values of r, 

T(r,f) > {Tj-c)r>-t. 
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(7.24) 

(7.25) 

Since AJ = >.9 , therefore from (7.24) and (7.25) we obtain for a sequence of 
values of r tending to infinity that 

log M(r, g) (T9 +c) 
T(r,f) < b -c)" 

Since c (> 0) is arbitrary, it follows from above that 

l
. . flog M(r, g) Tg 
Imm < -. 
r->oo T(r, f) - TJ 

(7.26) 

Therefore from (7.23) and (7.26) we get that 

.. logT(r,fog) Tg 
hmmf T ( f) < (PJ +E)-. 

r->oo r, Tf 

Since c (> 0) is arbitrary and AJ = )..9 , it follows that 

.. logT(r,fog) Tg T9 hmmf T ( f) < P!·- = p9 .-. 
T->00 r, Tf Tf 

Thus the theorem is established. • 

Theorem 7.3.9 Let f and g be two entire functions such that 0 < AJ < oo 
and 0 < )..9 < oo. Also let 0 < Tg < oo. Then 

. logi21M(r,fog) AJ 
h~~p logM(r,g(kl) > 2(k+l))..g fork=1,2,3, ... 

Proof. Let 0 < E < min {).. 1, Tg}. Then for all sufficiently large values of r we 
obtain that 

(7.27) 

Again from the first part of Lemma 7.2.5, we get for all sufficiently large 
values of r that 

logl2l M (r, fog) > (>.t- E) log 
1
1
6 

+ (>.t- E) log M(~, g). (7.28) 
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Now for all sufficiently large values of r it follows from (7.27) and (7.28) that 

Again by Lemma 7.2.6, we get for a sequence of values of r tending to infinity 
that 

So from (7.29)and (7.30) it follows for a sequence of values of r tending to 
infinity that 

logl2l M (r, fog) (.>..!- t:) log 1
1
6 + ()'!- t:)(T9 - t:)(~f'9 ___::_---;--'--:-:-:-;-:....:... > ( 7. 31) 

log M (r, g(k)) (2k>.gTg +c) r>.g 

Since c (> 0) is arbitrary, we get from (7.31) that 

l
. logl2l M (r, fog) AJ 
1msup > . 

r->oo log M (r, g(k)) - 2(k+l) )..
9 

This proves the theorem. • 

Theorem 7.3.10 Let f and g be two entire functions with (i) PJ = p9 and 
( ii) 0 < )..9 < p9 < oo. Also, let there exist entire functions a; {i = 1, 2, 3, · · · , n; 

n 
n < oo) satisfying T(r,a;) = o{T(r,g)} and ~8(a;,g) = 1. Then 

i=1 

. {l. logl2l M(r, fog) 
1
. logl2l M(r, fog) } > (1).>. 

mm 1msup , 1msup 
1 
l - 9 .1fTg 

r->oo logl2l M(exp(r>.g), f(k)) r->oo log 2 M(exp(r>.g),g(k)) - 2 

fork= 0, 1, 2, 3, .... 
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Proof. In view of Lemma 7.2.6 and by the first part of Lemma 7.2.5, we 
obtain that 

. log[2] M(r, fog) 
hm sup--=-;:;__---'---.:........;:...:...._ 

r->oo log[21 M(exp(r>-•), f(k)) 

. log[21M(.l.M(':,g),f) > hmsup 16 2 
- r->oo log[21 M( exp(r>.• ), f(k)) 

. log[2J M (.l. M (!:.,g) , f) 
= hmsup / 6 

r 
2 

r->oo log{ 16M (2,g)} 

l
. logM(~,g) 

1 
.. fT(¥,g) 

Jm . Jm m -----:-'"'-:--'-
r->oo T(~,g) T->00 m.x· 

. . (1)>.•log{exp(r>.•)} 
hm mf--=-.,2 ,...----=--=-----=-:-.:-.:....:...,._ 

r->oo log[21 M(exp(r>-•),f(k)) 

ppr-rgW>.• (1)>. 
- Pi = 1fTg 2 g. (7.32) 

In a similar way exactly proceeding as above and in view of condition (i), 
we get that 

. log[2] M(r, fog) 
hm sup--=-='-'-· _ __:___;__..::....:___ 

r->oo log[21 M( exp(r>.•), g(k)) 

PJ.1fTgm>.· ( 1 )>. > = 1fTg -2 •. 
Pu 

(7.33) 

Thus the theorem follows from (7.32) and (7.33) . • 

******X****** 


