
Genomics of some pathogenic food bacteria and 
molecular modeling of their important toxins 

and their interactions 

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF 
PHILOSOPY (SCIENCE) OF THE 

UNIVERSITY OF NORTH BENGAL 

Uttam Kumar Mondal 

Supervisor 
Dr. Asim K. Bothra 

Co-supervisor 
Dr. Arnab Sen 

UTTAM KUMAR MONDAL 
DEPARTMENT OF CHEMISTRY 

·. RAIGANJ COLLEGE (UNIVERSITY COLLEGE) 
RAIGANJ, UTTAR DINAJPUR 

2010 



2'41t~Cl 



DEDICATED TO MY PARENTS 



DECLARATION 

I hereby declare that the research work embodied in this 

thesis entitled "Genomics of some pathogenic food bacteria and 

molecular modeling of their important toxins and their interactions" 

has been carried out in the Department of Chemistry of Raiganj 

College (University College), under the joint supervision of Dr. Asim 

K. Bothra, Reader, Raiganj College, (University College) & Dr. Arnab 

Sen, Reader, Department of Botany, University of North Bengal. 

To the best of my knowledge and bel ief, this thesis or any 

part of it has not been submitted for the award of PhD or any 

other degree or diploma at any University or Institute 

Date: 21-1 2..·' 0 

Place: RoJ.F j 
f) I I(}J'(t ~ /11 (Jn JJ 

(Uttam Kumar Monda!) 



• UNIVERSITY OF NORTH BENGAL 
RajaRammohumpur•Siliguri 7340 13•West Bengal•India 

CERTIFICATE 

We certify that the the is entitled , "Genomics o f some pathogenic food bacteria 

and molecular modeling of their important toxins and their interactions" 

. ubmitted by Mr. Uttam Kumar Mo nda! for the award of PhD degree from 

Department o f Chemistry of Raiganj College (University College), embodies 

the record of the original investigatio n carried by him under our supervi. ion. 

He ha been duly regi tered and the thes is presented is worthy of being 

considered fo r the award o f Doctor of Philo. ophy (Sc ience) degree in 

Chemistry. The work has not been . ubmitted for any degree of this or any other 

university and is in accordance with the rules and regulations of the University 

o f North Bengal. 
'-' 

(A im K Bothra) 
Supervi~or 

Reader 
Department o f C hcmi,try 

Raiganj Collcgc(Univcrsity Co llege) 

Date: 11· 12· / (} 

0 
~ I~~ 

(Arnab Sen) 
Co-Supcn i ~or 

Reader 
Dcpanmem of Botan) 

Uni\ er-.. it y o f North Bengal 

Date: 2..7./2. /b 

Dr, Arnab Sen 
Reader in Borany 

t1niversity of Nor rb BengaJ 



~. 

ACKNOWLEDGEMENT 

}f.part from persona{ efforts and steadfastness to work. constant inspiration and encouragement given 6y 

a num6er of indi:v£duafs served as tfze driving force tliat ena6fed me to su6mit tfzis tfzesis in tfie present 

form. Inspiration, guidance, direction, co-operation, a{[ came in a6undance and it seems a{most an 

impossi6{e tastfor me to acl(_nowfetfge tlie same in adequate tenns. 

Cf'irst of a{[, I tal(§ tfiis opportunity to e:x:press my deep sense of gratitude ~sincere tlianl(j to my guide 

(Supervisor) ([)r. }f.sim '1G (]Jotfira, 1?.!ader, ([)epartment of Cfiemistry, ~iganj Co{{ege (Vni'versity Co{{ege) 

for liis mature, a6{e ~ inva{ua6{e guidance rtl persistent encouragement. '}fo wordS can e:x:press my sincere 

and deep sense of reveretue for liim 

I owe fieartfdt tfianl(j to ([)r. }f.rna6 Sen, 1?.!ader, ([)epartment of (]Jotany, 'Jfortfi (]Jenga{ Vniversity for 

tfie constant support atuf guidance tfirougfiout tlie worl(. I am q_treme{y tfzanfiju{ to liim for liis 

inva{ua6{e suaaestions and advices. 

I am afso tlianfiju{ to ([)r. P. 'JG :Monda{~ Pn.'ncipa( and ([)r. ([)ifip ([)e Sarl<.§r rteacfzer-in-Ciiarge, 

c.R._aiganj Co{{ege (Vniversity Co{fege) for providing me facifities as required from time to time ~ active 

interest in tfie progress of tliis worl(. 51-fy tlianl(j are due to a{[ otlier facu{ty mem6ers of tfze Cfiemistry 

([)epartment ~a{[ tlie mem6ers of fi6ra ry of CR._aiganj Co{{ege (Vniversity Co{{ege) for tfzeir fze{p and mora{ 

support during my worl(. 

I am tfzanfiju{ to a{[ tfze mern6er of Cliemistry and (]Jotany ([)epartment of Vni'versity of 'Jfortli (]Jenga{ for 

tfzeir inspiration. 

WordS are insufficient to e:x:press my gratefu{ness and inde6tedness to P.rof rt C. qliosfi, (]Jose institute, 

1(o{/(sz ta for liis suggestion rtl encouragement during my worl(_ and ([)r. S. '1G qupta, ([)r. Surajit (]Jasaf<.. 

Sujata <RsJy for providing researcli paper. 

I fee{ facuna of word's to e:x:press my grateju{ness and inde6tedness to a{[ my co{feagues wfio fza ,ve direct{y 

or irufi.rect{y lie{ped me to present tliis worl(_in present fonn. 

:My sincere tlian/(j to my friend's and {a6 mates Sau6asliya Sur, Sfiyama{ Sfzamta, (]Jiswajit ([)as, (]3/iasf<..ar 

(]Jagclii, ([)ipanjan Sarl(szr, ;t.6/iicl(_ Cliatterjee, ([)r. }f.pur6a 1(pnti ([)e6, Su6ama rrTial(_ur, ([)r. (]Jipwp 

Sarl(szr, ([)r. }f.ryun qfiosfi, ([)r. Sfiaonfi ([)as, %nmay Cliowdfiury, }f.rindam (])utta and my student 

([)e6ja ni Cliaftra6orty for offering me assistatue. 

51-fy specia{ tlianl(j to }f.yan Pa{ for providing 6iowgica{ 6acftup in tlie smootli compfetion of tliis worl(. 

rrTianli.§ are not enougli for Sujajta (]Jot/ira wlio allow me in lier fzome every time as and wfien required for 

computationa{ worl(_antf sometimes direct{y lie{p me in computationa{ worl(. 

I remem6er to my intimate friend ([)ipal(_ '1G 51-faliato for liis inspiration and )Isis/ida ~ 'Jfayan for mofar 

support. 

jf.{{ my fami{y mern6ers contri6uted significant{y to 6ring tliis day in my {ije. :My parents remained a 

~. constant source of strengtfi tlirougfiout my educationa{ career and fater in sustaining my academic 

interest for liiglier feaming. I tlianl(_ my fatlier and motlier for providing me tlie mora{ support and 

resources to finisfz my worl(. 

\ 
\.. 

I am afso tfian!ifu{ to many otfier persons wfzose name may not figu re out liere for tlieir fie{p ~support. 

In tfze end', I am tlianfiju{ to tlie )f.{miglity for 6fessing me to comp{ete tliis worl(_successju«y. 

([)a ted: 21 . 12 · I 0 

Pface: CR._aigan:f 

<~ 

""'' . 
Ill 



Summary 

Different types of pathogenic bacteria cause food poisoning. In most cases, food poisoning 

are caused by Staphylococcus aureus, Salmonella sp, Clostridium perfringens, 

Campylobacter sp, Listeria monocytogenes., Vibrio parahaemolyticus, Bacillus cereus, and 

entero-pathogenic Escherichia coli which produce a number of toxins. These bacteria are 

commonly found in raw foods. Since food-pathogenic bacteria are often present in many 

foods, knowing the characteristics of such bacteria is essential for effective diagnosis and 

control. 

The commonality m microbial virulence mechanisms and the occurrences of similar 

resistance systems in animals and plants point out that all these mechanisms have an ancient 

and intertwined history. It is quite evident that susceptibility or resistance to disease 

involves subtle and highly specific exchanges of molecular signals between pathogens and 

their hosts and a clear-cut understanding of these mechanisms can provide newer 

approaches to diagnose and control diseases. The genomic islands and operons are 

considered as the units where groups of genes are transcribed together and whose products 

contribute to specific function. One of the typical examples of genomic islands is the 

pathogenic island (PAis), which is present in pathogenic bacteria that form the principal 

molecular component responsible for the development of a specific disease. Codon usage 

study provides information of use of different codon in a genome, as it is often seen that all 

codons are not used evenly. A detailed and accurate analysis of codon usage is an essential 

prerequisite to our understanding of how and why divergent patterns of codon choice 

evolved. Genomics has a great potential in the study of food pathogens showed the 

relationship between the predicted level of gene expression based on codon usage, actual 

microarray expression values and gene function at the genomic level in S. pneumonie. 
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Although a lot of work has been performed and is going on in codon usage of different 

microorganisms but very little work performed on codon usage of food pathogenic bacteria. 

To understand the mode of action of toxin it is very much necessary to known their three 

dimensional structure and motional properties. Crystal structures of several toxins have 

been solved which enlighten us about their structure. But the structures of many toxins are 

yet to be solved. Molecular modeling &molecular dynamics of some toxin have been done. 

In this work firstly we would try to characterize the pathogenicity island and toxic genes by 

statistical analysis, secondly knowledge based model will be built to get three-dimensional 

structure of toxins. This thesis contains total eight chapters. First and Second chapter 

describe introduction and review of this work. Third chapter describe codon usage patterns 

of five complete genomes of Salmonella, predict highly expressed genes, examine 

horizontally transferred pathogenicity-related genes to detect their presence in the strains, 

and scrutinize the nature of highly expressed genes to infer upon their lifestyle where 

Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were 

analysed with Codon W and CAl (codon adaptation index) Calculator. Fourth Chapter 

describe Bioinformatic study of Pathogenicity related genes of three species ofHelicobactor 

where Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were 

analysed with Codon Wand E-CAI (codon adaptation index) server. In the fifth chapter 

describe Characterization of pathogenic genes through condensed matrix method, case study 

through bacterial zeta toxin. In this study, zeta toxin nucleotide sequences of some 

pathogenic and non-pathogenic Bacteria were used for phylogenetic analysis. The 

uniqueness of this method is that it does not employ sequence alignment of complete 

nucleotide sequence of the corresponding gene. 

In the chapter six describe Molecular Dynamics Simulation Receptor-Binding C-Terminal 

Domain from Clostridium difficile Toxin A to understand the motional properties and mode 
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of action of the receptor-binding C-terminal domain of C. difficile, molecular dynamics 

simulation of C. difficile toxin A in aqueous environment was carried out using the 

software, GROMACS. From the time evolution, Root Mean Square Deviation (RMSD), 

Root Mean Square Fluctuation (RMSF) and Radius of gyration (Rg), it was found that the 

toxin was relatively inflexible. Principal Component Analysis (PCA) was also performed 

for better understanding of motional properties in reduced dimension. Analysis of binding 

site reveals that Ala51, Ala58, Ile59 and Tyr93 have very low fluctuation. All these 

observations help us to understand the mechanism of pathogenesis related with toxin A of 

C. difficile. 

In the chapter seven describe Comparison in motional properties of Staphylococcus 

aureus exfoliative toxins A and B as revealed by their MD simulation to understand the 

motional properties and mode of action of Staphylococcus aureus exfoliative toxins A and 

B, molecular dynamics simulation are carried out using the software GROMACS. From the 

time evolution RMSD, RMSF and Radius of gyration, it is found that the toxin A and B are 

not much flexible and it is also indicated by principal component analysis. Pro 192 and 

val183 is key residue towards the activity of toxin A and toxin B respectively. It is seen 

dihedral angle psi of Pro 192 of toxin A is free to rotate without involvement of much 

energy and its becomes active after a conformational triggering of this dihedral but Vall83, 

the corresponding residue of toxin B, shows very less conformational freedom. 

In the last chapter describe Homology modeling and MD simulation of the CdtB 

ofHelicobacter hepaticusATCC 51449 where the 3D model of the CdtB ofH. 

hepaticusATCC is constructed by MODELLER 9v4 program using the templates CdtB 

fromActinobacillus actinomycetemcomitans. The model is validated by PROCHECK, 

ProSa, CASTp server, ProFunc server etc. After that molecular dynamics simulation is 

performed using GROMACS and the resulting trajectory is analyzed. Homology modeling 
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can produce high-quality structural models when the target and template are closely related, 

which has inspired the formation of a structural genomics consortium dedicated to the 

production of representative experimental structures for all classes of protein folds 

(Williamson AR, 2000). Like other methods of structure prediction, current practice in 

homology modeling is assessed in a biannual large-scale experiment known as the Critical 

Assessment of Techniques for Protein Structure Prediction, or CASP. 

The wealth of information obtained from the genome projects needs to be mined. As newer 

and newer toxins genes are discovered and sequenced novel insights are being gained. 

Bioinformatics in combination with metagenomics as well as metaproteomics approaches 

has the potential to give a more detailed picture that underlies pathogenicity as well as 

diseases. In absence of crysllographic or NMR structure Homology modeling will enlighten 

us about three dimensional structure and molecular dynamics simulation opening newer 

possibilities for exploring the molecular mechanism and activity of that toxin. At the end of 

the day scientific perception will continue to play a vital role in creating models that clarifY 

the functions of pathogens in improved manner. 
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Chapter I Introduction 

1.1: Pathogen & pathogenicity & toxins 

A pathogen, commonly known as germ is an infectious biological agent that causes disease 

to its host. In 1999, Casadevall and Pirofski defined pathogen as a microbe capable of 

causing host damage. This definition can encompass classical pathogens and opportunistic 

pathogens and host damage can result from either direct microbial action or the host 

immune response. The term pathogenicity is defined as the capacity of a microbe to cause 

damage in a host. Early views of pathogenicity and virulence were primarily pathogen 

centered and were based on the assumption that these characteristics were intrinsic 

properties of microorganisms, although it was recognized that pathogenicity was neither 

invariant nor absolute (Casadevall & Pirofski 1999). 

Many pathogenic organisms grow in food. Food borne illnesses are a widespread public 

health problem all around the world. At present it accounts for about 20 million cases 

annually in the world. Developing countries bear the brunt of the problem due to the 

presence of a wide range of food-borne diseases. In India an estimated 4,00,000 children 

below five years age die each year due to diarrhoea which is a common form of food borne 

disease. Recent studies reveal that food-borne diseases are a serious health hazard and 

important cause of morbidity and mortality in developing countries. Most cases go 

unreported and scientific investigations are rarely feasible. Studies carried out during 1995-

2005 showed that the incidence of food-borne disease outbreaks were due to 

microorganisms like Salmonella and Campylobacter jejuni (Sudershan et a/., 2009). 

Different types of pathogenic bacteria cause food borne disease, namely Staphylococcus 

aureus, Salmonella sp., Clostridium perfringens, Campylobacter sp., Listeria 

monocytogenes, Vibrio parahaemolyticus, Bacillus cereus, and entero-pathogenic 

Escherichia coli which produce a number of toxins. These bacteria are commonly found in 
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Chapter I Introduction 

raw foods. In terms of mortality rates the major bacterial food-borne pathogens are 

Salmonella (non-typhoidal), Listeria monocytogenes, Campylobacter, and 

enterohaemorrhagic Escherichia coli (Mead et al., 1999). 

The pattern of foodborne disease has changed substantially in industrialized countries in 

recent decades. Outbreaks are more likely to be far reaching, and some are even global in 

scale because of widespread food distribution methods and changes in ways of food 

preparation. Further changes in the incidence of food borne disease and the pattern of food

related illness can be anticipated from global warming. As a result of changed conditions in 

food production and better laboratory detection techniques, new foodborne pathogens 

continue to be identified. In particular, we are now faced with the emergence of 

antimicrobial drug-resistant bacteria and a number of viruses not previously recognized 

(Hall et a/., 2005). The incidence of human diseases caused by food-borne pathogens, such 

as Salmonella serotypes, Staphylococcus aureus, Campylobacter jejuni and Campylobacter 

coli, enterotoxigenic and enteroinvasive Escherichia coli, Clostridium peljringens, and 

Bacillus cereus, has not decreased. In fact, changes in lifestyle have increased the 

opportunities for transmission of the pathogenic bacteria through foods. In addition, 

emergence of new pathogens (Yersinia enterocolitica, Listeria monocytogenes, E. coli 

0157:H7, Aeromonas spp., Plesiomonas spp.) or the emergence of specific subtypes of a 

species associated with a specific food (Salmonella serotype Enteritidis in eggs) has caused 

the redirection of resources from control programs for other well-known food-borne 

pathogens (Swaminathan & Feng 1994).The genetic makeup of bacterial genomes is 

subject to rapid and dramatic change through a variety of processes collectively referred to 

as "horizontal gene transfer". Recent evidence has shown that horizontal gene transfer plays 

a principal part in the molecular evolution of novel bacterial pathogens (Ochman & Moran 

2001; Wren 2000; Ziebuhr eta/., 1999). Horizontal gene transfer refers to the incorporation 
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Chapter I Introduction 

of genetic elements transferred from a donor organism directly into the genome of the 

recipient organism, where they form genomic islands. Genomic islands may contain large 

blocks of virulence determinants ( adhesins, invasins, toxins, protein secretion systems, 

antibiotic resistance mechanisms, etc) and thus are referred to as pathogenicity islands. 

Pathogenicity islands were first described in pathogenic species of E coli, but have since 

been found in the genomes of numerous bacterial pathogens of humans, animals, and plants 

(Salmonella, Vibrio, Shigella, Yersinia, Listeria, S aureus, etc) (Garcia eta!., 1999; Lindsay 

et a!., 1998). Pathogenicity islands are believed to have been acquired as a block by 

horizontal gene transfer because of their G+C content is significantly different from that of 

the genomes of the host micro-organism and they are often flanked by direct repeats. PI are 

associated with tRNA genes they are associated with integrase determinants and other 

mobility loci and they exhibit genetic instability (Hacker & Kaper 2000). The determination 

and analysis of the complete genomic sequences of several important bacterial pathogens 

has led to the revelation that horizontal gene transfer may be much more extensive than 

previously thought of (Wren 2000). 

In spite of advances in treatment and prevention, bacterial pathogens still pose a major 

threat on public health worldwide. To understand how pathogenic bacteria interact with 

their hosts to produce clinical disease is a fundamental issue. A key first step in this process 

is the identification of novel virulence determinants that may serve as targets for vaccine 

and drug development. In essence, the ability of pathogenic bacteria to cause disease in a 

susceptible host is determined by multiple virulence factors acting individually or together 

at different stages of infection. Virulence factors are often involved in direct interactions 

with the host tissues or in concealing the bacterial surface from the host's defense 

mechanisms (Wu et al., 2008).To perpetuate the infection cycle, pathogens adhere to the 

host surface and gain deeper access into the host by a phenomenon termed invasion. 

4 



Chapter I Introduction 

Invasion can be divided into two types: extracellular and intracellular. Extracellular 

invasion allows pathogens access to niches in tissues where they are able to proliferate, 

disseminate to other sites in the body, express toxins, and initiate inflammatory responses. 

Intracellular invasion occurs when a microbe actually penetrates the cells of a host tissue 

and survives within this environment. A whole lot of evidence suggests that extracellulary 

invading pathogens may also enter host cells and use both the extracellular and intracellular 

pathways during infection (Cleary & Cue 2000; Dziewanowska et al., 1999; Fleiszig et al., 

1997). A number of Gram negative, Gram positive, and mycobacterial pathogens have the 

ability to enter host cells, (Finlay & Falkow 1997; Cleary & Cue 2000; Bermudez & 

Sangari 2000; Dehio et a!., 2000) and both phagocytic and nonphagocytic cell types can 

serve as targets for invasion. Some pathogens have an obligate intracellular lifecyc!e which 

absolutely requires a mammalian cell for growth. These include Chlamydia spp, Rickettsia 

spp, and Mycobacterium leprae (Walker 1998). Other pathogens are facultatively 

intracellular, using their ability to enter and survive within host cells as a means of 

proliferation or spreading to other tissues. 

A major advance in bacterial pathogenesis in recent years has been the identification of 

genes that allow pathogens to invade host non-phagocytic cells. Remarkably, these invasion 

genes, present in several different pathogens, were found to encode an evolutionarily related 

type III protein secretion pathway that serves to inject signalling proteins from the microbe 

into the host cell. The injected proteins then activate host cell signalling pathways that cause 

the host cell to internalise the microbe. These entry mechanisms are well characterised in 

Salmonella spp and Shigella spp. (Donnenberg 2000; Sansonetti et al., 1999; Galan & Zhou 

2000). A common outcome of type III secretion signalling is the rearrangement of host cell 

actin such that the cytoskeleton is recruited to engulf the invading microbe. Both 

Salmonella and Shigella engage actin regulatory proteins, called Rho GTPases, to "switch 
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Chapter I Introduction 

on" the actin rearrangement pathway to form nodes of actin underneath the invading 

pathogen (Donnenberg 2000; Galan & Zhou 2000). This type of interaction highlights the 

phenomenon of biochemical crosstalk between host and pathogen that is essential for 

penetration of host cells. 

Three main forces have been found to shape genome evolution: gene gain, gene loss and 

gene change (Pallen & Wren 2007). Gene gain as a result of horizontal gene transfer 

remains the most potent source of 'innovation' and variation. However, unlike viruses, 

bacteria seldom acquire 'eukaryotic-like' genes from their hosts (although there seem to be 

some exceptions, for example, Legionella pneumophila (Bruggemann et a!., 2006). Instead, 

horizontal gene transfer generally occurs between different strains and species of bacteria. 

Bacterial genomes remain about the same size despite the pervasive effects of horizontal 

gene transfer, so gene gain must be balanced by gene loss (Mira eta/., 2001). 

The most surprising snapshots of genome decay have come from recently emerged 

pathogens that have changed lifestyle, usually to live in a simpler host-associated niche. For 

example, the genomes of M Leprae (Cole et a!., 2001), Y. Pestis (Parkhill 2001a) and 

Salmonella enterica serovar Typhi (Parkhill 2001 b) contain hundreds or even thousands of 

pseudogenes; in the M leprae genome, there are nearly as many pseudogenes as functional 

genes (Cole eta/., 2001 ). 

Pathogens utilise a class of low molecular weight peptides called toxins which play an 

important role in pathogenesis. Toxins are analogous to biological weapons in that these are 

proteinaceous or non-proteinaceous molecules produced by bacteria to destroy or damage 

the host cell. Bacterial toxins may be broadly categorised into two distinct classes, namely 

endotoxin and exotoxin. Endotoxins are exemplified by LPS layer of Gram negative 

organisms and teichoic acid for Gram positive organisms. Exotoxins are generally enzymes 

which are delivered to eukaryotic cells by two different methods: (1) secretion into the 
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Chapter I Introduction 

surrounding milieu or (2) direct injection into the host cell cytoplasm via type III secretion 

systems or other mechanisms. Based on amino acid composition and function, bacterial 

exotoxins can be roughly categorised into the following major types- (1) A-B toxins, (2) 

proteolytic toxins, (3) pore forming toxins, and (4) others (Finlay & Falkow 1997). 

Characteristics and example of each type of bacterial exotoxins are shown below. 

Type 

A-B 
toxins 

proteolytic 
toxins 

pore 
forming 
toxins 

others 

Characteristics Example 

A-B toxins have two components: the A 
subunit which possesses the enzymatic 
activity; and the B subunit which IS 

responsible for binding and delivery of the cholera, pertussis, diphtheria 
toxin into the host cell. The enzymatic and P aeruginosa exotoxin A 
activity of the A portion of A-B toxins (Merritt & Hoi 1995). 
ranges from proteolytic activity (for 
example, tetanus and botulinum) to ADP 
ribosvlating activity 

Proteolytic toxins break down specific host 
proteins leading to some of the characteristic 
clinical manifestations of the disease. 

Membrane-disrupting toxins are found in a 
number of bacterial species and form a pore 
in the host cell membrane, which ultimately 
leads to cell lysis. There are a growing 
number of pore forming toxins included in 
the RTX family (named for a repeat arginine 
(R) threonine (T) X motif within each toxin) 
found in many Gram negative pathogens. 
Although the general mechanism of pore 
formation and sequences are conserved in 
the RTX family, the target cell specificities 
vary. The RTX family of toxins additionally 
share a common method of delivery (type I 
secretion) (RA., 1991) 

These include toxins that modify host cell 
cytoskeleton. 
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botulinum from Clostridium 
botulinum, tetanus from 
Clostridium tetani (Schiavo et 
a!., 1992), elastase (Toder eta/., 
1991 ), and protease IV (Engel et 
a!., 1998) from P. aeru}:rinosa. 

Many Gram positive bacteria 
contain a sulfhydryl activated 
cytolysin. The best 
characterised among these is 
the listeriolysin 0 that is 
necessary for the escape of 
Listeria monocytogenes from 
the phagosome (Andrews & 
Portnoy 1994). 

immunoglobulin A (IgA) 
protease-type proteins (Klauser 
et a!., 1993), heat stable toxins 
that activate guanylate cyclise 
(Savarino et a!., 1993; Wilkins 
& Lyerly 1996; Aktories et a!., 
2000; Falzant et a!., 1993; 
Oswald et a!., 1994). 



Chapter I Introduction 

Human are exposed to bacterial exotoxins in three ways (I) Ingestion of preformed 

exotoxin. The classical example is staphylocococal food poisoning and this type of bacterial 

disease is self-limiting, (2) Colonization of a mucosal surface foiled by exotoxin production. 

The classical example here is the disease cholera caused by Vibrio cholerea. Cholera toxin 

stimulates hypersecretion of water and chloride ions and the patient loses massive quantities 

of water and gastrointestinal tract and (3) Colonization of wound or abscess followed by 

local exotoxin production. Example of this type is gas gangrene in which the exotoxin (a

toxin) of Clostridium pelji'ingens !yes red blood cells, induces edema, and causes tissue 

detruction in the wound. The common theme emerging from the study of these bacterial 

toxins is that bacteria deploy a wide variety of strategies to disrupt host cell signalling 

pathways and structural integrity. This is necessary to establish and maintain infection 

(Wilson eta!., 2002). 

Nearly 1000 microbial genomes have been completely sequenced till now and these include 

the food-borne pathogens C. jejuni, S. enterica serovar Enteritidis, S. typhimurium, E. coli 

0157:H7, L. monocytogenes, and Shigella jlexneri. The first genome of a food-borne 

bacterium to be sequenced was that of C. jejuni and it led to the discovery of important new 

aspects of the biology of this organism (Parkhill eta!., 2000). 

Plasrnids play important roles in virulence and pathogenesis of disease caused by other 

~nteric pathogens. A number of important virulence factors such as adhesions and proteases 

on plasrnids of enterohaemorrhagic E. coli and enteropathogenic E. coli have been 

identified. 

Enteropathogen such as Shigella jlexneri, have evolved from a non-pathogenic E. coli 

ancestor and that the main virulence factors, such as the enterotoxin and factors required for 

invasion and intracellular spread were acquired by horizontal transfer of a large plasmid 

(Ochman & Groisman 1995; Ochman et a!., 2000; Pupo eta!., 2000). Five pathogenicity 
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islands (SPI I-V) were discovered before the genome sequence became available in the 

food-borne pathogenS. Typhimurium (McClelland eta!., 2001). SPI-I and SPI-ll have been 

found in all S. Typhimurium strains tested and play a role in invasion and survival in 

macrophages, respectively. The five major PI are absent from E. coli suggesting that these 

were acquired by all serovars of Salmonella. It has been speculated that these SPI elements 

were transmitted to Salmonella from a common ancestor soon after its divergence from E. 

coli more than 100 million years ago (Ochman & Groisman 1996; Lee 1996). The genome 

sequence of S. typhimurium strain L T2 revealed more than sixty-two gene clusters 

containing four or more genes called 'islands' that are unique to certain species. Some of 

these 'islands' are typical PI containing putative virulence factors and sequence elements 

associated with their transfer from other hosts (McClelland et a!., 2001) and other islands 

may have been acquired by horizontal gene transfer from an organism with a similar 

guanine plus cytosine (G+C) composition or have become adapted over a long period of 

time. The high number of gene clusters and islands discovered in E. coli, Salmonella and 

Listeria indicates that lateral gene transfer of DNA between different species and even 

among strains of the same species occurs more frequently than was once believed which has 

been a driving force in the adaptability and evolution of these pathogens. In contrast to E. 

coli, Salmonella and Listeria, the genome sequence of the food-borne pathogen C. jejuni 

contained very few ·repeat sequences and no prophages, insertion sequence elements or 

plasmid origins of replication despite the fact that bacteriophages and plasmids have been 

reported in Campylobacter (Lee et al., 1994; Sails et al., 1998). The implication is that 

mobile elements have played a less important role in the evolution of C. jejuni, perhaps 

because this organism is naturally competent for transformation with genomic DNA. 

Additionally, there is no PI or other gene clusters in the C. jejuni genome that has a 

markedly different base composition to that of the bulk of the genome. Microbial genomics 
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initially focused on the sequencing of genomes of medically and industrially important 

species from diverse parts of the evolutionary tree. This approach has provided insights into 

the major evolutionary relationships between these microbes. As more genome sequences 

become available attention is turning to the comparative genomics of closely related 

organisms as this provides insights into the evolutionary events occurring over a shorter 

time scale (Ochman & Jones 2000; Ochman et a/., 2000). Recent genomic studies have 

focused on a comparison of these closely related genomes (Edwards eta/., 2002). 

Comparative genomics has evolved as an interesting field of study. The goal of comparative 

genomics is to identifY genetic differences across entire genomes, to correlate those 

differences to biological function, and to gain insight into selective evolutionary pressures 

and patterns of gene transfer or Joss, particularly within the context of virulence in 

pathogenic species. Analysis of genomes from closely related species can also accelerate 

functional annotation of novel genes or other features (e.g., gene fusions, pseudo genes) that 

are apparent only in a comparative genomic context. Comparisons of the genomes can be 

performed either with sequence information or by using microarray-based methods to 

determine the presence or absence of specific genes contained on the array. However, 

microarray-based analysis cannot detect genes that have not yet been identified by 

sequencing. If a gene is present in an organism but is not on the array, then no information 

can be gained about that gene. The utility of cross-species genome comparisons depends on 

the evolutionary distance between the species. The unexpectedly high degree of intraspecies 

diversity in some cases suggests that a single genome sequence is not representative of the 

genetic inventory of a given taxonomic group but is rather a sampling of genes 

characterizing members of a given population in the same gene pool. Multiple strains of 

Streptococcus agalactiae have Jed to the concept of a pangenome, with each species 

consisting of a core set of genes conserved in all strains, and a dispensable genome, 
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consisting of partially shared or unique, strain-specific genes (Raskin 2006). In recent time 

Bioinformatic techniques are used to analyse the genes, geneproducts etc(Kaplan and 

Littlejohn 2001;. 

1.2. Bioinformatices technique 

Codon usage analysis 

For comparing genomes of pathogens, it is necessary to study their codon usage, analyze 

their proteomes and molecular phylogeny. Studies of codon usage can be performed using 

parameters like GC content, GC3 content, relative synonymous codon usage (RSCU), 

optimal codon anticodon energy (P2), scaled chi-square (Peden 1999),effective number of 

codons Nc (Wright 1990), length of the amino acid (Laa) giving the number of translatable 

codons (Lloyd & Sharp 1992), frequency of synonymous codons (Lsym)" (Peden 1999), 

codon adaptation index (CAl) ( Sharp & Li 19987), frequency of optimal codons (Fop) 

(Ikemura 1981), codon bias index (CBI) (Chern eta!., 1982), hydrophobicity, aromaticity 

and correspondence analysis of codon usage, RSCU and amino acid usages (Peden 1999). 

Codon usage study provides information of use of different codons in a genome, as it is 

often seen that all codons are not used evenly (Grantham et al., 1981; Karlin & Mrazek 

2000; Karlin et al., 2001). There is dearth of comprehensive work on codon usage patterns 

in pathogenic food bacteria Accordingly, broad analysis of codon usage is crucial for 

understanding the evolution of different codon choices in these organisms. It has been 

postulated that major trends in codon usage patterns across genomes are determined by 

compositional bias, mutational pressure and/or translational selection in high or low G+C 

containing organisms (Knight et a!., 2001). Highly expressed genes are influenced by 

translational selection compared to lowly expressed ones which are influenced by 

mutational pressure (Dos Reis, 2003). In these perspectives, studies of codon usage patterns 

provide a platform for better understanding of the nature of pathogenic food bacteria. 
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To analyze the codon usage patterns of the studied organisms the software Codon W 

(http://mobyle.pasteur.fr/cgi-bin!MobylePortal/portal.py?Form=codonw) (Peden J, 1999) 

was used. The parameters such as GC content, GC3 content, Nc, CBI, Fop, were calculated. 

CAl values were calculated using the CAl calculator2 (Wu G, 2005), e-CAI server (Puigbo 

p, 2008). All these parameters reduce the codon usage data to a useful summary and 

enlighten about the factors affecting codon usage patterns in microorganisms. The GC 

content estimates the amount of the guanine cytosine in the nucleotide sequences. The GC3 

content determines the frequency of either G or C nucleotides present in the third position 

of the synonymous codon. It however excludes methionine, tryptophan and the termination 

codons. 

The effective number of codons used in a gene (Nc) is an important parameter that can 

measure overall codon bias of synonymous codons (Wright F, 1990). Its value represents 

the number of equal codons that would generate the same codon usage bias observed (Sen 

A, 2008).Values for the effective number of codons range from 20 (when only one codon is 

per amino acid) to 61 (when all codons are used in equal probability). The Nc value is 

influenced by mutational biases and or/selection for particular codons. However, Wright 

(1990) has pointed out that in organisms where mutational bias absolutely determines 

synonymous codon usage, the Nc value ranges between 31-61 depending upon the genomic 

GC content. While calculating the effective number of codons at first fr (F caret) is 

calculated in each of the synonymous groups: 

(1) 

where, p symbolizes the fraction of usage of a codon i inside its synonymous cluster of size 

j, and naa the total usage of that synonymous group. The average of fr for synonymous 

groups of same size (i.e. 2, 4, and 6) is also determined. Nevertheless, in lack of isoleucine 
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residues F3 is calculated as an average of frav2 and F"'4 and Nc value is determined using 

the following formula: 

N = 2 + 9/ F"'2 + 1/ F3 + 5/ frav 4 + 3/ F"'6 
c (2a) 

In order to include the influence of G+C bias the following equation is used to determine 

the expected value ofNc under random codon usage: 

Nc=2 +S+ {29/[S+(I-S/]} (2b) 

here, S represents GC3 values. 

The codon adaptation index (CAI) is a commonly used gauge to determine synonymous 

codon usage in prokaryotes as well as eukaryotes. It is a measure of codon usage within a 

gene relative to reference sets of genes that are known to be highly expressed (Sharp PM, 

1987). Before calculating the codon adaptation index it is essential to determine the relative 

synonymous codon usage (RSCU) values from the set of highly expressed genes in an 

organism as determined by Sharp and Li (1987): 

x .. 
RSCU. = " 

U n 

lln,!x0. 
j=l 

(3) 

here x Y signifies the number of occurrence of the jth codon for ith amino acid, and 

n 1 symbolizes the size of the synonymous group for the ith amino acid (i.e., 2,3,4 or 6). 

The CAI value for the gene is then determined by the geometric mean of the relative 

adaptiveness values of each of the codons present in the genes. CAI (Sharp PM, 1987) is 

calculated using the formula: 

CAI=exp (_!_:tIn mk) 
Lk~I 

(4) 

where, rok signifies the relative adaptedness of the klh codon and L represents the number of 

synonymous codons in the gene. In the e-CAI server the CAI values were determined using 
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codon usage table of the particular organism as reference. CAl values vary from 0 to 1 with 

higher CAl values indicating that the gene of interest has a codon usage pattern more 

similar to that of highly expressed genes (Sen G, 2007). 

The codon bias index (CBI) (Chern, 1982) is a gauge of directional codon bias and 

determines the level to which a gene uses a subset of optimal codons. The codon bias index 

values ranges from 0 to 1. It is calculated as follows: 

(5) 

where N0p1= number of optimal codons; N1o1= total number of synonymous codons; 

N,an=expected number of optimal codons in cases where codons are assigned randomly. 

The frequency of optimal codons (Fop) (lkemura T, 1985) is the fraction of synonymous 

codons that are optimal codons. If rare codons are identified there is a stipulation for 

determining the original Fop index (Equation 6a) or the modified Fop index (Equation 6b ). 

All the negative values arising while determining Fop are adjusted to zero. Fop is calculated 

as follows: 

Fop=Noplimal codon/Nsynonymous codons 

Fop (mod)=Noptimal codonrNrare codon/N synonymous codons 

(6a) 

(6b) 

where N represents the frequency of each codon type used. Fop values ranges from 0 to 1. 

In case where Fop values are 1 the genes are said to be made entirely of optimal codons 

(lkemura T, 1985). 

Laa determines the length of the amino acids. In order to test whether the values of the 

aforesaid indices in pathogenicity related genes, ribosomal protein genes significantly differ 

from that of the protein coding genes, Z test was performed. 

Correspondence analysis 

The Codon W software (Peden 1999) was used to calculate the correspondence analysis of 

codon count and amino acid usage frequencies. Owing to some fallacies associated with 
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correspondence analysis of RSCU it was not considered for the analysis. Correspondence 

analysis is a multivariate statistical technique that creates a series of orthogonal axes to 

identify trends to explain the data variation, with each subsequent axis explaining a 

decreasing amount of the variation (Benzecri 1992). The file containing the gene sequences 

were loaded in Codon W (Peden 1999). For calculating the former the correspondence 

analysis menu (Menu 5) was selected. It had four options. Option 1 was used for 

correspondence analysis on codon count. In this option advanced correspondence analysis 

sub option was preferred so as to have greater control during correspondence analysis. The 

toggle level was changed to exhaustive; the numbers of axis altered and the program was 

run. Correspondence analysis on amino acid usage was performed with the help of option 3 

in the correspondence analysis menu (Menu 5). Correspondence analyses on amino acid 

usage for the studied organisms were performed for the protein coding genes to recognize 

the apparent forces in characterizing adaptation of the expressed proteins. 

The aforementioned parameters were correlated amongst themselves and with the principal 

axis of variations for correspondence analysis of codon count and amino acid usages to get 

further insights into their role in manipulating the diversity of codon usage patterns in the 

studied microorganisms. 

Prediction of potentially highly expressed genes 

The CAl values obtained for protein coding genes in the studied microorganisms are useful 

for predicting the level of expression of a gene (Sharp 1987). Wu et a/. (2005) analyzed 

proteome results and validated the correlation between CAl values and expression levels 

showing experimentally that CAl predicted potentially highly expressed genes indeed are 

highly expressed. Jansen et al., (2003) also confirmed this finding with yeast genome 

(Jansen 2003). CAl values for these studied genomes were examined to identify the 
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predicted highly expressed genes. As defined by Wu et al. (Wu 2005; 2005a), the top 10% 

of the genes, in terms of CAl values, were classified to be predicted highly expressed genes. 

Clusters of orthologous groups of proteins (COG) were used to understand the functional 

distribution of the predicted highly expressed genes among the studied genomes. To help 

the analysis, each of the COG functional categories was clustered into four COG functional 

groups. The functional analyses of COGs based on potentially highly expressed genes in 

the studied organisms were used to understand their role in influencing the lifestyle of the 

organisms. 

Phylogenetic analysis using nucleotide triplet based condensed matrix technique 

The nucleotide triplet based condensed matrix phylogeny has been successfully applied in 

addressing the evolutionary scenario of amino-acyl tRNA synthetases in three domains of 

life (Monda! et al., 2008) and HlNl viruses (Sur et al., 2009). 

Determination of frequency of triplets of nucleic acid bases 

It is well known that a DNA sequence of four letters consists of 64 possible triplets 

(subsequences of!ength 3) starting from AAA, AAT, AAG, AAC, ATA, ATT, ATG, ATC, 

AGA, AGT, AGG, AGC, ACA, ACT, ACG, ACC etc. The triplets contain all the relevant 

information for polypeptide synthesis. The introduction of a 4x4x4 cubic matrix was 

necessary to go for further analysis. The 4x4x4 cubic matrix comprising of 64 possible 

entries helps in resolving the occurrence of the probable 64 triplets in a DNA sequence. In 

case of a cubic matrix, it is possible to obtain three groups of 4x4 matrices each of which 

containing all entries ·of the cubic matrix. In most cases, the group {M1, M2, M3, M4} 

represents the cubic matrix. The matrices were formed using all the triplets for all the 

studied DNA sequences. Condensed categorization of the primary sequence is derived from 

4x4 matrices, whose rows and columns are related with the A, G, C and T bases. The four 

matrices enclose information about the frequencies of occurrence of all possible triplets of 
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the DNA sequence along with the in formation regarding the frequency of occurrence of 

pairs of each and every letter within a D A sequence (Randic 2001 ). In our method the 

codon positions 1, 2 and 3 were given equal weight subsequently addition or deletion of 

bases during the course of evolution were given due care so as to incorporate their 

influence. The methodology depicts D A by condensed a matrix counting the rate of 

presence of adjoining base pairs (Randic 2000). 

Calculation of eigen value and construction of phylogram 

Leading eigenvalues were calculated us ing MA TLAB (version 5.0.0.4069) software. These 

eigenvalues are a special set of sca lars associated with a linear system of equations, usually 

matrix equations that are often regarded as characteristic roots, characteristic values 

(Hoffman K, 197 1) (Hoffman and Kunze, 1971) and proper values or latent roots (Marcus 

1988) (Marcus and Mine, 1988). Eva luation of DNA sequences for similarity or 

dissimilarity is normally aided by the convenience of leading eigenvectors calculated by this 

method. Diversity between eigenvalues was used to study sequence similarity/dissimilarity 

keeping in mind the characterization of a sequence by leading eigenva lue (Nandy 2006) 

(Nandy et al. , 2006). Matrices linked to each sequence are estimated and the leading eigen 

values computed. Variations in leading eigen values concurrent to the string are estimated 

and the relationships between genes investigated. Distance matrixes of the studied 

sequences were constructed by summing up the square of the difference of eigen values. 

Phylograms were built by cluster analysis of the similarity matrix using PHYLIP (Ver 3.65) 

(Felsenstein J, 1989) (Felsenstein 1989) and drawn with PHYLODRA W (Ver 0.8). 

1.3 : Molecular mechanics & force field 1 B GEC 1012 

The first step in molecular mechanics calculation is to construct a potential energy surface 

(Hockney 1970) which is a function of atomic coordinate. The energy functions used for 

proteins are generally composed of bonding terms representing bond lengths, ~ml-~~~ 

" t 41120 
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and tensional angles and non-bonding terms consisting of vander Waals interaction and 

electrostatic contribution. A simple molecular mechanics energy equation is given by: 

(7) 

The energy, Eisa function of the Cartesian coordinate set, R specifying the positions of all 

the atoms, from which are calculated the internal coordinates for bond length (b), bond 

angles(9), dihedral angles ( D ) and interparticle distances(r). 

The first term in equation (1) represents instantaneous displacement from the ideal bond 

length, b0 , by a Hooke's law (harmonic) potential. Such a harmonic potential is the first 

approximation to the energy of a bond as a function of its length. The bond force constant kb 

determines the flexibility' of the bond and can be evaluated from infrared frequencies or 

quantum mechanical calculations. Ideal bond length can be inferred from high resolution, 

low temperature crystal structures or microwave spectroscopy data. The energy associated 

with alteration of bond angles given by the second term in equation (7) is also represented 

by a harmonic potential. For rotations about bonds, torsion angle potential given by the third 

term in equation (7) are used. This potential is assumed to be periodic and modelled by a 

cosine or sum over cosine functions. The fmal term in equation (7) represents the 

contribution of non-bonded interactions and has three parts: a repulsive term preventing 

atoms from interpenetrating at very short distances; an attractive term accounting for the 

London dispersion forces between atoms; and an electrostatic term that is attractive or 

repulsive depending on whether the charges q1 and q2 are of opposite or the same sign. The 

first two non-bonded terms combine to give the familar Lennard-Jones 6-12 potential, 

which has a minimum at an interatomic separation equal to the sum of the van der Waals 

radii of the atoms; parameters A and B depend on the atoms involved and have been 
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determined by a variety of methods, including non-bonding distances in crystals and gas

phase scattering measurements (Karplus, 1990) 

Electrostatic interactions between pairs of atoms are represented by a Coulomb potential 

with D the effective dielectric function for the medium and r the distance between the two 

charges. Use of atomic partial charges avoids the need for a separate term to represent the 

hydrogen bond interaction; that is, when the positive hydrogen attached to an 

electronegative atom comes within van der Waals distance of a negative acceptor atom, the 

Coulomb attraction adds to the Lennard-Jones potential and results in a hydrogen bond. 

The usefulness of empirical energy functions depends on the extent to which the parameters 

determined for equation (7) by the study of model systems, such as amino acids, can be 

employed for macromolecules, such as proteins. Evidence from a number of comparisons 

suggests (Blundell 1987) that this transferability condition is satisfied in many applications. 

Energy minimization 

For macromolecular systems, the number of local minima cost of the computations 

prevents exhaustive search of surface, so it is frequently impossible to determine energy 

minimum. There is different iterative minimization algorithm. Optimisation is the term for 

the mathematical process whereby the structure obtained by a series of calculation 

processes is compared to the starting structure and evaluated. The structure is modified to 

make it more consist with the parameter information within the program. Various 

mathematical procedures are used to determine how the geometry will change from one 

step to the next. For a potential energy function it is desirable to find minimum energy 

configuration of a system. The potential energy function of a (macro) molecular system is a 

very complex landscape (or hypersurface) in a large number of dimensions. It has one 

deepest point, the global minimum and very large numbers of local minima, where all 

derivatives of the potential energy function with respect to the coordinates are zero and all 
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second derivatives are nonnegative. In between the local minima there are saddle points. 

These points are the mountain passes through which the system can migrate from one local 

minimum to another. All the local minima, including the global one, and of all saddle 

points give us the knowledge to describe the relevant structures and conformations and 

their free energies, as well as the dynamics of structural transitions. In particular, no 

minimization method exists that guarantees the determination of the global minimum in 

any practical amount of time. However, given a starting configuration, it is possible to find 

the nearest local minimum. Nearest in this context does not always imply nearest in a 

geometrical sense (i.e., the least sum of Square coordinate differences), but means tile 

minimum that can be reached by systematically moving down the steepest local gradient. 

Different minimization methods are-

( A). Newton Rapson, (B). Steepest Desecent & (C). Conjugate Gradiant. 

A. Newton Rapson 

Many of the energy minimization programs currently in use today are based upon the 

mathematical principles of the Newton Rapson method. This requires first and second 

derivative information about the energy surface. An important property of the function used 

for force calculation is that they are continuous and differentiable. From simple calculus we 

know that the condition for a minima on a curve at point x* .the first derivative equals to 

zero, i.e, 

F'(x*) = 0 

Now our starting point is x en we can write, 

X*=x+Bx (8) 

Where 8x represents the change which the x must undergo to reach the minimum value. The 

condition for the minimum can therefore be written in terms of x. 

F'(x+Bx)= 0 
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And expanded as a Taylor series 

F'(x +8x) = F'(x) + F"(x) 8x + F"'(x) 8x + ............ . 

Which is also set equal to zero. Truncating the Taylor series after the set order term gives 

F'(x +8x) = F'(x) + F"(x) 8x = 0 

Or, 8x = -F'(x)/ F"(x) 

Above equation can be substituted back into the equation (8) 

X* = x -F'(x)/ F"(x) 

B. Steepest Desecent 

The steepest descent method is driven purely by force gradients along potential surface. It 

simply takes a step in the direction of the negative gradient (hence in the direction of the 

force), without any consideration, of the history built up in previous steps. As the gradiant 

method has no information about the local curvature of the energy surface, minimization by 

this method slows down considerably as the gradiant decreases. Close to bottom of the 

potential well the energy difference can be rather small. 

The principle advantage of the steepest descent method is that it is excellent at correcting 

major abnormalities like removal of short contacts between two non-bonded atoms at the 

start of the calculation. The method keeps altering the geometry until a specified cut-off 

value is reached and the molecule is said to be optimized. One of the drawback of this 

method is it is very slow to converge when the system is on a shallow potential energy 

surface. 

C. Conjugate Gradiant 

A more elegant improvement of steepest descent is that of conjugate gradients which uses 

information from previous steps to modifY the move in the next step. In the first step, where 

the gradiant vector is g 1 the move is given by 
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sl =-gl 

The new direction from this step takes into account the previous gradiant and follows the 

search direction 

sk = -gk + bks(k-1) 

where s(k -I) is the search direction from the previous step and bk is a scaling factor. In 

general, steepest descents will bring you close to the nearest local minimum very quickly, 

while conjugate gradient brings you very close to the local minimum. 

Simulated annealing is a generic probabilistic meta-algorithm for the global optimization 

problem. Essential feature of the simulated annealing method is that the temperature is 

gradually reduced as the simulation proceeds. Initially T is set to a high value and it is 

decreased at each step according to some annealing schedule which may be specified by the 

user but must end with T=O towards the end of the allotted time budget. In this way, the 

system is expected to wander initially towards a broad region of the search space containing 

solutions, ignoring small features of the energy function; then drift to low-energy regions 

that become narrower and narrower and finally downhill. 

1.4: Molecular dynamics simulation 

Molecular dynamics is the science of simulating the motions of a system of particles. It has 

been applied to systems as an atom and a diatomic molecule undergoing a chemical 

reaction, and as large as a galaxy. In all cases, the essential elements for a molecular 

dynamics simulation are the knowledge of the interaction potential for the particles, from 

which the forces can be calculated . The interaction potential, may vary from the simple 

gravitational interaction between stars to the complex many-body forces between atoms and 

molecules. Classical Newtonian equations of motion are adequate for many systems, 

including the biomolecules of primary concern here. But for some problems (such as 
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reactions involving tunnelling) quantum corrections are important, and for others (such as 

galaxy evolution) relativistic effects may have to be included. 

Two attributes of molecular dynamics simulations have played an essential part in their 

explosive development and wide range, applications. Simulations provide individual 

particle motions as a function of time so they can be probed far more easily than 

experiments to answer detailed questions about the properties of a system. Further, although 

the potential used in a simulation is approximate, it is completely under the user's control, 

so that by removing or altering specific contributions, their role in determining a given 

property can be examined. Computer alchemy changing the potential from that representing 

one system to another during a simulation -is a powerful tool for calculating free energy 

differences. 

Simulation methods 

To begin a dynamic simulation, an initial set of atomic coordinates and velocities are 

required. The coordinates can be obtained from X-ray crystallographic or NMR structure 

data, or by model-building (based on the structure of a homologous protein, for example). 

Given a set of coordinates, a preliminary calculation serves to equilibrate the system. The 

structures is ftrst refmed using an iterative minimization algorithm to relieve local stresses 

due to overlaps of non-bonded atoms, bond length distortions, and so on. Next, atoms are 

assigned velocities (v) taken at random from a Maxwellian distribution for a low tempera-

ture, and a simulation is performed for a few picoseconds. This is done by fmding the 

acceleration a; of atom i, from Newton's law F; = m; a;' (F;' the force on the atom is 

computed from the derivatives of equation (7) with respect to the position; m; is the atomic 

mass), and introducing it into the equation for the position r; at time t+~t, given r; at time t: 

1 2 r;(t+M) = r;(t)+v;M+ 2a;(At) (9) 

The equilibration is continued by altering new velocity assignments, chosen from 
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maxwellian distributions for temperatures that are successively increased to some chosen 

cho value, with intervals of dynamical relaxation. The temperature T of the system is 

measured by the mean kinetic energy, 

Where N is the number of atoms in the system, (v2 J is the average velocity squared of the 

ith atom and k8 is the Boltzmann constant. The equilibration period is considered 

finished when the temperature is stable for longer than about 10 ps, the atomic momenta 

obey maxwellian distribution and different regions of the protein have the same average 

temperature. 

Integration of the equations of motion after equilibration generates the coordinates and 

velocities of the atoms as a function of time. Several numerical algorithms are used to solve 

the equation of motion, namely: Predictor-corrector algorithm, Verlet algorithm and Leap-

frog algorithm etc. 

Predictor -corrector algorithm 

If the classical trajectory is continuous then an estimate of the positions, velocities etc at 

time t+8t may be obtained by Taylor expansion about timet: 

r'(t +at)= r(t) + v(t )at+ ?Ct)ai+ ....... . 

V'(t +at)= v(t) + a(t )at+ ib(t)ai+ .......... . 

d' (t + at) = a(t) +b(t)Ot+ .................. . . (10) 

Where r is the position, vis the velocity (the first derivative with respect to time), a is the 

acceleration (the second derivative with respect to time), etc. The superscript marks these 

as predicted values; we shall be correcting then shortly. If we truncate the expansion, 

retaining just the terms given in the above equation then we seem to have achieved our 

aim of advancing the values of the stored co-ordinates & derivatives from one time step to 
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the next. In this example we would store four 'vectors' r,v,a,b. Equivalent alternatives 

would be to base the prediction, on r,v & 'old' values of the velocities v(t-01:), v(t-201:). But 

the above equation (1 0) will not generate correct trajectories as time advances, as we have 

not introduced the equation of motion. These enter through the correction step. From the 

new position rP, the forces at time t+Ot and hence the correct accelerations a0 (t+at). These 

can be compared with the predicted acceleration from equation (1 0) 

To estimate the size of the error in the prediction step: 

(11) 

This error and the results of predictor step are fed into the corrector which gives; 

rc(t+Ot) = rP(t+Ot) + CoL'Ia(t+Ot) } 

Vc(t+Ot) = vP(t+Ot) + CtL'Ia(t+at) 

a0 (t+at) = ap (t+Ot) + c2L'Ia(t+01:) 

(12) 

The idea is that r0 (t+Ot) etc are now better approximation to the true positions, velocities 

etc. The general scheme of a stepwise MD simulation based on a predictor-corrector 

algorithm may be summarized as follow: 

(a) Predict the positions velocities accelerations at time (t+Ot) using the correct values of 

these equation. 

(b) Evaluate the forces and hence accelerations a = f/m, from the new position. 

(c) Correct the predicted positions velocities accelerations using the new acceleration. 

(d) Calculate any variables of interest such as energy, order parameter) before returning to a 

for the next step. 

Verlet algorithm 

The most widely used method of integrating the equation of motion is that initially adopted 

by Verlet [1967]. The method is a direct solution of the second order equations. The Verlet 
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algorithm uses positions and accelerations at time t and the positions from time t-Bt to 

calculate new positions at time t+Bt. The Verlet algorithm uses no explicit velocities. 

r(t + Bt) = r(t) + v(t)Bt +'ha(t)Br 

r( t -Bt) = r(t) -v(t) + 'ha(t)Br 

Summing these two equations, one obtains 

r( t + Bt) = 2r( t) -r(t -81) + a( t )Br 

The velocities are not needed to compute the trajectories, but they are useful for estimating 

the kinetic energy and hence the total energy. They may be obtained from the formula, 

V(t) = { r(t+at) -r(t-at)}/28t 

The advantages of the Verlet algorithm are, 

i) it is straightforward and ii) the storage requirements are modest. 

The disadvantage is that the algorithm is of moderate precision. 

Leap-frog algorithm 

In this algorithm, the velocities are first calculated at time t+ J/2dt; these are used to 

calculate the positions, r, at time t+dt. In this way, the velocities leap over the positions, 

then the positions leap over the velocities (van Gunsteren & Berendsen 1988). 

r(t +81) = r(t) +v( t +'h8t)at 

v( t+'hat) =v(t-'h8t)+a(t)8t 

The advantage of this algorithm is that the velocities are explicitly calculated, however, the 

disadvantage is that they are not calculated at the same time as the positions. The velocities 

at timet can be approximated by the relationship: 

v(t) = 1!2[v{t-lh8t) +v(t+ Yz8t)] 

Software used in molecular dynamics simulation 

Different types of software are used in molecular dynamics simulation. Some common and 

widely used software are given in appendix I. 
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1.5: Homology modeling 

Knowledge of a protein's tertiary structure is a prerequisite for the proper engineering of its 

function. Unfortunately, inspite of recent significant technological advances, the 

experimental determination of tertiary structure is still slow compared to the rate of 

accumulation of amino acid sequence data. 

Without a general method for predicting the tertiary structure of an amino acid sequence, 

one can try to learn about the structure and function of a protein whose gene has been newly 

sequenced, by means of homology modeling. 

Homology modeling, also known as comparative modeling of protein refers to constructing 

an atomic-resolution model of the "target" protein from its amino acid sequence and an 

experimental three-dimensional structure of a related homologous protein (the "template"). 

Homology modeling relies on the identification of one or more known protein structures 

likely to resemble the structure of the query sequence, and on the production of an 

alignment that maps residues in the query sequence to residues in the template sequence. It 

has been shown that protein structures are more conserved than protein sequences amongst 

homologues, but sequences falling below a 20% sequence identity can have very different 

structure, and reach what is called in homology modelling, the twilight zone (Chothia 

1986). 

The homology modeling procedure can be broken down into four sequential steps: template 

selection, target-template alignment, model construction, and model assessment (Marti

Renom 2000). The first two steps are often essentially performed together, as the most 

common methods of identifYing templates rely on the production of sequence alignments; 

however, these alignments may not be of sufficient quality because database search 

techniques prioritize speed over alignment quality. These processes can be performed 

iteratively to improve the quality of the final model, although quality assessments those are 
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not dependent on the true target structure are still under development. 

Optimizing the speed and accuracy of these steps for use in large-scale automated structure 

prediction is a key component of structural genomics initiatives, partly because the resulting 

volume of data will be too large to process manually and partly because the goal of 

structural genomics requires providing models of reasonable quality to researchers who are 

not themselves structure prediction experts (Marti-Renom 2000). 

Template selection 

The preliminary task in homology modelling technique is to recognize protein structures 

linked to the target sequence and subsequently select those that will be used as templates 

(Centeno et a/., 2005). Position specific iterative BLAST i.e., PSI-BLAST (Altschul et a/., 

1997) was carried out against database specification of PDB proteins which were available at 

the National Centre for Biotechnology Information (NCBI) Web server 

(http://www.ncbi.nlm.nih.gov/blast/) to find out remote similarities. The appropriate template 

was selected on the basis of the quality of the experimental template structure, environmental 

likeness and phylogenetic similarity. 

Alignment of the target and template 

An optimal alignment between the target sequence and template is required to construct a 3D 

model of the target protein, after the template sequence has been recognized. Multiple 

sequence alignments were performed using ClustalW 1.83 (Thompson et a/., 1994) using 

default settings and the aligned sequences were extracted in(.) PIR format (Thompson et al., 

1994). The aligned sequences were converted into(.) ALI format (Sali & Blundell1993). The 

acquired alignments were crucially assessed in terms of number, length and position of the 

gaps to make it more reliable. Secondary structures were predicted using HNN (Hierarchical 

Neural Network method) (http://npsa-pbil.ibcp.fr/cgi-binlnpsa _ automat.pl?page=npsa 

_nn.html). 
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Construction of the rough models 

The rough 3D models of the target protein from the template protein was constructed by 

MODELLER 9v4 program (Sali & Blundell 1993) using the alignment between target 

protein from the template protein. The technique is based upon the satisfaction of the spatial 

restraints acquired from the alignment (Centeno et al., 2005). The method is theoretically 

comparable to that used in resolving protein structures from NMR-derived restraints. These 

restraints are usually acquired by assuming that the resultant distances between aligned 

residues in the template and the target structures are alike. These restraints obtained on the 

basis of homology, are generally improved by stereochemical restraints on bond lengths, 

bond angles, dihedral angles, and non-bonded atom-atom contacts that are attained from a 

molecular mechanics force field. After reducing the violation of all the restraints the model 

is finally obtained (Sali & Blundell 1993). 

Refmement ofthe models 

The models obtained by the homology modeling technique often contain certain amount of 

errors and become decisive if the concerned residues are associated with the protein function 

(Centeno et al., 2005). To overcome this problem, refinement of the models is necessary. 

During the refinement process, the constructed protein models were subjected to constraint 

energy minimization with a harmonic constraint of 100 kJ/moi/A2
, using the steepest descent 

(SD) and conjugate gradient (CO) method to remove any existing bad sectors between the 

protein atoms and regularizing the protein structure geometry. All of the computations were 

done in vacuo with the GROMOS96 43BI parameters set using the Swiss-Pdb Viewer 

package (http://expasy.org/spdv/prograrn/spdv37sp5.zip) (Kaplan and Littlejohn 2001). 

GROMOS is a commonly used molecular dynamics computer simulation program for 

investigating biomolecular systems and applied for examining conformations acquired by 
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experimental or computer simulations (Kaplan & Littlejohn 2001). Hydrogen bonds were not 

considered. 

Evaluation of Refmed Model 

For evaluation of their internal quality and reliability, the refined models were subjected to 

the following tests: ProSA (Wiederstein & Sippi 2007) analysis was performed to assess the 

accuracy and reliability of the modelled structures and check the 3D models for potential 

errors. VERIFY3D (Eisenberg eta/., 1997) was used to validate the refined structures. Here, 

the 3D structures of the protein models are compared to its own amino-acid sequence taking 

into consideration a 3D profile calculated from the atomic coordinates of the structures of 

correct proteins (Eisenberg et al., 1997). The constructed models of the proteins were 

evaluated for their backbone conformation using a Ramachandran plot (Ramachandran et a!., 

1963). The Auto Deposition Input Tool (ADIT) (http://deposit.pdb.org/validate) was used to 

inspect the favorable and unfavorable properties of the modeled structures. SAVES (Structure 

analysis and verification server) (http://nihserver.mbi.ucla.edu/SAVS/) was used to carry out 

the verifications of the models with PROVE and ERRAT. Presence of pockets in the 

structures was predicted using CASTp server (Dundas eta/., 2006). The refined models were 

submitted to ProFunc (http://www.ebi.ac.uk/thronton-srv/databases/ProFunc) (Laskowski et 

a/., 2005) to recognize the functional region in the proteins. Since there are no data on the 

site-directed mutagenesis, site-directed-mutagenesis predictions were carried out using the 

server SDM (http://www-cryst.bioc.carn.ac.uk/-sdrn/sdm.php). Stability changes associated 

with mutations were assessed with !-Mutant 2.0 (http: 1/gpcr.biocomp.unibio.it/cgi/predictors/ 

I-Mutant2.0/I-Mutant2.0.cgi.). 

Software used in Homology modeling: List of Protein Structure Prediction Software are 

given in Appendix II 
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1.6: Objectives of the research work 

• Comprehensive comparative study of codon usage patterns of major food bacteria 

coming from different source with special reference to genes associated with 

pathogen. This would help in understanding the major forces influencing the codon 

usage patterns in these organisms. 

• Analysis of codon adaptation index (CAl). It determines the resemblance between 

the synonymous codon usage of a gene and the synonymous codon frequency of a 

reference set of highly expressed genes. The CAI values will be used to predict the 

expression level of the genes. 

• Correspondence analysis of codon usage and amino acid usage will be performed to 

investigate the major trends in codon and amino acid variations among the genes. 

• Determination of the potentially highly expressed genes using CAI values and 

correlate the expression level of genes present in COG groups and study their 

influence on the lifestyle patterns of nitrogen fixing microbes. 

• Correlation of the codon usage bias with the tRNA content of the organisms. 

• Development of a novel nucleotide triplet based condensed matrix method for 

analyzing molecular phylogeny of some toxin genes. Characterization of the toxin 

genes using nucleotide triplet based condensed matrix method and construction of 

dendrogram using eigenvalues to determine the evolutionary relationship. 

• Secondary structure prediction and determination of three-dimensional structure of 

important CdtB proteins using homology modeling technique so as to study the 

structure-function relationship. 
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2.1: Discovery of pathogens and pathogenicity Island 

Cholera is a sometimes fatal disease caused by infection with the bacteria Vibrio cholerae 

(Ryan 2004) which is transmitted through contaminated water. Prior to the discovery of an 

infectious cause, the symptoms of cholera were thought to be caused by an excess of bile in 

the patient. The disease Cholera gets its name from the Greek word choler meaning bile. 

This was consistent with medical thought at the time, which held that four liquids or humors 

controlled health, and lead to such medical practices as bloodletting as a method of curing 

illnesses. The bacterium was first reported in 1849 by M. Gabriel Pouchet, who discovered 

it in stools from patients with Cholera. But he did not appreciate its significance (William 

1979). The first scientist to understand the significance of Vibrio cholerae was an Italian 

anatomist Filippo Pacini, who published detailed drawings of the organism in 

"Microscopical observations and pathological deductions on cholera" in 1854. He would go 

onto publish additional papers in 1866, 1871, 1876 and 1880, all of which were ignored by 

the scientific community. He correctly described how the bacteria caused diarrhea, and 

developed treatments that were found to be effective (Bentivoglio & Pacini 1995). But his 

findings did not influence medical opinion. In 1874, scientific representatives from 21 

countries voted unanimously to resolve that Cholera was caused by environmental toxins 

from miasmatas, or clouds of unhealthy substances which float in the air (Howard-Jones N 

1984). 

Reports of pathogenic E. coli appear in medical literature as early as 194 7 (Ruchman & 

Dodd 194 7) Publications regarding variants of E. coli which cause disease appeared 

regularly in medical journals throughout the 1950s, 60s, and 70s, (Macqueen 1954; Mc

Clure 1955; Gronroos 1957; Cowart & Thomason 1965; Linde et at., 1966) with fatalities 

being reported in humans and infants starting in the 1970s (Glantz 1970; Drucker et at., 
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1970; Smith & Gyles 1970). Infection with the bacteria Helicobacter pyoli is the cause of 

most stomach ulcers. The discovery is generally credited to Australian gastroenterologists 

Dr. Barry Marshall and Dr. J Robin Warren, who published their findings in 1983. The pair 

received the Nobel Prize in 2005 for their work. Before this, nobody really knew what 

caused stomach ulcers, though a popular belief was that the "stress" played a role. Some 

researchers suggested that ulcers were a psychosomatic illness (Paulley 1975; Kellner 1975; 

Aitken & Cay 1975). Besides, a number of food borne pathogens causing bacteria like 

Salmonella (non-typhoidal), Listeria monocytogenes, Campylobacter, (Mead eta/., 1999) 

were discovered. Genomic islands may contain large blocks of virulence determinants 

(adhesins, invasins, toxins, protein secretion systems, antibiotic resistance mechanisms, etc) 

and thus are referred to as pathogenicity islands. Pathogenicity islands were first described 

in pathogenic species of E coli, but have since been found in the genomes of numerous 

bacterial pathogens of humans, animals, and plants (Salmonella, Vibrio, Shigella, Yersinia, 

Listeria, S aureus, etc) (Garcia eta!., 1999; Lindsay et al., 1998). Pathogenicity islands are 

believed to have been acquired as a block by horizontal gene transfer because of their G+C 

content is significantly different from that of the genomes of the host micro-organism and 

they are often flanked by direct repeats. Many scientists are currently beginning to acquire 

understanding of the molecular mechanisms involved in the action of toxins. The good news 

is that there are a limited number of major toxin families that display common structural and 

biochemical motifs which may be exploited for future therapeutic development and these 

may be effective against multiple organisms. 

2.2: Genetics of food pathogen 

In 1906 the term "genetics" is introduced. Various techniques like mutations, deletion 

mapping, cloning vectors etc. have facilitated the identification of genes associated with 

food pathogen. The first genome of a food-borne bacterium to be sequenced was that of C. 

44 



Chapter II Review of Literature 

jejuni and it led to the discovery of important new aspects of the biology of this organism 

(Parkhill et a!., 2000). PAls were first discovered in pathogenic E. coli. Pathogenicity 

islands of various pathogens are cag (H. pylori), SPII-5 (Salmonella spp) VPI (v. cholerae) 

etc are responsible for different diseases (Hentschel & Hacker 2001). Kim eta/., design a 

method for the Microarray detection of food-borne pathogens using specific probes 

prepared by comparative genornics (Kim et al., 2008) 

2.3: Research trends in food pathogen bacteria (FPB) 

The discovery of pathogenic organisms throughout the globe, studies concerning their gene 

products as well as the development of molecular biology helped FPB research enter a new 

stage where basic research combined with latest techniques. Techniques such as immune 

magnetic separation (IMS) and polymerase chain reaction (PCR) have paved the way for 

rapid and sensitive detection of foodborne pathogens, and advances in nanobiotechnology 

have allowed for miniaturization of devices. Collaborations between workers in the fields of 

engineering, nanotechnology and food science have introduced new lab-on-a-chip 

technologies permitting development of portable, hand-held biosensors for food pathogen 

detection. Despite the recent advances in food pathogen detection, there still exist many 

challenges and opportunities to improve the current technology. 

2.4: Beginning of interdisciplinary research and dawn ofbioinformatics 

It was in the year 1986 that the Department of Energy (DOE), USA and National Institutes 

of Health (NIH) started the Human Genome Project (HGP) and became one of the most 

happening experiments in the late 20'h century. The objective of the project was to identify 

all of the genes in humans and craft a database containing the information (Ideker et al., 

2001 ). A number of other genome projects also started in major industrialized countries of 

Europe and Japan. The scientists were at first skeptical about the HGP, since huge amount 

of money had to be spent that would hamper basic research and as the project moved 
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scientists worried about the massive amount of data and its interpretation (Bloom, 2001) In 

the year 2000, Prof. Collins of the National Human Genome Research Institute and Prof. 

Craig Venter of Celera Genomics appeared in a press conference and stated that they had 

achieved what was thought impossible and published the draft sequence of human genome 

(Wade 2000). That was the beginning and it opened the flood-gates for other genome 

sequencing projects. Gradually sequences of mouse, rat, worms and yeast were completed 

(Miller et al., 2004). Kyrpides (1999) reported that in the end of the 20th century, there 

were 24 complete genomes that included 16 bacterial, 6 archaeal, and 2 eukaryotic genomes 

and currently there are more than two thousand genomes available in public databases 

(Kyrpides 1999). The large numbers of genomes resulted in the generation of huge amount 

of information concerning the genetic nature of biological organisms spanning different 

kingdoms, groups and lineages etc. Bloom proposed that the greatest problem appeared to 

be the interpretation of underlying information from genomes leading to materialization of 

the new science of bioinformatics. Bioinformatics revolutionized the science of biology and 

directed it towards a more holistic approach compared to the reductionism visible in 

molecular biology research in the late 20th century (Bloom 2001). Now an organism is 

viewed as a system comprising of the information associated with genes and proteins that 

are responsible for maintaining day to day functions and networks of regulations that spell 

out how gene expression occur (Ideker et al., 2001). In 1995, the publication of the 

complete genome of Haemophilus injluenzae marked the beginning of another revolution in 

the field of bioinformatics (Fleischmann et a/., 1995). Currently there are about two 

thousand bacterial and archaeal genomes in the public domain. The publication of huge 

amount of sequence data helped in the development of high end computers, smart 

computing tools, for large-scale annotation, functional classification of the proteins (Searls 

2000) and development of specific databases (Birney et a/., 2002) for availability to the 
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broad scientific community. As the science of bioinforrnatics developed, computation 

became cheaper and cheaper and was duly complemented with the growth of Internet since 

the late 90s (Perez-Iratxeta et al., 2006). High throughput tools greatly developed in the 

beginning of the 21" century as genetic data became a gold mine for researchers (Perez

Iratxeta et al., 2006). New software started developing for more efficient and 

comprehensive analysis of the genornes, proteomes and proteins. The stage was set and 

bioinforrnatics had become the leading science of the 21 '1 century. 

2.5: Post genomic era and FPB 

The amalgamation of the knowledge of physiology, biochemistry, genetics and molecular 

biology gave idea about the understanding of the mechanism of host-pathogen interaction in 

pre-genomic era. The completion of the genomes of Salmonella enterica (McClelland et al., 

2001), Helicobacter pylori Strain G27 (Baltrus et al., 2009) and sequences for a number of 

pathogenic bacteria. Pathogenicity islands were first described in pathogenic species of E 

coli, but have since been found in the genomes of numerous bacterial pathogens of humans, 

animals, and plants (Salmonella, Vibrio, Shigella, Yersinia, Listeria, S aureus, etc) (Garcia 

et al., 1999; Lindsay et al., 1998). The first genome of a food-borne bacterium to be 

sequenced was that of C. jejuni and it led to the discovery of important new aspects of the 

biology (Parkhill et al., 2000). The studies on the genomes exposed new evidences 

pertaining to evolution and structure, interactions between host-pathogen interactions. 

The research on functional genomics and proteomics for the food pathogenic bacteria is of 

great significance in the 21 '1 century. It has become necessary to focus much on the 

comparative codon usage patterns, whole proteome analysis and molecular phylogeny using 

bioinforrnatics tools. Comparative genomics particularly focusing codon usage using 

different parameters is expected to provide insight into the inherent molecular nature of the 

genomes of food pathogenic bacteria. 
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2.6: Previous works on codon usage patterns 

In the post genomic era increasing number of genomes put forth a concept among 

computational biologists that each and every genome has its own story. Since the time when 

the first nucleic acid sequences were obtained a number of hypothesis on the evolution of 

genomes have been put forward. The genetic code has been one of the most interesting 

aspects of biological science. The code is degenerate with multiple codons coding for a 

particular amino acid. Groups of codons coding for a particular amino acid are synonymous 

ones. It has been reported that these synonymous codons are somewhat conserved across 

species (Peden 1999). The increase in sequence information albeit partial in the 1980's 

facilitated the studies concerning the usage of synonymous codons of organisms. Majority 

of work on codon usage patterns at that period focused upon E. coli (Peden 1999). Gradually 

the techniques for codon usage were applied upon mammalian, bacterial, bacteriophage, 

viral and mitochondrial genes (Grantham et al., 1980a; Grantham et at., 1981; Grantham et 

a/., 1980b ). On the basis of studies conducted on mRNAs from a number of prokaryotic and 

eukaryotic species, Grantham et al. (1980a) proposed the "Genome Hypothesis" which 

hypothesized that codon usage pattern of a particular genome was an explicit attribute of 

that organism. Grantham et al., (1981) reported that difference in codon usage pattern might 

be associated with the tRNA content. More work on the codon usage patterns (Gouy & 

Gautier, 1982) in E. coli regarding codon usage and !RNA abundance led to the conclusion 

that highly expressed genes exhibited non-random codon usage and used a small set of 

codons that corresponded to abundant tRNAs. However, it was not clear why specific 

synonymous codons were used preferably. Grosjean & Fiers (1982) opined that optimal 

codon choice is the outcome of the necessity imposed by interaction between codon and 

cognate tRNA. Ikemura (1981) defined optimal codon as one that was translated by the 

most abundant cognate !RNA which he later amended (lkemura, 1985). These optimal 
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codons are under the influence of translational efficiency. Kurland ( 1991) reported that 

translational efficiency is shaped by highest turnover of ribosomes, effectiveness of 

aminoacyl-tRNA harmonizing and ternary complex conditions. Sharp eta/. (1993) reported 

that the preference of some synonymous co dons were the outcome of translational selection 

i.e., for increasing efficiency and accuracy a codon is used that is translated by the abundant 

tRNA species. Rocha (2004) correlated codon usage bias from the tRNA point of view. He 

proposed that co-evolution of tRNA gene composition and codon bias in genomes from 

tRNA's point of view concur with the selection-mutation-drift theory. A number of studies 

(Sharp eta/., 1993; Carbone eta/., 2005) revealed that codon bias is influenced by effective 

population size, translational selection, mutational pressure, compositional bias and genetic 

drift. Chen et a/., (2004) postulated that codon bias is first and foremost influenced by 

mutational pressure and then translational selection. Studies on translational selection 

helped in the detection of highly expressed genes in genomes (Karlin & Mrazek, 2000). 

Majority of the highly expressed genes are associated with cell growth and cell division. It 

has been found that evaluating translational selection in quite difficult in genomes with a 

high or low G+C content owing to the consequence of intense levels of G+C content on 

codon usage. Medigue eta/., (1991) applied the principles of codon usage, cluster analysis 

and correspondence analysis to study horizontal gene transfer mechanisms. A number of 

workers have suggested that codon usage and amino acid usage (Goldman & Yang 1994; 

Nesti et a!. 1995; Pouwels & Leunissen 1994; Schmidt 1995) helps in determining the 

phylogenetic relationships between organisms. Besides, codon usage amino acid usage has 

also been studied at large (Peden 1999). Ikemura (1981) was instrumental in reporting good 

correlation between amino acid composition and codon bias. Hydrophobicity, aromaticity 

and amino acid charges are testified to be influencing amino acid usage (Lobry & Gautier, 

1994). The prediction of open reading frames has been performed utilizing the information 
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of codon usage (Krogh et al. 1994; Borodovsky et al. 1995). Peden (1999) provided some 

classic examples of the utilization of GeneMark prediction programme (Borodovsky et al., 

1994) for identification of coding sequences from shotgun genome sequencing projects. 

Sharp and Li (1987) were the pioneers in developing the Codon Adaptation Index (CAl) to 

assess the similarity amid the synonymous codon usage of a gene to that of the reference set. 

This particular index has been commonly used as a parameter for predicting the highly 

expressed genes in an organism. Besides CAl, a number of indices are regularly used to 

investigate codon usage patterns in a number of organisms. Peden (1999) opined that two 

types of indices one evaluating on the whole deviation of codon usage from the expected set 

and the other determining bias towards a specific subset of optimal codons are used. Indices 

such as GC content, GC3 content (Peden 1999) effective number of codons (Nc) (Wright 

1990), relative synonymous codon usage (RSCU) (Sharp et al., 1986) scaled chi-square and 

G statistic, P2 index (Gouy & Gautier, 1982) measuring the codon-anticodon interaction, 

codon bias index (CBI) (Bennetzen & Hall, 1982), Fop (frequency of optimal codons) 

(Ikemura, 1985) and codon adaptation index are very significant in studies concerning 

codon usage patterns. Besides these indices, correspondence analysis (Benzecri, 1992) a 

type of multivariate statistical analysis are commonly used to find out the degree of 

associations between different genes and amino acids. It is a technique that explores non 

random synonymous c.odon usage. 

This important field of study starved for good software in the 1980's. The basic problem 

was the integration of different indices into one program that would serve the researchers 

well. The foremost software was CODONS (Lloyd & Sharp, 1992). The GCG package 

(GCG, 1994) consisted of programs for analysis codon usage. CORRESPOND was used for 

performing multivariate statistical analysis (Peden 1999). NetMul (Thioulouse et al., 1995) 

was designed as a subset of ADE software for studying of codon usage and multivariate 
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statistical analysis. CODON W (Peden 1999) took over the stage and became very popu!ar 

because of its robust nature and error free analysis. INCA (Supek & Vlahovicek, 2004) is 

also being used by researchers. Software was also developed for codon usage optimization. 

This involved alteration of rare codons in target genes so as to imitate the codon usage of 

host with no modification of the amino acid sequence of encoded proteins (Gustafsson eta!., 

2004). GeneDesign (Richardson et a/., 2006), Synthetic Gene Designer (Wu et a/., 2006), 

Gene Designer (Villalobos et a/., 2006) are some of the software providing a platform for 

synthetic gene design and codon optimization. For estimation of the highly expressed genes 

using CAl there has been a number of software. CODON W (Peden 1999), JCAT (Grote et 

a!., 2005), CAl CALCULATOR (Wu eta!., 2005), ACUA (Umashankar eta/., 2007) and e 

CAl server (Puigbo et a!., 2008) are commonly used. However, the e CAl server (Puigbo et 

a/., 2008) has proved to be the most powerful and efficient tool for estimation of expression 

levels of the genes. 

Although a lot of work has been performed and is going on in codon usage of different 

microorganisms but very little work performed on codon usage of food pathogenic bacteria. 

The first species in which codon usage was examined in detail, the bacterium Escherichia 

coli (Post & Nomura 1980; Ikemura 1981) and the yeast Saccharomyces cerevisiae 

(Ikemura 1982; Bennetzen & Hall 1982), were both found to show strong evidence of 

natural selection on codon usage. All these are just very little and a comprehensive work 

with focus on lifestyle patterns are the need of the hour. 

2.7: Phylogenetic studies on FPB 

Nothing in biology makes sense without evolution. This also applies for food pathogenic 

bacteria. To establish the differentially evolved genes Eswarappa et a!., compared the 

phylogeny of the nine potential differentially evolved genes with phylogeny of the S. 
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eneterica species and with the phylogeny of the five pathogenecity island of Salmosella 

(SPI-1 to SPI-5)( Eswarappa et al., 2008). This also applies for other pathogenic bacteria. 

2.8: Structural bioinformatics of food pathogenic bacteria 

High throughput sequencing of a number of eukaryotes and a number of bacteria has 

developed the science of structural bioinformatics. Structural bioinformatics is expected to 

give rise to a large number of protein structures. The technological benefits of this field are 

already yielding results and have a substantial impact on structural biology research for 

prokaryotes (Burley & Bonnano, 2002).Metropolis et a!., introduced the Monte-Carlo 

technique to the solving of physical equations. It described the idea of using random 

numbers to project a representative subset of conformational space, whilst using the 

exponent of the energy as a probability filter (Metropolis et a/., 1953). Levitt and Warshe1 

simulated the folding of the Bovine Pancreatic Trypsin Inhibtor (Levitt & Warshel 1975). 

Case and Karplus work on "Dynamics of ligand binding to heme protein" in 1979. This is 

arguably the first simulation of ligand moving through the protein. At this early stage in the 

game, they could either fix the protein and watch the oxygen bounce around, or let 

individual sidechains get hit by the oxygen. Each oxygen atom were simulated for 3. 75 ps. 

For these pioneers it was a surprise to see that the oxygen bounces around the inside of the 

myoglobin, without getting too far. Nevetheless, they identified 2 different pathways for the 

oxygen to travel into the binding site( Case & Karplus 1979). Umbrella sampling is the most 

popular method of exploring large conformational changes in MD. In 19982Notthru p et a! 

show "Dynamical theory of activated processes in globular proteins". In this paper, Karplus 

and friends modeled a rather more modest conformational change: the swinging of an 

aromatic residue sidechain. From the simulations, they generated a free-energy surface, 

from which they calculated a sidechain flipping rate. This paper is important not just for 

simulating the first sidechain flip but also for introducing proteins to "umbrella 
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sampling" (Northrup et al., 1982). First application of normal modes to identifY low

frequency oscillations using the energy minimum of the molecular mechanics force-field of 

a protein deseribe by (Brooks & Karp Ius 1983 ). This is the basic technique to identifY 

domain-level motions in a protein. First simulation of a protein in explicit waters was done 

by Levitt & Sharon (Levitt & Sharon 1988). Suddenly, acceptable computer resources got a 

whole lot more expensive. Guilbert et al gave first description of the RMSD potential, a 

powerful method for identifYing low-energy pathways in the neighborhood of a given static 

structure (Guilbert et al., 1995). Israelachvili & Wennerstrom shows that water molecules 

can have structuring effects of several Angstroms. Flags the importance of using explicit 

water molecules (Israelachvili & Wennerstrom 1996). The first reported 1 microsecond MD 

simulation, it was a mamoth effort for the late 90's, really pushing the technology of parallel 

clusters, a technology which we all pretty much take for granted now. They tried to fold a 

tiny protein, the villin headpiece subdoarnin, and got some of the way (Duan & 

Kollman 1998). Berneche and Roux uses umbrella sampling to identifY all the positions of 

the K+ ion along the KcsA K+ membrane charmel. They show that the charmel forK+ is 

virtually barrierless, hence it is a diffusion controlled process but more impressively, they 

identifY two K + sites just outside the channel, which was subsequently identified by 

electron density in a high-resolution structure (Berneche & Raux 2001 ). 

Rapid developments of technological know how in proteomics coupled with the 

improvement of bioinformatics tools have resulted in a deluge of structural information that 

guarantees acceleration in research. In silica identification of potential therapeutic targets in 

Clostridium botulinum by the approach subtractive genomics carried out Koteswara et al., 

(20 1 0). Evolutionarily related proteins have similar sequences and naturally occurring 

homologous proteins have similar protein structure. It has been shown that three-
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dimensional protein structure is evolutionarily more conserved than expected due to 

sequence conservation (Kaczanowski 201 0). 

Proteins fulfill several crucial functions, having catalytic, structural and regulatory roles in 

all organisms. Knowledge of the three dimentional structure of proteins is a basic 

prerequisite for understanding their function. It provides a basis for studies of substrate or 

ligand interactions with a particular enzyme or protein. Three dimensional structures of 

proteins are determined by X -ray crystallography and NMR spectroscopy. By 1" June 2007, 

more than 40000 sets of atomic coordinates for proteins have been deposited in the Protein 

Databank (Berman 2008). 

The first modeling studies, carried out in the late 1960s ans early 1970s, wire based upon 

the construction of wire or plastic models. The later study are performed using interactive 

computer graphics. Browne et a!. published the first report on homology modeling (Browne 

eta/., 1969). The model bovine a-lactalbumine on the known 3D structure of hen egg white 

lysozyme. Later on Warme et a!. produced a model for a-lactalbumine on the basis of the 

crystal structure of lysozyme (Warme et al., 1974). These model were constructed by taking 

the existing coordinates of the known structure, and mutating side chains not identical in the 

protein to be modeled. This approach to protein modeling is still employed today with 

considerable success, especially when the proteins are similar (May & Blundell 1994 ). 

McLachlan and Shotton modeled a-lytic proteinase of the fungus Myxobacter 495 on the 

basis of the structures of the mammalian chymotrypsin and elastase (McLachlan & Shotton 

1971). The modeling was a difficult task because the sequence identity between the protein 

to be modeled and the known structures was of the order of 18%. Subsequently, determined 

the crystal structure of a-lytic proteinase and compared the X -ray structure with the 

homology model. They found that although segment of both domains of the model were 

built correctly, misalignment of the sequence led to local errors. 
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Greer introduced the modeling of variable regions in proteins on the basis of equivalent 

region from homology proteins of known structures. In order to construct the homology 

models of a number of different serine pro teases, he superimposed the structures of trypsin, 

chymotrypsin and elastase and found many equivalent Cu atoms within 1.0 A of one 

another (Greer 1980, 1981). The regions comprised of the amino acids of these Ca atoms 

were described as structurally conserved regions (SCRs ). All of the remaining positions 

corresponded to structurally variable or loop regions (VR) where the insertions/deletions 

were located. The main chain of both structurally conserved (SCR) and variable regions 

(VR) was built from the fragments of known serine proteases. The side chains were 

modeled according to the conformation found at the equivalent positions for those identical 

side chains in the known structures. 

Among the aspartic proteinases the first models were constructed for rennin and rennin 

inhibitor complexes using the 3D structure of the distantly related fungal proteinases ( 1985; 

Akahane et a/., 1985). Later on, the homology models for rennin were built using the 

structures of mammalian aspartic proteases, pepsin and chymosin ( Fragao et al., 1994; 

Hutchins and Greer 1991 ). Comparison of the rennin models constructed from fungal and 

mammalian enzyme revealed that errors in the models arose from the difference in the 

arrangement of helices and strands between the mammalian and fungal aspartic proteinases, 

as well as the rather different variable regions. Nevertheless, the active of rennin was 

modeled reasonably correctly. 

In the early eightes, manual homology modeling was facilitated by manipulation of protein 

molecules on the graphics terminal that was made possible by computer programs such as 

FRO DO (Jones 1978). Since the mid 1980s, a large number of homology models of proteins 

with different folds and functions have been reported in the literature (Johnson et al., 1994; 

Sali 1995). 
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The sequence alignment and template structure are then used to produce a structural model 

of the target. Because protein structures are more conserved than DNA sequences, 

detectable levels of sequence similarity usually imply significant structural similarity 

(Marti-Renom et al., 2000). 

The quality of the homology model is dependent on the quality of the sequence alignment 

and template structure. The approach can be complicated by the presence of alignment gaps 

(commonly called indels) that indicate a structural region present in the target but not in the 

template, and by structure gaps in the template that arise from poor resolution in the 

experimental procedure (usually X-ray crystallography) used to solve the structure. Model 

quality declines with decreasing sequence identity; a typical model has ~ 1-2 A root mean 

square deviation between the matched C" atoms at 70% sequence identity but only 2-4 A 

agreement at 25% sequence identity. However, the errors are significantly higher in the loop 

regions, where the amino acid sequences of the target and template proteins may be 

completely different. 

Homology modeling can produce high-quality structural models when the target and 

template are closely related, which has inspired the formation of a structural genomics 

consortium dedicated to the production of representative experimental structures for all 

classes of protein folds (Williamson 2000). Like other methods of structure prediction, 

current practice in homology modeling is assessed in a biannual large-scale experiment 

known as the Critical Assessment of Techniques for Protein Structure Prediction, or CASP. 

2.9: Future prospects 

Food pathogenic bacteria research presents a completely new outlook in the post genomic 

era. The wealth of information obtained from the genome projects needs to be mined. As 

newer and newer toxins genes are discovered and sequenced novel insights are being gained. 

Bioinformatics in combination with metagenomics as well as metaproteomics approaches 
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has the potential to give a more detailed picture that underlies pathogenicity as well as 

diseases. In absence of crysllographic or NMR structure Homology modeling will enlighten 

us about three dimensional structure and molecular dynamics simulation opening newer 

possibilities for exploring the molecular mechanism and activity of that toxin. At the end of 

the day scientific perception will continue to play a vital role in creating models that clarify 

the functions of pathogens in improved manner. 
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Chapter III Comparative Bioinformatics Analysis of Five Salmonella Genomes 

3.1: Introduction 

Food-borne disease has been defined by the World Health Organization (WHO) as an 

ailment of transmittable or toxic nature caused by, or thought to be caused by, the 

consumption of food or water (Adams et al., 2000). A number of bacteria are known to be 

linked with food-borne diseases. Prominent amongst them are Salmonella, Shigella, 

Listeria, Staphylococcus, Vibrio, etc. Salmonella is a gram-negative, motile, rod-shaped 

bacterial pathogen extensively occurring in animals, primarily in poultry and swine. 

Environmental sources of the bacterium throughout the world include water, soil, insects, 

factory surfaces, kitchen surfaces, animal faeces, raw meats, raw poultry, and raw sea foods 

(Wray & Sojka 1978) Salmonella causes substantial morbidity and mortality globally. The 

human-adapted serovars are responsible for typhoid, a systemic and life-threatening disease; 

whereas non-human-adapted serovars are normally accountable for gastroenteritis (Brown 

et al., 2005). 

The infection machinery of Salmonella involves a number of bacterial virulence genes, 

many of which are liable for invading, surviving, and replicating within host cells 

(Groisman & Ochman 1997). Recent work has exposed that a sizeable portion of 

Salmonella typhimurium genes are positioned in distinct chromosomal regions called 

pathogenicity islands (Groisman & Ochman 1997; Hacker et al., 1997). The pathogenicity 

islands enclose genes associated with diseases and are often sources of toxins. Their G+C 

content differs from the rest of the chromosome, signifYing that horizontal gene transfer 

acquired them (Blum et al., 1994). Besides these, vir genes, hrp genes, invasions, pip genes, 

SPI, SOP, and toxin genes are also associated with pathogenicity. 

Like other branches of biology, the study of pathogenic microorganisms has undergone a 

paradigm shift. The incredible deluge of information from genome-sequencing projects is 

revolutionizing the science of bacterial pathogenicity. The accessibility of the complete 
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genome sequences of Salmonella provides a scope to undertake bioinformatics-based 

approaches focusing on synonymous codon usage and investigating the gene expression 

profile of the organism. 

The non-random usages of synonymous codons are well accredited (Ikemura 1985). 

Synonymous codon usage is species specific and differs appreciably between the genes in 

the same organism (Baneljee et al., 2004). Mutational pressure and natural selection 

operating at the level of translation are the primary reasons behind codon usage variation 

among the genes in different organisms (Sen et a/., 2008). Codon bias is quite high in the 

highly expressed genes compared to lowly expressed ones inside a genome (Sharp & Li 

1986; Sharp & Li 1987; Lafay et al., 2000; Dos Resi. et a/., 2003). The bias of highly 

expressed genes is influenced by translational selection; in contrast to lowly expressed 

genes, which is governed by mutational bias (Banerjee et a/., 2004 ). In order to inspect the 

patterns and cause of codon usage, many indices have been projected to assess the degree 

and direction of codon bias (Sharp & Li 198711). Amongst them, the codon adaptation 

index (CAl) was proposed as an estimate of codon usage within a gene relative to a 

reference set of genes (by and large, ribosomal protein genes) (Sharp & Li 1987). This 

index has been revealed to relate better with mRNA expression levels (Ikemura 1981). 

Over and above codon adaptation index, the effective number of codons (Nc), (Wright 

1990) which is described as the amount of equal codons producing the same codon usage 

bias as observed; and the incidence of optimal codons (Fop), (Sen et al., 2008) defined as 

the proportion of synonymous codons that are optimal codons, are also used. 

The objective of this study was to execute a comparative analysis of the synonymous codon 

usage patterns, predict expression levels for the protein coding genes in these pathogenic 

bacteria with special reference to the genes linked with pathogenicity, examine horizontally 

transferred pathogenicity-related genes to detect their presence in the strains, and scrutinize 
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the nature of highly expressed genes to infer upon their lifestyle. We consider that the result 

of this study would be helpful for the microbiologists working on this bacterium. 

3.2: Materials and Methods 

The complete genome sequences for five Salmonella strains [(Salmonella enterica 

Paratyphi, Salmonella enterica Typhi CT18, Salmonella enterica Typhi Ty2, Salmonella 

enterica cholerasuis SC-b67, and Salmonella typhimurium L T2 (hence forth, these strains 

will be referred to as SEP, SECT18, SETY2, SECSCB67, and STLT2 respectively)] were 

obtained from the IMG website (www.img.jgi.doe. gov) (Markowitz eta/., 2006). All of the 

protein coding genes, genes associated with pathogenicity, and ribosomal protein genes 

were examined using Codon W software (http://bioweb2.pasteur.fr) (Sen et al., 2008) and 

CAl Calculator 2 (b.ttp://www.evolvingcode.net/codon/CalculateCAis.php.) (Wu et al., 

2005). 

The software Codon W (Sen et al., 2008) was employed to inspect G or C in the third 

position of codons (GC3s), as well as to determine the effective number of codons (Nc) 

(Wright 1990) and the frequency of optimal codons (Fop) (Sen et al., 2008). Nc is a 

straightforward measure of codon bias (Wu et al., 2005). It ranges from 20 (when merely 

one codon is used per amino acid) to 61 (when each and every codon is used in equal 

likelihood). Fop (Sen et al., 2008) determines the section of synonymous codons that are 

optimal codons. Its value varies from 0 (meaning a gene has no optimal codons) to 1.0 

(when a gene is exclusively comprised of optimal codons). 

The codon adaptation index (CAl) (Sen et al., 2008) values were computed using the web

based application the CAl Calculator 2 (http://www.evolvingcode.net/codon/cai! cais.php) 

(Wu et al., 2005) taking the ribosomal genes as a reference. It quantifies the relative 

adaptiveness of a gene's codon usage, which is its codon usage as compared to the codon 

usage of highly expressed genes. The relative adaptiveness of each codon is the quantity of 
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the usage of each codon compared to that of the most plentiful codon inside the same 

synonymous family (Sen eta/., 2008). The CAl value varies from 0 to 1.0, with higher CAI 

values signifying that the gene of concern has a codon usage pattern resembling that in the 

reference genes. 

Z test was performed to check whether the values of the above-mentioned indices in the 

pathogenicity-related genes and ribosomal protein genes varied from those in the protein 

coding genes. 

An analysis of the horizontally transferred pathogenicity-related genes among the studied 

strains was carried out to detect whether they are present in all the strains or native to a 

particular strain. The information about horizontally transferred genes was obtained from 

the website (http://cbcsrv.watson.ibm.com/HGT/). Tsirigos and Rigoutsos devised a new 

computational method for identifying horizontally transferred genes in 123 microbial 

genomes. It relied upon a gene's compositional features and necessitated having knowledge 

on codon boundaries. In addition to the single genes, the method was applicable to the 

clusters of genes transferred horizontally. The technique conveys a typicality score to each 

gene reflecting the gene's similarity with the containing genome, using specific features 

(Tsirigos & Rigoutsos 2005). 

First of all, the pathogenicity-related genes acquired by horizontal gene transfer 

mechanisms in the studied strains were sorted out. Using the Integrated Microbial Genomes 

database (www.img.jgi.doe.gov.), (Markowitz et a/., 2006) the sorted pathogenicity-related 

genes for each strain were subjected to IMG Genome BLAST against the studied strains to 

find out the sequence homologs. The minimum percent identity was set at 90%; and the 

maximum E (expect) value le-2. 

73 



Chapter III Comparative Bioinformatics Analysis of Five Salmonella Genomes 

Correspondence analysis (COA) was performed usmg Codon W 

(http://bioweb2.pasteur.fr) (Sen et al., 2008). This method explores the major trends in 

codon and amino acid variations among the genes. 

3.3: Results 

Codon usage patterns 

Our first endeavour in the study of the codon usage patterns among various Salmonella 

genomes was to settle on the degree of variation in codon use. Most bacteria with a 

balanced AT/GC genome content have a sizeable amount of codon variation. Codon 

heterogeneity is usually associated with gene expression level. Thus, highly expressed 

genes contain a higher frequency of codons that are considered translationally optimal 

(Ikemura 1985; Lafay et al.,2000; Ikemura 19857). 

The GC3s and Nc values for all of the genes in these genomes were calculated to determine 

if codon heterogeneity exists among genes of various Salmonella species. Two different 

indices, namely, effective number of codons (Nc) and GC3, have been used to detect codon 

usage variation among the genes. The Nc vs. GC3 plots have been recominended to be an 

effective means to explore the codon usage variations among genes in the same genome 

(Wright 1990). The Nc values of the Salmonella genes ranged from 25±1 to 61±0, and the 

GC3 values ranged from 0.14±0.3 to 0.91±0.6. 

From Fig. 1, it is seen that the pathogenicity-related genes are lying below the expected 

curve. Genes which are anticipated to be highly expressed are clustered at one end of the 

Nc/GC3 plots. This phenomenon has been previously reported in E. coli and Streptomyces 

(Wu et al., 2007). 

Table 1 show that the mean Nc values of the total protein coding genes in the studied strains 

are in the range of 46-4 7, with the mean standard deviation value hovering around 6. With 
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the exception of the ribosomal protein genes, the mean Nc values of the other categories of 

genes in the studied strains are quite high. 
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Table 1: Mean values of effective number of codons (Nc), guanine cytosine percentage 

(GC), guanine cytosine ratio at third position (GC3), codon adaptation index (CAl), and 

frequency of optimal codons (Fop) of the genes in five Salmonella strains 

Strain Genes Nc GC% GC3% CAl Fop 

SEP PCG 46.2±6.07 52.5±0.055 52.53±0.095 0.450±0.088 0.528±0.086 

RPG 36.90±6.05 51.20±0.02 48.6±0.062 0.705±0.102 0.738±0.090 

PRG 52.2±5.26 46.2±0.053 44.4±0.092 0.378±0.054 0.435±0.066 

SECT18 PCG 47.26±6.28 52.1±0.056 55.4±0.098 0.445±0.086 0.522±0.085 

RPG 36.91±6.24 51.11±0.028 48.51±0.060 0.704±0.103 0.738±0.091 

PRG 52.61±5.73 46.32±0.050 44.30±0.087 0.377±0.055 0.434±0.064 

SETY2 PCG 46.82±6.08 52.42±0.055 55.87±0.094 0.448±0.088 0.526±0.085 

RPG 36.91±6.24 51.17±0.028 48.57±0.061 0.704±0.103 0.738±0.103 

PRG 52.61±5.88 46.25±0.051 44.16±0.088 0.375±0.056 0.429±0.63 

SECSCB67 PCG 47.12±6.22 52.31±0.05 55.64±0.096 0.460±0.083 0.522±0.084 

RPG 37.23±6.25 51.01±0.031 48.29±0.063 0.699±0.117 0.727±0.109 

PRG 52.08±5.17 45.67±0.056 44.31±0.098 0.412±0.037 0.449±0.055 

STLT2 PCG 46.69±5.95 52.65±0.053 56.23±0.093 0.444±0.087 0.527±0.083 

RPG 36.52±5.92 51.19±0.029 48.55±0.062 0.710±0.100 0.743±0.089 

PRG 50.43±5.77 46.71±0.071 46.33±0.127 0.391±0.049 0.458±0.069 

SEP= Salmonella enterica Paratyphi; SECT18= Salmonella enterica Typhi CT18; SETY2= 
Salmonella enterica Typhi Ty2; SECSCB67= Salmonella enterica cholerasuis SC-b67; 
STL T2= Salmonella typhimurium L T2; PCG= protein coding genes; RPG= ribosomal 
protein genes; PRG= pathogenicity-related genes 

From Table I it is observed that there is a good deal of variation of GC3 values among 

different categories of genes in the studied strains. Variation in the mean Nc values and 

GC3 values for the different gene groups was observed within the same species as well as 

other species. Ribosomal protein genes and the protein coding genes had higher Fop values 

compared to the pathogenicity-related genes. 

Z test did not reveal any significant difference between the different types of genes 

undertaken in the study at significance level of 0.05%. Z test gives a standard normal 

cumulative distribution function. For a given hypothesized population mean, Z test returns 
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the probability that the sample mean would be greater than the average of observations in 

the data set (array)- that is, the observed sample mean. 

Table 2: Two-tailed probability values of Z test for codon adaptation index values in 

pathogenicity-related genes, ribosomal protein genes, and protein coding genes 

Strain Genes Probability values of z test Correlation with P values 

SEP PCG 0.854 0.192 
RPG 0.455 0.079 
PRG 0.498 -0.105 

SECT18 PCG 0.494 -0.005 
RPG 0.480 -0.128 
PRG 0.496 0.142 

SETY2 PCG 0.500 0.193 
RPG 0.479 -0.094 
PRG 0.495 -0.240 

SECSCB67 PCG 0.500 -0.08 
RPG 0.491 0.263 
PRG 0.473 0.170 

STLT2 PCG 0.654 0.200 
RPG 0.494 0.165 
PRG 0.945 -0.132 

SEP= Salmonella enterica Paratyphi; SECT18= Salmonella enterica Typhi CT18; 
SETY2= Salmonella enterica Typhi Ty2; SECSCB67= Salmonella enterica cholerasuis 
SC-b67; STLT2= Salmonella typhimurium L T2; PCG= protein coding genes; RPG= 
ribosomal protein genes; PRG= pathogenicity-related genes 

From table 2 it is clearly seen that two-tailed probability values of Z test for CAl values in 

pathogenicity-related genes, ribosomal protein genes, and protein coding genes reveal trivial 

differences in SEP and STLT2 and are more or less same in SECSCB67, SETY2, and 

SECT18. There is no significant correlation between the P values of the different sets of 

genes. The correlations have been depicted in Table 2. 

Analysis of horizontally transferred pathogenicity-related genes 

From the web location (http://cbcsrv.watson.ibm.com/ HGT/),(Tsirigos & Rigoutsos 2005) 

it was observed that the studied Salmonella strains contained 616, 555, 562, 604, and 558 

horizontally transferred genes for SECSCB67, SEP, SECT18, STL T2, and SETY2 
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respectively. Among these the numbers of pathogenicity-related genes were 15, 33, 29, 11, 

and 18 for SECSCB67, SEP, SECT18, STLT2, and SETY2. 

IMG genome BLAST results revealed homologs having sequence identity with a number of 

similar proteins in other strains. In SECSCB67 the pathogenicity-related genes like putative 

shiga-like toxin A subunit, vir K, pathogenicity island-encoded protein SPI3, virulence 

gene, cytoplasmic cell invasion proteins, secreted proteins in SOP, and outer membrane

associated proteins found 18 horizontally transferred homologs (percent identity ranging 

from 95 to 100) in STLT2, SEP, SECT18, and SETY2. 

In SEP pathogenicity-related genes like type III secreted protein effector, putative 

pathogenicity island proteins, putative pathogenicity island lipoproteins, putative 

pathogenicity island effector protein, outer membrane invasion protein, outer membrane 

virulence proteins, toxinlike proteins, putative vir K proteins, virulence proteins, cell 

adherence invasions, virulence-associated secretary proteins, pathogenicity island 1 effector 

proteins, and oxygen-regulated invasins had 52 horizontally transferred homologs (percent 

identity, 96-100) in SECT18; SELT2, SETY2, and SECSCB67. 

The SECT18 pathogenicity-related genes like putative auto transporter virulence proteins, 

putative pathogenicity island protein, putative pathogenicity island lipoproteins, putative 

pathogenicity island effector protein, outer membrane invasion protein, outer membrane 

virulence proteins, virulence proteins, cell invasion proteins, pathogenicity island 1 and 2 

effector protein, cell adherence protein, hypothetical proteins associated with virulence, and 

invasion-associated proteins found 51 horizontally transferred homo logs (percent identity, 

95-1 00) in SEL T2, SEP, SETY2, and SECSCB67. 

Among the pathogenicity-related genes of SELT2, putative shiga-like toxin A protein, 

pathogenicity island-encoded protein A, virulence protein PAGD precursor, virulence 
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proteins, and invasion protein transcriptional activators found 16 horizontally transferred 

homologs (percent identity, 95-100) in SETY2, SEP, SECT18, and SECSCB67. 

In SETY2, the pathogenicity-related genes like putative pertussis-like toxin subunit A, outer 

membrane invasion protein, putative pathogenicity island effector protein, putative 

pathogenicity island protein, putative auto transporter/virulence factor, virulence protein, 

hypothetical protein associated with virulence, and invasion-associated secreted protein had 

35 horizontally transferred homologs (percent identity, 95-100) in SELT2, SEP, SECT18, 

and SECSCB67. 

Correlating codon usage bias with tRNA content in Salmonella genomes 

Eduardo Rocha (Rocha 2004) discussed the correlation between codon usage bias and 

tRNA content in bacterial genomes. The optimal generation times of the five studied 

Salmonella genomes were obtained from personal communications with Prof. J. Parkhill, 

Sanger Institute, Welcome Trust Genome Campus. The studied Salmonella genomes had an 

optimal generation time of 0.5 to 1 hour and could be regarded as fast growers on the basis 

of Rocha's (Rocha 2004) observations. He reported that fast growers have a median of 61 

. tRNA genes compared to 44 for slow growers, and the former tend to have stronger codon 

usage bias contrary to the latter. SECSCB67, STLT2, SETY2, SECT18, and SEP had 85, 

86, 78, 80, and 82 tRNA genes respectively. The studied Salmonella strains had on an 

average 37 distinctive anticodon tRNA genes, i.e., they had more similar tRNAs. 

Multivariate statistical analysis 

Multivariate statistical analysis was performed to study the codon usage variation among 

the genes. Correspondence analyses of codon count of the protein coding genes, ribosomal 

protein genes, and pathogenicity-related genes for the Salmonella strains were performed. 
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Fig. 2 reveals the positions of the genes on the planes defined by the first and second 

principal axes generated by COA of codon count for the protein coding genes, 

pathogenicity-related genes, and ribosomal protein genes. It is seen from Fig. 2 that the 

scatter plot of SEP, STLT2, and SECT18 revealed a small core region and two ascending 

horns, as reported for other eubacteria like E. coli, (Medigue et al., 1991) whereas that of 
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SECSCB67 and SETY2 revealed a core region with two descending horns. Barring 

SECSCB67, the left horns in all the other genomes were less dispersed than the right hom. 

In case of SECSCB67, it is seen that the genes related to pathogenicity are located in the 

positive side of the Axis I compared to the same for other Salmonella genomes, where they 

reside on the negative side of Axis 1. Other genes are more or less clustered on the right 

side of the axis. The highly expressed genes are clustered together in the right hom of SEP, 

STL T2, SETY2, and SECT18 and left hom of SECSCB67 on the first axis of the COA of 

simple codon count. 

No significant observation was noticed on correlating the CAl values of the protein coding 

genes of Salmonella strains with Axis 1. No correlation was observed between the positions 

of the genes on the Axis 1 produced by COA of codon count and the GC3 levels. However, 

we have found negative correlations between the positions of genes in Axis 1 produced by 

COA of codon count and Nc values of the protein coding genes in SECSCB67 and SECT18 

and SETY2 (results not shown). Very little positive correlations were obtained between 

positions of genes in Axis 1 and Nc values in SEP and STLT2. The genes with negative 

coordinates on the principal axis have more biased usage of codons compared to the genes 

with positive Axis 1 coordinates. 

Detection of PHX genes in Salmonella 

Codon adaptation index (CAl) is a gauge of directional synonymous codon usage bias. The 

index uses a reference set of highly expressed genes from a species to evaluate the relative 

merits of each codon, and a score for a gene is determined from the frequency of use of all 

codons in that gene. The index assesses the degree to which selection has been successful in 

moulding the pattern of codon usage. The CAl value was calculated using the ribosomal 

protein genes, which are known to be highly expressed as a reference. The CAl values for 

all genes in different Salmonella strains were calculated, and their distributions are shown in 

Fig. 3. 
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Figure-3 The frequency of distribution of the CAl values for a ll coding genes tn the 

salmonella genomes 

The average CAl va lues for different gene groups associated with diverse functions varied. 

Ribosomal protein genes showed high CAI values, indicating high levels of gene 

expression. These CAl val ues ranged from 0.203 to 0.877, 0.14 to 0.872, 0.191 to 0.874, 

0.196 to 0.872, and 0.188 to 0.872 for SECSCB67, SECT I8, SEP, SETY2, and STLT2 

respecti vely. The majori ty of the genes for the Salmonella genomes had CAI values 

between 0.3 and 0.5 

As visuali zed by Wu et a/. ,(2005) the top I 0% of the genes, in terms of CAl values, were 

classified as the predicted highly expressed genes (PHX), and corresponded to CAl cutoffs 

of 0.562, 0.55 , 0.558, 0.552, and 0.55 for SECSCB67, SECTI 8, SEP, SETY2, and STLT2 

respectively. SECSCB67 had 477 PHX genes. includ ing 5 1 ribo omal protein genes; 

SECT I8 had 492 PHX genes, with 54 ribosomal protein genes; SEP had 423 PHX genes, 
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with 54 ribosomal protein genes; SETY2 had 448 PHX genes, with 54 ribosomal protein 

genes; and SLT2 had 470 PHX genes, with 53 ribosomal protein genes. 

Functional analysis of the PBX genes 

To figure out the functional distribution of the PHX genes amongst the five Salmonella 

genomes, the clusters of orthologous groups of proteins were considered. For these 

Salmonella genomes, 20 COG categories were analysed. 

35 DSEP 

30 EISECT18 

25 

:g20 
DSESCB67 

c: 

"' 
CSTLT2 

0115 
X 
:I: 
11.10 

"" 5 

0 

J K L D M N 0 T U V C E F G H p Q R S 

20 

18 

16 

14 
11)12 
(!) 
010 
0 
c 8 
>< 6 :I: 
0. 4 -0 
~ 2 
0 

0 

J K L D M N 0 T U V C E F G H p Q R S 

Figure-4: Distribution of Salmonella predicted highly expressed genes within functional 

COG groups (as in text) 

Fig. 4 illustrates the allocation of the PHX into each COG category on the basis of total 

PHX genes (a) and the total genes within that COG group (b), expressed as a percentage. 
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To support the analysis, each of the COG categories were clustered in the following four 

COG groups: information and storage processing comprising of COGs connected to J

translation; K-transcription; L-DNA replication, recombination, repair (COG I); cellular 

processes encompassing COGs linked to V-defence mechanism; T-signal transduction; M

cell envelope biogenesis; N-cell motility and secretion; U-intracellular trafficking; D-cell 

division; 0-post-translational modification, protein turnover and chaperones (COG 2); 

metabolism consisting of COGs related to C-energy production and conversion; a

carbohydrate transport and metabolism; E-amino acid transport and metabolism; F

nucleotide transport and metabolism; H-coenzyme metabolism; P-inorganic ion transport 

and metabolism; !-lipid metabolism; Q-secondary metabolites, biosynthesis, and transport 

(COG 3); general function prediction and unknown fimction - R-general function 

prediction and S-unknown function (COG 4). The CAl values of each and every gene 

present in various COG groups were calculated, and the PHX genes were documented on 

the basis of the cut off values for various Salmonella genomes. 

Fig. 4 exemplifies the percentage of PHX genes in different COG categories clustered in the 

four COG functional groups. The Salmonella genomes had the following distribution in the 

COG functional groups: SECSCB67- 17.20, 9.10, 15.19, and 6.57%; SEP- 18.11, 9.72, 

12.84, and 5.6%; SECT18 -16.5, 10.20, 14.85, and 6.09%; SETY2- 17.7, 9.48, 14.46, and 

5.36; and STLT2- 17.46, 9.15, 13.87, and 5.45 for the COG functional groups 1 to 4 

correspondingly. 

3.4: Discussion 

The Nc and GC3 values for all genomes suggested that they exhibited differences in codon 

usage as anticipated. If synonymous codon bias were to be absolutely dictated by GC3s, Nc 

values should fall on the expected curve of the GC3 and Nc plot. However, we found that 
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except for a few, the values obtained for majority of the genes were well below the expected 

curve (Fig. 1 ). This result clearly indicates that codon usage bias for the greater part 

of Salmonella genes is affected independently of overall base composition. On an average, 

the high Nc values of the protein coding genes and pathogenicity-related genes suggest that 

they are lowly biased. The clustering of highly expressed genes at one end of the Nc/GC3 

plots in all the Salmonella genomes points out that codon usage in the studied Salmonella 

strains has a strong probability of being determined by translational selection. 

On the whole, the GC3 content for these Salmonella genomes was moderate. Ribosomal 

protein genes and pathogenicity-related genes had lower GC3 values compared to the 

protein coding genes. Consequently, there are factors other than compositional constraints 

infl- uencing codon usage variation among the genes. Higher Fop values of the ribosomal 

protein genes and protein coding genes compared to pathogenicity-related genes imply the 

presence of higher proportion of optimal codons in these genes. If mutational bias had 

wholly controlled codon bias, these genes would have had a low Fop value. Since that was 

not the condition for these Salmonella genomes, there may be additional factors like gene 

expression levels and GC3 compositional bias acting on codon usage bias. 

It is seen from the results of the Z scores in Table 2 that there is no significant correlation 

between the P values of the different categories of the genes in the studied genomes of 

Salmonella. So, the values for CAI in Salmonella genomes do not significantly differ in the 

categories of genes studied. These observations imply that there are inconsequential 

divergences in the characteristics of the studied genes. 

The analysis of the pathogenicity-related genes revealed that not all of them were acquired 

by horizontal gene transfer mechanisms. Most of the pathogenicity-related genes acquired 

by horizontal gene transfer mechanisms were pathogenicity island encoded proteins, 

virulence proteins, secreted proteins, cell invasion proteins, toxin proteins, etc. Although the 
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rest of the homologs for pathogenicity-related genes in all the strains showed percent 

identities ranging from 91 to 100, they were not found to be acquired by horizontal gene 

transfer mechanisms. These results indicated that they were native to those bacteria and they 

warded off the selective pressure of evolution. The horizontally transferred homologs, on 

the other hand, were gained from other organisms; and the high level of percent identity 

within the strains indicated that these genes are mobile within the genus. Most of them are 

associated with toxicity, virulence, pathogenicity islands, and invasion and are responsible 

for causing diseases resulting in epidemics. The high level of identity amongst them 

indicates that they evolved as a unit. Being a pathogenic bacterium, Salmonella has to fight 

against the host's defence systems, antibiotics, etc. The evolution of these genes as a unit 

suggests their ability to survive, infect, and exist as a pathogen. 

Analysis of the correlation of codon usage bias with tRNA content in Salmonella genomes 

implies that these strains are well equipped to use small set of anticodons while maintaining 

high number of tRNAs. This is in line with Rocha's (Rocha 2004) observations. The 

ribosomal protein genes of these Salmonella strains, which are known to be highly 

expressed, showed high codon bias. This is expected since the codons associated with most 

abundant tRNAs have a propensity to be copious in highly expressed genes. The translation 

apparatus of Salmonella in all probability evolved with elevated codon bias in highly 

expressed genes compared to the rest of the genome. The mean CAl values of the studied 

Salmonella genomes varied widely from those of the ribosomal protein genes. This explains 

why selection for translational efficiency is the major source of variation of codon usage in 

Salmonella genomes. This has been previously exemplified by Rocha (Rocha 2004) in 102 

bacterial genomes. 

Multivariate statistical analysis data plotted in Fig. 2 specifY that the relative positions of 

the pathogenicity-related genes and ribosomal protein genes are same in all the studied 

86 



Chapter III · Comparative Bioinformatics Analysis of Five Salmonella Genomes 

strains. It is fascinating to see that the highly expressed genes are clustered together in all 

th{.W~hs, signifying that they share a similar codon bias that is somewhat diverse from the 

rest of the genes. These results indicate that the translational selection is quite strong 

enough to ward off the selection pressure due to mutation in the studied strains of 

Salmonella. Majority of the genes in the core region (±0.5 to +0.5) are associated with 

housekeeping functions and metabolic pathways and are highly conserved. Genes located 

away from this core region included a number of hypothetical protein genes, ribosomal 

'pl:j)tein genes, and translation factors. In all the strains, the horizontally transferred genes 

were clustered together in the core region. 

Absence of any significant correlation of the CAl values with Axis 1 of correspondence 

analysis of the protein coding genes of Salmonella strains clearly shows that expression 

levels do not discriminate genes according to their codon usage along the m~or explanatory 

axis. This was expected since the average CAl values of the protein coding genes are much 

lower than those of the ribosomal protein genes. In fact, a comparison of the results of 

different indices (Table 1) for ribosomal protein genes and all the protein coding genes 

reveals wide differences. These results validate our point that Salmonella genomes with 

lower mean CAl values are controlled by translational selection. No correlation of the 

positions of genes on the Axis 1 produced by COA of codon count with GC3 indicates that 

GC3 levels have practically no effect in differentiating the genes according to the codon 

usage variation along the first major explanatory axis. Negative correlation of the positions 

of genes in Axis I produced by COA of codon count with Nc values of the protein coding 

genes in SECSCB67 and SECT18 and SETY2 is attributed to the decrease in codon bias 

among the genes lying towards the left of Axis 1. 

The plot of the frequency distribution of CAl values for the five Salmonella genomes 

showed more or less similar distribution patterns. All the genomes had a peak in the 0.4- 0.5 
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CAl range. CAl values for all the genomes rose and fell steadily. SEBSC67 had the highest 

peak value, viz., 53.90%. It has been noted that the percentages of PHX genes in COG 

category 1 and COG category 3 for the Salmonella genomes are well above the expected 

value of 1 0%. This reveals that the genes in these categories have reasonably superior 

expression levels than rest of the genes in the genomes. Functional analysis showed that the 

COG functional group 1 (information and storage processing) incorporated the maximum 

number of PHX genes in all the genomes. The COG groups translation, ribosomal structure 

biogenesis [J], and energy production and conversion [C] contained the highest number of 

predicted highly expressed genes. The distribution of high number of PHX genes in the 

translation, ribosomal structure biogenesis (J) functional groups of COG is attributed to the 

presence of high percentage of ribosomal protein genes which are highly expressed. 

Ribosomal protein genes which are PHX contributed to 67.94%, 66.66%, 67.08%, 70.42%, 

and 67.08% ofPHX genes for SEP, STLT2, SETY2, SECSCB67, and SECT18 in the (J) 

functional group. Therefore, the weights of the ribosomal proteins played an important role 

in this case. Elevated number of PHX genes associated with translation, ribosomal structure 

biogenesis is beneficial for Salmonella to cause infections, overcome host immunity, and 

spread disease. The distribution patterns of the PHX genes in the various COG groups were 

approximately alike in all the five strains. Approximately 75% to 80% of the protein coding 

genes of the Salmonella strains belong to the COG category. This is significant because the 

huge number of genes in the COG groups of the Salmonella strains, in fact, helps them 

preserve their lifestyle, and it also divulges that Salmonella genomes are not subjected to 

genome reduction leading to gene loss. Being a pathogenic bacterium, it has to overcome 

host defence mechanisms to establish infection; and the presence of the genes responsible 

for pathogenicity and toxicity in the COG groups merely proves the fact. 
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The results from this study indicate variations existing among the genes of these genomes. 

Selection for translational efficiency is the major source of variation of codon usage in the 

genes of Salmonella. GC3 composition does not influence codon usage variation in the 

genes of these Salmonella strains. The horizontally transferred homo logs, on the other hand, 

are gained from other organisms, and the high level of percent identity within the strains 

indicated that these genes are mobile within the genus. The evolution of these genes as a 

unit suggests their ability to survive, infect, and exist as a pathogen. 

Correspondence analysis revealed clustering of the highly expressed genes together. Genes 

belonging to the COG categories are more or less conserved in the studied strains. Codon 

usage-based strategy has been applied to identify highly expressed genes in the studied 

strains of Salmonella. Genes related to information and storage processing include the 

highest number of PHX genes. Huge numbers of genes (approximately 75%-80%) in the 

COG categories of Salmonella genomes reflect their way of existence. 
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Chapter IV Bioinfonnaitc study ofPRG of three helicobacter geoomes 

4.1: Introduction 

Isolated first by Marshall and Warren in 1982, from the gastric mucosa of a patient infected 

with gastritis and peptic ulceration, Helicobacter pylori represents a genus of gram 

negative, helix shaped, flagellated and motile, microaerophilic bacteria that persistently 

colonizes the human stomach (Warren & Marshall 1983). Helicobacter pylori have been 

linked with chronic antral gastritis and diseases like MALT lymphoma, peptic ulcer and 

gastric adenocarcinoma (Covacci eta/., 1999: Cover & Blaser 1999). More than 50% of the 

world's population harbor H. pylori in their upper gastrointestinal tract but merely 10% 

suffer from overt disease (Telford eta!., 1994) Gastric cancer caused by H. pylori is a major 

cause of death worldwide particularly in the developing countries. The estimated current 

incidence of gastric cancer is approximately 16.2/100,000 persons per year (world 

standardized rate), with highest incidences in Eastern Asia, Eastern Europe, and South 

America (Ferlay et al., 2004. The mechanisms of H. pylori transmission are incompletely 

characterized. Person-to-person transmission is most commonly implicated with fecal/oral, 

oral/oral, or gastric/oral pathways. The prevalence of H. pylori infection varies widely by 

geographic area, age, race, ethnicity, and SES. (Brown 2000) 

The mechanisms by which bacterial infection leads to gastric mucosal damage include the 

direct effects of virulence factors produced by H. pylori like as cagA, vac A, or urease; the 

propagation and perpetuation of inflammation; oxidative stress; and the induction of 

apoptosis in infected gastric epithelial cells (Park & Hahrn 2007). Virulent H. pylori strain 

genomes are characterized by the presence of a 40kb stretch or block of DNA containing 

nearly 31 open reading frames known as the cag pathogenicity island or cag PAL The cag 

P AI has approximately 40 genes part of which codes for a complex type IV secretion 

system, which is able to translocate virulence proteins into the host cells. The most virulent 
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gene, the cag A gene located within the PAl codes for a 11 86 amino acid containing protein 

which confers H. pylori strains with the ability to cause ulcers. 

Like other branches of biology, the study of pathogenic microorganisms has undergone a 

paradigm shift. The incredible deluge of information from genome sequencing projects is 

revolutionizing the science of bacterial pathogenicity. The accessibility of the complete 

genome sequences of Helicobacter provides a scope to undertake bioinformatics based 

approaches focusing on synonymous codon usage and investigating the gene expression 

profile of the organism. 

The non-random usages of synonymous codons are well accredited (Ikemura 1985). 

Synonymous codon usage is species specific and differs appreciably between the genes in 

the same organism (Banerjee et al., 2004). Unlike patterns of codon usage crop up from 

diverse factors. Mutational pressure and natural selection operating at the level of 

translation are the primary reasons behind codon usage variation among the genes m 

different organisms (Sen et al. , 2008). Codon bias is quite high in the highly expressed 

genes compared to lowly expressed ones inside a genome(Sharp & Li 1986; Sharp & Li 

1987; Lafay et al., 2000; Dos Reis 2003). The bias of highly expressed genes is influenced 

by translational selection in contrast to lowly expressed genes, which is governed by 

mutational bias (Banerjee et al., 2004). In order to inspect the patterns and cause of codon 

usage, many indices have been projected to assess the degree and direction of codon bias 

Amongst them, the codon adaptation index (CAl) was proposed as an estimate of codon 

usage within a gene relative to a reference set of genes (by and large ribosomal protein 

genes) (Sharp & Li 1987). This index has been revealed to relate better with mRNA 

expression levels (Ikemura 198 1 ). Over and above codon adaptation index, the effective 

number of codons (Nc) (Wright 1990), which is described as the amount of equal codons 

producing the same codon usage bias as observed, and the incidence of optimal codons 
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(Fop )(Sen et a!., 2008), defined as the proportion of synonymous co dons that are optimal 

codons, are also used. 

4.2: Materials and Methods 

The complete genome sequences for three Helicobacter strains [Helicobacter pylori J99, 

Helicobacter pylori G27 & Helicobacter pylori P12 (hence forth, these strains will be 

referred to as HPJ, HPG & HP respectively) were obtained from the IMG website 

(www.img.jgi.doe.gov) (Markowitz 2006) Table 1 shows some of general features of those 

genomes. Table 2 shows Pathogenicity Related gene (PRG) in detail. 

Table I: Salient features of Helicobacter genomes analyzed in this study. 

Organism HPJ HPG HP 

DNA, total number of bases 1643831 1663013 1684038 

DNA G+C content (%) 39.19% 38.87% 38.79 

Genes total number 1541 1547 1620 

Protein coding genes 1494 1504 1578 

RNA genes 47 43 42 

rRNA genes 6 7 6 

tRNAgenes 36 36 36 

Protein coding genes with function 897 1008 1128 

Pseudo genes 3 0 0 

Protein coding genes with enzymes 516 515 516 

Protein coding genes with COGs 1087 1080 1082 

HPJ: Helicobacter pylori J99, HPG: Helicobacter pylori G27, HP: Helicobacter pylori P12 
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Table-2: Pathogenicity Related gene (PRG) detail 

Gene Name HPJ HPG HP 

Cag 15 20 22 

adhesin 2 2 3 

catalase 1 2 2 

glr 1 1 1 

trpA 1 1 

trpB 1 1 

urease 6 8 8 

Virulence 1 2 

All of the protein coding genes, genes associated with pathogenicity and ribosomal protein 

genes were examined using Codon W software (http://bioweb2.pasteur.fr) (sen et al., 2008) 

and E-CAI server( http:l/genomes.urv.es/CAical/E-CAI.) (Puigbo eta!., 2008). 

The software Codon W ( Sen et al., 2008) was employed to inspect G or C in the third 

position of codons (GC3s), effective number of codons (Nc) (Wright 1990) and the 

frequency of optimal codons (Fop) (Sen et al., 2008). The effective number of codons (Nc) 

is a straightforward measure of codon bias (Wu et al., 2005). It ranges from 20 (when 

merely one codon is used per amino acid) to 61(when each and every codon is used in equal 

likelihood). Fop (Sen et al., 2008) determines the section of synonymous codons that are 

optimal codons. Its value varies form 0 (meaning a gene has no optimal codons) to 1.0 

(when a gene is exclusively comprised of optimal codons). 

The 'codon adaptation index' (CAl} (Sen et al., 2008) values were computed using a web

based application: 'E-CAI server' ( http:l/genomes.urv.es/CAica!IE-CAI.) (Puigbo et a!., 

2008) taking the codon usage table as a reference. It quantifies the relative adaptiveness of a 
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gene's codon usage towards the codon usage of highly expressed genes. The relative 

adaptiveness of each codon is the quantity of the usage of each codon, to that of the most 

plentiful codon inside the same synonymous family (Sen et a/., 2008). The CAl value varies 

from 0 to 1.0 with higher CAl values signifying that the gene of concern has a codon usage 

pattern resembling that in the reference genes. 

Using the Integrated Microbial Genomes database (www.img.jgi.doe.gov) (Markowitz et 

a/., 2006), the sorted pathogenicity related genes for each strain were subjected to IMG 

Genome BLAST against the studied strains to find out the sequence homologs. The 

minimum percent identity was set at 90% and the maximum E value 1e-2. 

Correspondence analysis(COA) was performed usingCodonW (http://bioweb2.pasteur.fr) 

(Sen et a/., 2008). This method explores the major trends in codon and amino acid 

variations among the genes 

4.3: Results 

The initial step in our work was to discriminate the three genomes of Helicobacter on the 

basis of their codon usage configuration. The Nc index of Wright (Wright 1990) is an 

appropriate tool to study codon degeneracy. It is a simple measure of overall codon bias and 

ranges from twenty to sixty one where 20 is the value obtained when only one codon is used 

for each amino acid (i.e., the codon bias is maximum) and 61 is the value obtained when all 

synonymous codon for each amino acid are equally used (i.e., no codon bias). The whole 

genome of H. pylori J99, H. pylori G27 and H. pylori P12 contains 1541, 1547 and 1620 

genes respectively. The Nc score of all the genes in the genome of J99, G27 and P12 ranges 

between 22.56-61.0, 23.05-61.0 and 21.5-61.0 with a mean of 46.67, 46.27 and 46.33 

respectively. The percentage of guanine and cytosine at the third position of a triplet, known 

as GC3 was also calculated alongside N c to determine codon heterogeneity among the three 
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species of H. pylori. Table 3 shows the mean values of different indices used to study codon 

usage patterns 

Table 3: Mean values ofNc, GC, GC3, CAl, of the genes in three Helicobacter strains. 

Organism Genes MeanNc MeanGC% MeanGC3% Mean CAl 

HPJ RPG 47.10926 41.65556 43.48333 0.736722 

PRG 49.25185 38.996 40.4963 0.711074 

HPG RPG 47.32857 41.783673 43.54693878 0.751734694 

PRG 48.01765 37.92941 38.44706 0.7485588 

HP RPG 46.792 41.712 43.172 0.7548 

PRG 47.595 37.7725 38.3075 0.748775 

RPG =ribosomal protein genes; PRG =pathogenicity related gene; 

Special emphasis was given to those genes of H. pylori which are an integral part of its 

genome and empowers H. pylori with pathogenic abilities. These genes include the 

cytotoxin associated pathogenic island genes commonly known as cag P AI ( cagA, cagB, 

cagC, cagD, cagE, cagF, cagG, cagH, cagl, cagL, cagM, cagN, cagP, cagQ, cagS, cagT, 

cagU, cagV, cagW, cagX, cagy and cagZ) along with genes coding for a variety ofadhesins, 

catalase, glutamate racemase, tryptophan synthase, urease and virulence factors. The cag 

pathogenicity island is represented by nearly 30 open reading frames and many of the genes 

are homologous to virulence associated genes of other bacterial pathogens. The cag P AI 

genes are also linked with amplified severity of disease in the human host (Eaton et al., 

2001). The mean Nc score of the genes responsible for pathogenicity in J99, G27 and Pl2 is 

49.25, 48.01 and 47.59 respectively. Codon Adaptation Index or CAl was calculated for the 

entire genome of three strains of Helicobacter pylori. Codon Adaptation Index is a well

accepted parameter for studying the expressivity of a gene and assesses the extent to which 

the selection has been effective in moulding the pattern of codon usage. The Codon 

Adaptation Index ranges from 0 to 1.0, with higher CAl values signifying that the gene of 
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concern has a higher degree of expressivity (Sharp & Li 1987). The CAl values ranges 

between 0.077 to 0.519 for J99, 0.075 to 0.419 for G27 and 0.077 to 0.454 for P12 

respectively. Using ribosomal proteins of each genome of Helicobacter included in this 

study as standard for measuring gene expression levels it was observed that genes that may 

be considered as potentially highly expressive in all the three strains should have CAl 

values ranging from 0.65 to 0.8. Correspondence analyses of codon count of the protein 

coding genes, ribosomal protein genes and pathogenicity-related genes for the Helicobacter 

strains were performed and shown in Figure I which reveals the positions of the genes on 

the planes defined by the first and second principal axes generated by COA of codon count 

for the protein coding genes, pathogenicity-related genes, and ribosomal protein genes. 

A multiple alignment of the pathogenicity related genes of the three species of H. pylori 

reveals that most of the H. pylori G27 pathogenicity genes such as cagA, cagD, cagF, cagG, 

cag M and others has significant identity with H. pylori P 12 genes. Pair wise comparison of 

the pathogenicity genes of the three species based on the identity scores shows that the 

identity value mostly above 95%, the only exception being cagA gene. The identity score of 

H pylori Pl2 cagA gene with both H. pylori G27 and H. pylori J99 is significantly less at 

87. 
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4.4: Discussion 

Detailed codon usage analysis of the cag PAI genes clearly demonstrates that cagD genes 

have a relatively higher Nc compared to the other cag PAI genes. The protein encoded by 

cagD gene is a covalent dimer which is an important component of the type IV secretion 

system (T4SS) that plays a crucial role in CagA translocation (Cendron eta/., 2008). 

The most unpredictable observation was the apparent lack of genes with similar CAI values 

in the three Helicobacter strains. The cag P AI and other pathogenicity related genes of the 

three strains of H pylori did not show a significant amount of anti-correlation of Nc with 

CAI as expected. But, it was quite remarkable to observe the fact that though the Nc values 

indicated lack of codon biasness, the CAI values pointed towards higher expression levels. 

This observation is quite significant taking into account the fact that codon biasness is one 

of the most, if not the most important factor in achieving higher gene expression levels. 

The correspondence analysis of the three species of Helicobacter pylori indicates that in the 

case of H pylori J99 the expression level of the cag and pathogenicity related genes is 

substantially similar to that of the ribosomal protein which clearly indicates that the 

pathogenicity related proteins are potentially highly expressed. Some sort of similar picture 

is also observed in the case of the other two species included in our study but in this case 

there are probably five pathogenicity related genes whose probable expression level does 

tally with that of any other ribosomal protein genes. 

There is a high level of identity among the cagG, cagH and cage genes of the three species 

of H pylori. The conservedness is consistent with their high CAI value, i.e., expression 

level and these genes have a crucial role stomach disease. 
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ChapterV Characterization of zeta toxin through condensed matrix method 

5.1: Introduction 

The Zeta protein causes Gram-negative bacteria (Escherichia coli) to cease growing and 

form long cells with many chromosomes, clearly unable to divide. Similarly, when the toxin 

is introduced into yeast cells it changes their morphology and halts budding, and in large 

quantities it causes death. Human cancer cells also die from the toxic effect of the Zeta 

poison. The poison protein Zeta is extraordinarily large compared other toxins (287 vs. 

around 100 amino acids) and with the exception of its frequently encountered nucleotide 

binding motif, it does not show any similarities to any known proteins. The molecular 

mechanism by which the Zeta toxin operates has not yet been discovered (Zielenkiewcz & 

Dmowski 2009). Where alignment based and structural based phylogeny fails nucleotide 

triplet based method give light towards molecular phylogeny. 

Availability of nucleotide sequences of zeta toxin motivated us to construct phylogram 

using their nucleotide sequence, which will complement the phylogram obtained by 

sequence similarity. In this work we have done the molecular phylogeny of zeta toxin using 

their nucleotide sequence and without making any sequence alignment. It is a based on a 

method developed by basak et a! associating DNA sequences with a set of sequence 

invariant. In this work we have quantified the string, which favors the direct comparison of 

the sequences. A sequence invariant, as considered as a number independent of the labels A, 

C, G, T standing for adenine (A), cytosine (C), guanine (G), and thiamine (T). We have 

form the matrix associated with each sequence and calculated the leading Eigen value of the 

matrices to see the variation of leading Eigen values associated with the string and the 

relationship between the enzymes. We have also build a phylogram using the Eigenvalues 

of the characteristics matrices of zeta toxin. 
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Our results complement the observation with the earlier studies based on multiple sequence 

alignment and structural alignment. The uniqueness of this method is that it does not 

employ sequence alignment of complete nucleotide sequence of the corresponding gene. 

5.2: Material and Methods 

The nucleotide sequences of zeta toxin of some pathogenic and non pathogenic bacteria 

were obtained from www.img.jgi.doe.gov. In a DNA sequence of four letters, there are 64 

possible triplets (subsequence of length3) that can occur, starting from AAA, AAT, AAG, 

AAC, ATA, ATT, ATG, ATC, AGA, AGT, AGO, AGC, ACA, ACT, ACG, ACC, etc. A 

4x4x4 cubic matrix with 64 entries that denote the frequencies of occurrence of all the 64 

triplets in a DNA sequence are introduced. For the cubic matrix, three groups of 4x4x4 

matrices, {Ml, M2, M3, M4}, {M5, M6, M7, MS}, {M9, MIO, Mil, Ml2}, can be 

obtained, each group of which contain all entries of the cubic (see Table I). Usually the 

group of 4x4 matrices {Ml, M2, M3, M4} as the representative of the cubic matrix. The 

four matrices contain not only the information about frequencies of occurrence of all triplets 

of a DNA sequence but also the information about the frequencies of occurrence of pairs 

and every letter in a DNA sequence. For example, the number of all TO-pair in a DNA 

sequence is equal to the row sum of the third row in M2 plus a, where a = 0 if the last two 

letters of the DNA sequence are not TO and a = I otherwise. The frequency of occurrence 

of any pair in a DNA sequence can obtain by the above method. In addition, the frequencies 

of occurrence of four letters A, T, G, C are, respectively, equal to the sum of all entries of 

Ml, M2, M3, M4 plus a, where a are, respectively, equal to the number of A, T, G, C in the 

last two letters of the DNA sequence. The column sums ofMI, M2, M3, M4 just denote the 

number of pairs of distance two in a DNA sequence (Randic, eta! 2001; Randic & Basak 

2001). 

107 



ChapterV Characterization of zeta toxin through condensed matrix method 

Table 1: Three Groups of Four 4 x 4 matrices, {M1, M2, M3, ~},{M5, M6, M7, M8}, and 

{M9, Mw, M1 ~, MIZ} Listing All 64 possible XYZ Entries, Where X, Y, Z =A, C, G, T. 

M, M, 

AAA AAT AAG AAC TAA TAT TAG TAC GAA GAT GAG GAC CAA CAT CAG CAC 

ATA AIT ATG ATC ITA TIT ITG ITC GTA GIT GTG GTC CTA CIT CTG CTC 

AGA AGT AGG AGC TGA TGT TGG TGC GGA GGT GGG GGC CGA CGT CGG CGC 

AGA ACT ACG ACC TCA TCT TCG TCC GCA GCT GCG GCC CCA CCT CCG CCC 

Ms M, Ms 

AAA AAT AAG AAC ATA AIT ATG ATC AGA AGT AGG AGC ACA ACT ACG ACC 

TAA TAT TAG TAC ITA TIT ITG ITC TGA TGT TGG TGC TCA TCT TCG TCC 

GAA GAT GAG GAC GTA GIT GTG GTC GGA GGT GGG GGC GCA GCT GCG GCC 

CAA CAT CAG CAC CTA CIT CTG CTC CGA CGT CGG CGC CCA CCT CCG CCC 

M, 

AAA TAA AAG CAA AAT TAT GATCAG AAG TAG GAG CAG AAC TAC GAC CAC 

ATA ITA GTA TAC AIT TIT GIT CTG TAG ITG GTG CTG ATC CIT TCG CTC 

AGA TGA GGA CGA AGT TGT GGT CGG AGG TGG GGG CGG AGC GGC GCG CGC 

ACA TCA GCA ACC ACT TCT GCT CCG ACG TCG GCG CCG ACC CCT GCC CCC 

We developed our own program in C++ to count all the possible triplets of t-RNA 

synthetase and formed the matrices by using all the possible triplets. Also we have 

calculated the leading Eigen values of the matrices by using MATHLAB (Version 4) (Toh 

et a/., 1999) software. We have constructed a distance matrix of the synthetases by 

summing the square of the difference of eigen values. A phylogram of the synthetases are 

constructed by the cluster analysis of the similarity matrix using phylip (Felsenstein 1989). 
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5.3: Results 

The lengths of the zeta toxin of some pathogenic and non-pathogenic bacteria are given in 

Table 2. It is clear that the enzymes differ considerably in length. Firstly, we took the 

nucleotide sequence of zeta toxin of pathogenic and non pathogenic bacteria listed in Table 

3 and counted the frequencies of occurrence of all the 64 triplets then the group of 4 x 4 

matrices {Ml, M2, M3, M4} as the representative of the cubic matrix are constructed. 

Table 2: The lengths of the zeta toxin of some pathogenic and non-pathogenic bacteria 

Bacteria Name Short Length Nature 
name 

Pseudomonas fluorescens PSE 759 Non pathogenic 

Frankia sp. Cci3 FRI 1053 Non pathogenic 

Frankia sp. Cci3 FR2 1353 Non pathogenic 

Mesorhizobium sp. BNCI plasmid 1 MES 1761 Non pathogenic 

Alteromonas macleodii 'Deep ecotype ALT 720 Non pathogenic 

Streptococcus pneumoniae A TCC 700669 STR 759 Pathogenic 

Neisseria cinerea ATCC 14685 NEI 720 Pathogenic 

Enterococcus faecalis TXO 104 ENT 441 Pathogenic 

Oribacterium sinus F0268 ORI 783 Pathogenic 

O.algarvensis Gamma I OLA 306 Non pathogenic 

Crenothrix polyspora CRE 2154 Non pathogenic 

The leading Eigen values of each matrix are evaluated. The leading Eigen values of each 

matrix of those bacteria are represented in Table 4. The distance matrices of the synthetases 

are constructed by summing up the square of the difference of eigen values. The distance 

matrix for bacteria mentioned in Table 1 is given in Table 4. 
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Table 3: The leading Eigenvalues of each matrix of bacteria are represented in Table II. 

~arne of Bacteria Short 
Name 

Ml M2 M3 M4 

Pseudomonas fluorescens PSE 63.9742 59.4986 66.1942 61.1813 

IFrankia sp. Ccl3 FRl 40.9835 45.5497 83.7531 1.0101 

Frankia sp. Ccl3 FR2 51.1907 38.5775 82.8222 1.001 

Mesorhizobium sp. BNCl plasmid 1 MES 39.4057 47.476 87.3356 86.5084 

Alteromonas macleodii 'Deep ecotype ALT 80.975 64.4988 59.6351 51.9077 

Streptococcus pneumoniae A TCC 700669 STR 101.2985 68.0832 59.42 49.6625 

~eisseria cinerea ATCC 14685 NEl 92.048 69.8199 70.3941 41.2137 

Enterococcus faecalis TX0104 ENT 93.5377 88.5706 54.7326 37.3998 

Oribacterium sinus F0268 ORI 108.5584 71.2367 65.8962 40.403 

Olavius algarvensis Gamma! OLA 71.8841 53.1558 57.2465 69.9674 

Crenothrix polyspora CRE 72.5779 69.704 60.1925 54.6687 

Table 4: The distance matrix of zeta toxins of some pathogenic and non-pathogenic 

bacteria mentioned in Table 1 

@ PSE FR1 FR2 MES ALT STR NE1 ENT OR! OLA CRE 

PSE 0 4652.03 4499.27 1836.57 443.05 1645.37 1311.01 2416.11 2557.36 260.05 256.61 

FR1 4652.03 0 153.67 7328.99 5130.63 7104.81 4991.42 6779.14 7096.86 6470.41 5015.98 

FR2 4499.27 153.67 0 7549.96 4688.15 6296.98 4416.93 6406.48 6196.68 6051.22 4818.6 

MES 1836.57 7328.99 7549.96 0 3982.31 6392.28 5609.09 8093.65 7932.02 2266.07 3344.99 

ALT 443.05 5130.63 4688.15 3982.31 0 430.98 381.04 971.79 977.8 543.17 105.54 

STR 1645.37 7104.81 6296.98 6392.28 430.98 0 280.4 652.31 190.33 1505.05 853.16 

NEI 1311.01 4991.42 4416.93 5609.09 381.04 280.4 0 613.64 295.49 1683.91 664.21 

ENT 2416.11 6779.14 6406.48 8093.65 971.79 652.31 613.64 0 659.73 2790.05 1123.29 

OR! 2557.36 7096.86 6196.68 7932.02 977.8 190.33 295.49 659.73 0 2620.79 1532.99 

OLA 260.05 6470.41 6051.22 2266.07 543.17 1505.05 1683.91 2790.05 2620.79 0 517.05 

CRE 256.61 5015.98 4818.6 3344.99 105.54 853.16 664.21 1123.29 1532.99 517.05 0 
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ChapterV Characterization of zeta toxin through condensed matrix method 

Using the distance matrices phylograms are constructed, which are represented in Figures I. 

Figure 2 represented the Phylogram of zeta toxins based on Clusta!W (Thompson eta!., 

1994). 

Figure 1: Phylogram of zeta toxins based on condensed matrix method . 
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Figure 2: Phylogram of zeta toxins based on ClustalW . 

....---------------------------- MES 

~------------ F~ 

EN! 

PSE 

~..._ __ AI.T 

FRI 

OIA 

CRE 

NB 

STR 

OR! 

5.4: Discussion 

From Figure 1 is seen that, zeta toxin pathogenic and non-pathogenic bacteria forms 

different cluster. It is also seen that two zeta toxins of Frankia sp. Cc13 are in the same 

clade. From Figure 2 it is seen that separation are not clear between pathogenic and non

pathogenic bacteria which indicates superiority of condensed matrix method. It is also seen 

that two zeta toxins ofFrankia sp. Cc13 are in the different clade. 
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Sequence comparison quickly becomes unreliable at tbis and lower levels of sequence 

identity. In this regime of similarity, it becomes difficult to distinguish between correctly 

aligned homologous sequences and unrelated sequences or random alignments. Structure 

based phylogeny has limited scope because adequate number of structures are not yet 

solved to draw any general conclusion. The nucleotide triplet based phylogeny is free from 

above mentioned limitations and it considers the full lengtb of tbe genes for construction of 

phylogram. From the separation of zeta toxin by condensed matrix metbod may help to 

identify pathogenic or non-pathogenic strain/species. 
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Chapter VI MD Simulation Receptor-Binding C-Terminal Domain from Clostridium difficile Toxin A 

6.1: Introduction 

Gastrointestinal diseases like antibiotic-associated diarrhea are caused by the gram positive 

bacteria like Clostridium difficile (Bartlett et al., 1978; George et al., 1978; Bartlett et al., 

1980a; Kelly & LaMont 1998). A strong correlation between pseudomembranous colitis, 

antibiotic therapy, C. difficile colonization and cytotoxin production are reported by various 

researchers (Arons son et al., 1981; Bartlett et al., 1980b; Burdon et al., 1981; Don & Devis 

1981; George et al., 1982; Meyers et al., 1981; Tedesco, 1981; Willey & Bartlett 1979). 

Protective antibodies produced by the host immune system against the toxins of C. difficile 

play an important role in reducing the severity of disease. Despite the lack of understanding 

of the epidemiology of C. difficile disease, there has been a considerable progress towards 

the understanding of organism's mechanism of virulence. The toxins, TcdA and TcdB were 

studied intensively as major C. difficile virulence factors. C. difficile toxins A and B belong 

to the family of large clostridial cytotoxins. They are often called clostridial glucosylating 

toxins, as their toxic potency depends on their glucosyltransferase activity (Von Eichel

Streiber et al., 1996; Schirmer & Aktories 2004; Aktories & Barbieri 2005; Aktories & Just 

2005; Voth Ballard 2005). C. difficile disease is caused by TcdA and TcdB and is detected 

in the stools of patients by antibody-based and cytotoxicity assays. 

These two toxins, along with the other members of the large clostridial toxin family of 

toxins, target the Ras super family of small GTPases for modification via glycosylation. 

This irreversible modification inactivates these small regulatory proteins and disrupts the 

signaling pathways in the cell. Along with enzymatic modification of targets, there are also 

several important steps in receptor-binding and cell entry necessary for intoxication. 
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In in vivo studies of toxins, it was found that toxin B was unable to cause disease in the 

absence of toxin A. In contrast, purified toxin A was capable of causing disease even in the 

absence of toxin B (Lyerly eta!., 1985). 

The experimental evidence for receptor-binding by the C-terminus of TcdA comes from a 

series of studies showing the neutralizing capacity of monoclonal antibodies to this region 

of the protein (Frey & Wilkins 1992) and the ability of recombinant fragments from this 

region to protect against the toxin. TcdA-induced cytotoxicity is blocked by a fragment of 

C-terminus by the competitive inhibition of receptor-binding (Sauerborn et a!., 1997). C

terminal receptor-binding domain was shown to be necessary for both receptor-binding and 

effective endocytosis ofthe holotoxin (Frisch et al., 2003). 

The C-terminal Repetitive Domain (CRD) binds carbohydrates on colonic epithelial cells as 

an initial step in pathogenesis. Various oligosaccharides, including the linear B-type 2-

trisaccharide a-Gal-(1, 3)-b-Gal-(1, 4)-b-GlcNAc, bind specifically to TcdA (Tucker & 

Wilkins 1991; Teneberg eta!., 1996). The functional importance of carbohydrates binding 

to TcdA is supported by previous studies. TcdA-f2 consists of nine Short Repeats (SR) and 

two Long Repeats (LR). First, diethylpyrocarbonate modification of histidine residues in 

TcdA specifically abolishes cytotoxicity and receptor-binding activities (Roberts & Shone 

2001). 

Ho eta!. (2005) solved the crystal structure of a 127-aa fragment of C-terminal repeats from 

C. difficile toxin A with the 1.85 A0 resolution. The structure of a 127-residue C-terminal 

fragment of TcdA (TcdA-fl) is highly repetitive which contains SR and LR. The crystal 

structure ofTcdA-fl reveals that each SR or LR contains a single ~-hairpin consisting of a 

pair of five- to six-residue antiparallel ~-strands connected by a tight turn. The first short 

repeat (SRI) starts from Glyl4 residue and ends with Gly33 residue. The second short 

repeat (SR2) consists of Arg64 residue to Thr83 residue. The third short repeat (SR3) starts 
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from Gly84 and ends at Gly!05. The fourth short repeat (SR4) starts from Glyl06 to 

Glyl26. Each SR consists of two-beta strands connected by a turn and one repeat unit is 

connected with other repeat by a loop. There is an LR, which is in between the two short 

repeats SRI and SR2. The LR starts from Gly33 residue and ends with Arg64 residue. It has 

also two strands connected by a tum. 

The 3D structure of TcdA-fl suggests that the boundaries of each SR or LR should be 

defined to coincide with the beginning of the P-hairpin and the end of the connecting loop 

preceding the following P-hairpin. Each P-hairpin interacts with both the preceding and 

following P-hairpins, except for the N- and C-terrninal hairpins. The N-terminal end of 

TcdA-fl adopts a non-natural structure due to the truncation of the protein. There is a 

hairpin in N-terrninal hairpin, comprising hydrophobic residues which form a non-natural 

intermolecular interface with a few exposed hydrophobic residues of C-terminal. 

In the present work, we have done molecular dynamics simulation and Principal 

Component Analysis (PCA) of C-terminal domain from Clostridium difficile toxin A to 

understand its global and local motional properties which will help to understand its 

function and mode of action. 

6.2: Materials and Methods 

The 1.85 A o resolution x-ray structure of C. difficile toxin A (Protein Data Bank code 2f6e) 

(Ho et a/., 2005) was used as a starting structure. A single monomer was solvated with SPC 

water molecules in a cubic box, having an edge length of 35 A0
• The simulation was 

performed using GROningen MAchine for Chemical Simulation (GROMACS) (Lindahl et 

al., 2001). The LINCS algorithm was used to constrain all bond lengths (Hess et al., 1997). 

The simulation was conducted at a constant temperature (300 K), coupling each component 

separately to a temperature bath using the Berendsen coupling method (Berendsen et al., 

1984). A cutoff of 0.9 nm was used for Lennard Jones interaction and 1.0 nm for Coulomb 
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interaction (Darden et al., 1993). The time step was 2 fs, with coordinates stored after every 

4 ps. MD simulation was performed for 3 ns. Before running simulation, an energy 

minimization was performed in steepest descent method (converged at 523 steps), followed 

by conjugate gradient method (converged at 8 steps) (Essmann et al., 1995; Bothra et al., 

1998); and this was followed by 1.0 ns of simulation imposing positional restraints on the 

non-H atoms. The positional restraints were then released and 3 ns production run were 

obtained and analyzed. Analysis programs from GROMACS were used and PCA was 

performed with the MD trajectory. 

6.3: Results 

The overall structural stability of the protein during the simulation was monitored using 

several parameters like Root Mean Square Deviation (RMSD), Radius of gyration (Rg), 

Root Mean Square Fluctuation (RMSF), etc. 

The time evolution of RMSD is computed taking the constrained structure of the whole 

protein as initial structure and presented in Fig.l. 
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Figure-1: The time evolution ofRMSD during 3000ps dynamics simulation time. 

The time evolution of Rg is presented in Fig.2, 
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Figure-2: Time evolution radius of gyration changes tn aqueous medium during 3000ps 

dynamic imulation. 

RMSF indicates the ncxibility of the protein . RMSF of Ca and B factors are presented as a 

function of res idue numbers in Fig.3. 

0 .6 
-- · • -- Beta fac tor 

0 .5 

0.4 

0 .3 

0 .2 

0 . 1 .... 
0 

0 10 20 30 40 50 60 70 
Res idue o . 

8 0 90 

---+-- RMSF 

. .. . .. ~- .. ... ; : , · ........ .., ·"~ ., -• 

100 I 10 120 130 

Figure-3: Plot of the RMSF of Ca atom value in aqueous medium and B factors is 

pre ented a a fu ncti on of residue number of Clostridium d!{//cile toxin A in starting X-ra) 

structure. 
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We have taken some selected snapshots from the dynamics trajecto ry considering time 

evo lution of RMSD as a guideline. The snapshots were taken when the RMSD from initial 

structure was high, and they are represented in Fig.4. 

184ps 

920ps 

1556ps 

'----------- 2300ps 

~----------------- 2900ps 

Figure-4: Snapshots at different time. 

We have also calculated the RMSD of the SR l and LR. We have determined the RMSD 

values of the SR and LR and their structura l e lements, which is g iven in Table 1. 

Table 1: Mean RM SD val ues of different repeating unit including strand, tum and Loop 

Repeat Unit Overall Strand I Strand II T um Loop 

SRI 0. 196788 0. 107284 0.1736 18 0 .145548 0. 170353 

LR 0.236 153 0. 103893 0.110976 0. 11 58 19 0.254 105 

SR2 0.239528 0.2 12295 0.139324 0 .1698 18 0.2 16462 

SR3 0. 17086 1 0. 124 877 0.143989 0. 123328 0. 1658 11 

SR4 0.230572 0.10993 1 0.14 1252 0. 104894 0.2455 12 

Time evolution of RM SD for different repeating units are presented in Fig.5. 
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Figure-S: Time evolution of RMS D of different repeating unit of Clostridium d([{tcile toxin 

A. 

T he average RMSD fo r the overa ll strands of different repeating uni ts are represented in a 

histogram (F ig.6) and it is seen that strand 1 of SR2 and s trand 1 of LR showed the highes t 

and lowest fluc tuations respectively among a ll s trands. Time evolut ion of RMSD values of 

strand 1 of SR2 and strand I of LR are given in Fig. 7. 
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Figure-6: Histogram ofRMSD for the all the strands of different repeating unit 
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Figure-7: Plot of time evolution ofRMSD values ofSR2 of strand I and LR of strand I. 

A common approach in the identification of the major motions of a protein is the use of 

PCA (Garcia, 1992; and Amadei et al., 1993). PCA reduces the dimensionality of a complex 

data set and applied to decompose a complex motion of proteins, which are characterized by 

an eigenvector and an eigenvalue. The eigenvalue for a given motion represents the 

contribution of the corresponding eigenvector to the global motion of the protein. PCA of 

the C. difficile toxin A simulation reveals that the first 10 eigenvectors account for 87.16% 
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of the global motion and that the first eigenvector corresponds to 49.68% of the total 

motion, the econd to 15.32%, and the third to a further 5.90% (Fig.8). 
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Figure-S: Plot of e igenvalues with e igenvector indexes. 

The protein compn ses one LR and fo ur SR. Each repeat consists of two beta strands 

fo ll owed by a loop. 

The projection of RMSF on four vectors i pre ented in Fig.9. 
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Figure-9: Plot of the projection of RMSF on four vectors. 
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Time evolution o f princ ipal component I (PC I ), principal component 2 (PC2), principal 

component 3 (PC3) and princ ipal com po nent 4 (PC4) in water i represented in Fig . I 0. 
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Figure-10: Plot of four principle components (nm) with simulation time 

The projection of the dynamics trajectory onto the first two eigenvectors was analyzed and 

presented in Fig. 1 I. 

~ 
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Figure-1 1: Plot of eigenvector I with eigenvector 2. 

Accordi ng to the report of Greco et al. (2006), the crystal structure of the C-terminal 255 

residues of TcdA from C. difficile stra in 48489, tox inotype VI (TcdA-f2) found to be a 

synthetic derivative of the natural carbohydrate receptor, a-Gal-(1, 3)-b-Gal-( I , 4)-b 

GlcNAcO(CH2)8C0 2CH3 (CO-grease). The structural feature and sequence similarity of 

LR as well as the similar binding mode ind icates the conserved nature of the seven 
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carbohydratebinding sites in TcdA-f2 which consist of an LR and the hairpin turn of the 

following SR. 
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Figure-12: Histogram of RMSD values for the residues of binding site during the 

simulation time 

To get insight about the binding mechanism, the residues of binding site were critically 

analyzed. The residues Lys80, Arg60, Ser79, Asp50, and Gln57 are very important for 

binding processes, as pointed out by Greco et a!. (2006). From the RMSD values during the 

simulation time (Fig.l2), it is evident that the residues, Ala51, Ala 58, Ile59 and Tyr93 have 

very low fluctuation. The residues, Arg60, Phe65, His67, Ile72, Ile114 and Tyr115 have 

high fluctuation, and the fluctuation was moderate for the residues Asn39, Glu42, Asp50, 

Gln57, Ser79, Trp85, Val122 and Lysl23 during the whole simulation time (Mean RMSD 

and SD value is given in Table 2). 
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Table-2: Mean RMSD and S.D. of different residue binding site. 

Binding residue Mean RMSD(nm) S.D 

Asn39 0.087781 0.034847 

Glu42 0.077564 0.034463 

Asp50 0.084088 0.034517 

AlaS! 0.01535 0.007662 

Gln57 0.052091 0.028836 

Ala58 0.015217 0.006695 

lie 59 0.038305 0.026329 

Arg60 0.130462 0.033052 

Glu62 0.095121 0.029304 

Phe65 0.118562 0.031224 

His67 0.106327 0.028664 

lle72 0.107694 0.022652 

Asn77 0.09213 0.025975 

Asn78 0.098776 0.02911 

Ser79 0.050197 0.016265 

Lys80 0.080878 0.022682 

Trp85 0.055926 0.045661 

Met92 0.090154 0.018117 

Tyr93 0.026039 0.007814 

lle114 0.108123 0.020269 

Tyrll5 0.120166 0.012418 

Aspl20 0.099466 0.02529 

Vall22 0.062328 0.043586 

Lysl23 0.076151 0.01389 

The 6-0H of ~-galactose accepts hydrogen from Lys80 which has RMSD value 0.080878. 

The B-face of ~-galactose packs against the apolar proximal portions of Arg60 which has 

RMSD value 0.130462, and Ser79 has RMSD value of 0.050197. The a -galactose at the 

nomeducing end lies in a pocket formed by highly conserved residues in the loop after the 

~-hairpin of the LR. Its hydrophobic B-face packs against Ile59 with an average RMSD 

value 0.038305 and the 6-0H forms hydrogen bonds with Asp50 (RMSD 0.084088) and 

Arg60 (RMSD 0.130462), whereas the 4-0H accepts hydrogen from Gln57 (RMSD 

0.052091 ). During the simulation, several hydrogen bonds broke and formed. It is found 

that the number of hydrogen bonds ranged from 54 to 85 (Fig.l3 ). 
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Figure-13: Number of hydrogen bond during the whole simulation time. 

2500 3000 

A series of hydrogen bonds were observed in the side chains of highly conserved amino 

acids of 18 residue loop of LR in C. difficile toxin A (Ho eta/., 2005). We have monitored 

the distance of several hydrogen bonds during the simulation time. Some of the hydrogen 

bonds were very strong, but some were broken during the simulation time. It was found that 

the hydrogen bonds between amide nitrogen of Asn53 and the carbonyl oxygen atoms of 

Pro46 (HI), amide nitrogen of Asn53 and the carbonyl oxygen atoms of lie 54 (H2), 

carbonyl oxygen of Asn53 and the amide nitrogen atoms ofThr49 (H3), carbonyl oxygen of 

Asn53 and the amide nitrogen atoms of Asp50 (H4) and the side chain of Thr49 and the 

main chain peptide groups of Pro46 (H5) remain intact during the whole simulation time, 

whereas the hydrogen bonds between side chain of Glu55 and the main chain peptide 

groups of Ala4 7 (H6), the side chains of Gln57 and the main chain peptide groups of lie 54 

(H7 and HS) and hydrogen bonds formed between the side chains of Asn48 and Asn52 

(H9), as well as between the side chains of AspSO and Arg60 (HlO and Hll), were broken 

during the whole simulation time (Fig.l4 ). 
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Figure-14: Plot of different mean hydrogen bond distance in the whole simulation time 

4. Discussion 

It is evident from Fig.! that RMSD increased slowly up to 2,000 ps, then there was a small 

jump at about 2,500 ps and remained at that state with low fluctuation. The initial drift in 

RMSD may be due to the difference of crystal structure with solution structure. From Fig.2, 

it is clear that Rg does not show much variation during the simulation time, which indicates 

that the protein is not much flexible. 

The plot of B-factor and RMSF (Fig.3) presents a similar trend across the sequence, 

although there are differences in the environmental condition of the protein molecule in the 

x-ray and MD studies. From RMSF, it is evident that the first and last residue fluctuates 

considerably. Interestingly, pronounced fluctuations are observed along some amino acid 

stretches (16-23, 45-57,84-94, and 110-117), which indicate the flexibility of the toxin in 

that region. 

From the snapshots (Fig.4), it is also clear that there was no major change in the protein 

conformation. 
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Among the SR units, SRI and SR3 have low RMSD values. Strand I and tum of SR2 have 

approximately double RMSD in comparison to the strand I of other SR. Strand II of SRI 

has higher RMSD value amongst the strand II of the entire SR. The loop that connects LR 

and SR2 has the highest RMSD value among different loops (see Table-!). 

It is clear from the Fig.S that SRI and SR3 have less fluctuation among the SR. 

From Fig.9, it is evident that fluctuation is high in the projection on 1st vector. It indicates 

the analysis of 1st vector will provide more information regarding the collective motion of 

the protein. 

Fig.lO indicates PC! fluctuates remarkably in comparison to PC2, PC3 and PC4. 

From Fig. II, it is clear that the toxin is sampling different conformational space during the 

simulation. It is also clear from the Fig.ll that the protein traverses one conformational 

space around the origin, second one at the right side of the origin, and the third one at the 

left side of the origin which are not much scattered, indicating less conformational freedom 

of the toxin; this is also revealed by different snapshots of the different structures extracted 

along the simulation trajectory in different times (Fig.4). 

The hydrogen bond network is almost conserved during the simulation time. Extensive 

study of the residues of binding site was performed in order to understand the binding 

mechanism. From Table 2, it was found that Ser79 and Gln57 have low RMSD values. The 

Lys80 residue, which accepts hydrogen from the 6-0H of ~-Galactose and donates 

hydrogen to a water molecule, has a moderate RMSD value indicating the conformation 

change of this residue is possible during binding process. AspSO has a moderate RMSD 

value. Arg60 has much higher flexibility than the other binding residues (Lys80, Ser79, 

AspSO, and Gln57). The side chain of Gln57 is involved in hydrogen bond with main chain 

peptide group of Ile54. Arg60 has hydrogen bond with AspSO which often breaks during 
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simulation and has high conformational freedom, and this is also supported by its RMSD 

value. 

The binding site is much flexible so the binding may be initiated by those residues which 

have a very crucial role in inducing binding ligand. The other residues in binding site may 

be responsible for the stability of ligand toxin complex. These analyses will further help to 

understand the binding mechanism and overall motional properties of the protein. From the 

overall study of the dynamics trajectory such as Rg, RMSD of the toxin and PCA, it is clear 

that C. difficile toxin A is not much flexible. 
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Chapter VII Motional properties of Staphylococcus aureus exfoliative toxins A and B 

7.1: Introduction 

Staphylococcus aureus can cause a spectrum of exfoliative skin conditions including 

staphylococcal scalded skin syndrome (SSSS), which can present as a severe and life 

threatening illness in extremely premature neonates. Kapoor et al (2008) describe a case of 

an extremely premature neonate with SSSS and discuss relevant pathology (Kapoor et al., 

2008). The term Staphylococcal scalded skin syndrome (SSSS) is used for a collection of 

blistering skin diseases induced by the exfoliative ( epidermolytic) toxins (ETs) of 

Staphylococcus aureus (Lowney et al., 1967). It primarily affects neonates and young 

children although adults with underlying diseases are also susceptible. Staphylococcal 

infections are increases in all age groups worldwide, and show an increasing resistance to 

conventional antibiotics; despite the availability of a wide range of antibiotics, these 

infections still carry a significant morbidity and mortality, particularly among adults 

(Jeyakumari et al., 2009). Because of the relative rarity of the disease and ease of treatment 

of SSSS has not received as much attention as it deserves by either clinicians or researchers. 

Furthermore, although the condition was described over a century ago, understanding of it 

began only when the toxins were discovered (Scopes et al., 1974; Melish & Glasgow 1970; 

Kapral & Miller 1971). Even now, their mechanism of action is still not certain. However, 

recent data from computer modeling and crystallography of the toxins has provided us with 

a clearer and more defined approach to understanding the pathologic processes of the 

disease (Ladhani et al., 1999). Two serologically distinct forms of exfoliative toxin exist 

and have been designated as ETA and ETB (Arbuthnott & Billeliffe, 1976; Kondo et al., 

1973). The two forms differ in molecular weight, isoelectric point (pi), and amino acid 

composition (Arbuthnott et al., 1976; Johnson-Winegar & Spero 1983; Wiley & Rogolsky 

1977). 
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X-ray crystallographic structures of ETA and ETB (Cavarelli et al., 1997; Papageorgiou et 

al., 2000; Vath et a/., 1997) suggest that the toxins are members of the trypsin-like serine 

protease family. Protease activity has not been demonstrated for either toxin in vitro, but 

both ETA and ETB have intrinsic esterase activity, which is associated with serine proteases 

(Baile & Redpath 1992). It is likely that both toxins are proteases. In addition to having 

possible protease activity, both ETA and ETB are reported to be bacterial super antigens 

(Vath eta/., 1997; Marrack & Kappler 1990; Monday et aL, 1999; Morlock eta/., 1980). 

The protein ETA contains two domains (I and II) of similar structure, which are built 

around a six-stranded antiparallel b sheet folded into a p barrel. This architecture is well

known as the serine protease chymotrypsin-like fold, which has been illustrated by several 

high resolution structures (Perona & Craik 1995; Lesk & Fordham 1996). 

ETB consists of two similar domains packed together to form a compact molecule of 

approximate dimensions 60 x 56 x 36 A. The core of the molecule contains the "trypsin

like" serine protease fold. Domain 1 is composed of a P-barrel (comprising strands P2-P) 

surrounded by two short helices ( a2 and a3) the C-terminal portion of the molecule that 

contains two short P-strands CP 14 and P 15) and a short helix (aS). Domain 2 contains a short 

amphipathic N-terminal helix (al) on one side of a six-stranded twisted P-barrel structure 

CP8-Pl3) (Papageorgiou et al., 2000). Both ETA and ETB share amino acid identity with 

staphylococcal V8 protease. This identity includes residues of the V8 protease Ser-His-Asp 

catalytic triad, a "signature sequence" common to serine proteases. Although this suggests 

that ETA and ETB are serine proteases, no protease activity has been demonstrated for 

either toxin to date. However, both ETA and ETB exhibit esterase activities, an activity 

commonly associated with proteases (Baileyet eta/., 1992). In trypsin-like serine proteases, 

the cleavage of the scissile bond involves formation of a negative charge that is stabilized in 
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a pocket called the "oxyanion hole," formed by the main-chain atoms (involving the NH 

groups of Gly 193 and Ser 195) Surrounding the catalytic serine. 

The oxyanion holes of both ETA and ETB are occupied, indicating the crystal structures 

represent an inactive form of the enzymes. The differing biological activities of the ETs, 

particularly the lethal and pyrogenic properties of ETB not shared by ETA, likely involve 

features that are not common between the toxins. The most apparent difference between the 

ETs is a 14-residue loop extension located before the C-terrninal helix in ETB. This large 

loop is involved in a molecular dimer interface, although the biological relevance of this 

finding will need to be addressed further. Another potential feature that may be involved in 

the differing biological properties of the ETs is the small ligand-binding site found in ETA 

but not ETB. Given the differing structural features on the surface of the ETs, the binding of 

separate receptors or the same receptor with differing binding modes likely explains the 

dissimilar functions of the ETs. 

Site directed mutagenesis shows that Tyr 157 and Tyr 159 are essential for toxicity. 

Mutation of any one Tyr reduces the toxicity while double mutation appeared to complete 

loss of exfoliative activity. Both these residues interact with S1 subsite of Glul82 and 

Vall83. Although both toxins possess similar biological activity, the clustering of tyrosine 

residue is seen in rETE not in rET A. From the structure based sequence alignment of rET A 

and rETE in case of rET A tyrosine is not present in aligned position (Papageorgiou et a/., 

2000) 

Elucidating the mechanism of action of the toxins holds exciting prospects for 

understanding the normal physiology of the skin, targeting drugs to very specific regions of 

the skin, and developing antitoxins and toxoids that may soon play a vital ~ole in the 

treatment and prevention of SSSS. (Ladhani eta/., 1999). In the present work we have done 

molecular dynamics simulation and principal component analysis of Staphylococcus aureus 
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exfoliative toxins A and B to understand their global and local motional properties which 

will help to understand it function, mode of action and differences between the toxin A and 

B. 

7.2: Materials and methods 

The 2.0A 0 and 2.8 A o resolution x-ray structure of Staphylococcus aureus exfoliative toxins 

A and B (Protein Data Bank code 1DUA and 1DT2 respectively) (Papageorgiou et al., 

2000) were used as· starting structures. Each monomer was solvated with SPC water 

molecules in a cubic box having edge length of 35A .. The simulation was performed using 

GROMACS (Lindahl et al., 2001). The LINCS algorithm was used to constrain all bond 

lengths (Hess et al., 1997). A cutoff of 0.9 nm for Lennard-Jones interactions was used and 

the particle mesh Ewald method (Darden et al. 1993; Essmann et al., 1995) was employed 

to calculate longer-range electrostatic contributions on a grid with 0.12-nm spacing and a 

cutoff of 1.0 nm. The simulation was conducted at constant temperature (300 K), coupling 

each component separately to a temperature bath using the Berendsen coupling method 

(Berenson et al., 1984). The time step was 2 fs, with coordinates stored after every 4 ps. 

MD simulation was performed for four nanoseconds for both the protein 1DUA & 1DT2. 

Before running simulation, an energy minimization was also performed for both the protein 

1DUA & 1DT2 in steepest descent method (converged at 648 and 1050 steps respectively) 

and this was followed by l.Ons of simulation imposing positional restraints on the non-H 

atoms. The positional restraints were then released and 4 ns production run were obtained 

and analyzed. Analysis programs from GROMACS were used and principal component 

analysis (PCA) was performed with the MD trajectory. 

7.3: Results 

The overall structural stability of the protein during the simulation has been monitored 

using several parameters like RMSD, radius of gyration (Rg), RMSF etc. The time 
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evolutions of RMSD of the whole protein of taphylococcus aureus exfoliative toxins A 

and B during the full simulation time (Fig. I ) shows no major difference in case of the 

structural variation for toxin A and toxin B a measured by RMSD va lues. RM D lightly 

increases upto 3000ps for toxin A and in case of toxin B. imulations become stable after 

I OOOps. 
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Figure- I: RM 0 : Root mean square de iations( RM D) of the protein as a function of time 

with re peel to starting structure during the MD simulations are shown for toxin A i.e., 

I DUA(Black) and toxin B i.e. l DT2(bluc). 

The variation of radius of gyration (Rg) a function of time (Fig. 2) indicates the stability of 

the simulation i.e. both toxins A and B do not change hape and size during the imulation 

time. However it i een that Rg of toxin A remains greater than toxin B during the whole 

simulation time. 
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Figure-2: Radius of gyration : Radius of gyration (Rg) as a function of time with respect to 

start ing structure during the MD simulations are shown for toxin A i.e. , 1 DUA (Black) and 

toxin B i.e. I DT2 (blue). 

The fl ex ib ility of different segments of the protein is also revealed by look ing at the root 

mean-square fluctuation (RMSF) of each res idue from its time-averaged position. 
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Figure-3a: Fluctuations: Root mean squared fluctuations (RMSF) of theCa atoms during 

the MD simulations are shown for toxin A (B=beta sheet: H=heli x: L=loop) 
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It is clear from Fig. 3a and 3b that the loop regions have high fluctuations in case of both 

toxin A and B. Among the secondary structure beta strand has higher fluctuation than alpha 

helix. Beta sheet 7 has highest fluctuation and sheets 4, 5, 10, II have less fluctuation in 

case of Toxin A whereas in case of toxin B beta sheet 14 has highest fluctuation and sheets 

8, 9, 10 have lower fluctuation. Helix4 shows considerable fluctuations for toxin A and 

Helix2 and Heilix5 shows considerable fluctuations for toxin B. 

In order to further explore the nature of the fluctuations, principal component analysis 

(PCA) is carried out for both the toxins. (Amadei et a/., 1993; Garcia 1992; Das & 

Mukhopadhyay 2007). It is seen that for the toxin A 74.79% fluctuations are captured by 

first 10 eigenvectors and the first eigenvector corresponds to 35.49% of the total motion and 

the second 13.81% and third to a further 8.48 %. On the other hand PCA of the toxin B 

simulation reveals that the first 10 eigenvectors account for 76.61% of the global motion 

and that the first eigenvector corresponds to 30.42% of the total motion and the second 

19.01% and third to a further 10.73% The first three eigenvectors with largest eigenvalues 

were selected as the three principal components PC1, PC2, PC3. 
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Figure-3b: Fluctuations: Root mean squared fluctuations (RMSF) of the Ca atoms during 

the MD simulations are shown for toxin B (B=beta sheet: H=helix: L=loop) 
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Jt is seen that nature o f fluctuation of PC L (Fig. 4a) di ffers considerably for toxin A and 

toxin B where as nature fluctuation of PC2 (Fig. 4b) is s imi lar in case of both toxins. 
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Figure-4a: Time evolution of PC l : Variation of principle components 1 with simulation 

time fo r tox in A and tox in B[ l DUA (B lack) and toxin 8 i.e. ! DT2 (blue). 
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Figure-4b: Time evolution of PC2 : Variation of princip le components 2 with simulation 

time for toxin B 
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The RMSF of Ca atoms ca lculated after projecting trajectories along their respective PC I 

and PC2 directions of both the toxins are represented in Fig. Sa and Sb. It is ev ident for both 

toxin A and B that fluctuation is highes t in the projection on PC I. 
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Figure Sa: Projections on PCl : The RMSF of Ca atoms calculated after projecting 

trajectories along their respective PC I directions [ I DUA (Black) and I DT2 (blue)]. 
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Figure Sb: Projections on PC2: The RMSF of Ca atoms calculated after projecting 

trajectories along their respective PC2 di rections [I DUA (Black) and I DT2 (b lue)]. 

The probabi li ty of sampling the phase space detem1ined by first two principal modes during 

the simulations of toxin A tox in B and presented in Fig. 6. 
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Fig ure-6: Conformational Sampling: The probabi lity of sampling the pha e space 

detennined by principa l modes I and 2 during the imulat ions of toxi n A and toxin B 

[I DUA (Black) and I DT2 (blue)]. 
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Figure-7: pace determined PCl , PC2 & PC3 representation: The probability of 

accessing regions of the phase space dete rmined PC I , PC2 & PC3 representation for toxin 

A and B[ I DUA (Black) and I DT2 (blue)]. 

We furthe r exa mine the probability o f accessing regions of the phase space detennined PC I, 

PC2 & PC3 (F ig. 7) and it is clear that both the toxin show no arrangement in the XY plane 

and for toxin A a lmost equa lly arrange in both the plane YZ and XZ. But molecule of toxin 

B are more arranged in XZ plane than YZ plane. 
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In rET A the RMSD values of catalytic residues for Serl95, His72 and Aspl20 0.0683, 

0.0997, 0.0975 respectively and in rETB, the RMSD values of Ser186, His65, and Aspll4 

0.038048, 0.1109 and 0.08821. Both Ser195 and Aspl20 residue of catalytic triad of rET A 

are more flexible than in rETB and His65 residue of catalytic triad of rETB is more flexible 

than in rET A. 

In both toxin structures, the primary specificity pocket S 1 is formed by residues of domain2 

located at the C-terminal end of the molecule in rET A and rETB (in parentheses) are His210 

(201), Lys213 (204), Tyrl86 (177), and Thrl90 (181). In rETA His210 (beta sheet 15), 

Lys 213(beta sheet 15), Tyrl86 (beta sheet 13) and Thrl90 (loopl) are important residues 

for determination the specificity of the substrate and their the RMSD values are 0.0349, 

0.073, 0.0273 and 0.0515 respectively and in rETB, the RMSD values ofHis201 (beta sheet 

12), Lys204 (beta sheet 12), Tyrl77 (beta sheet 10) and Thrl81 (loopl) are 0.031994, 

0.074635, 0.028007 and 0.020468. It is clear that only Thrl90 (loopl) has high fluctuation 

in toxin A in comparison to toxin B where the fluctuations of other residues are comparable. 

Hydrogen bond network is responsible for the overall stability of the protein during 

simulation although, during whole simulation several hydrogen bonds break and formed. 

It is found that the number of hydrogen bonds ranges from 143 to 197 for Toxin Band 141-

205 for toxin A. While analyzing the hydrogen bond of binding site it is found only one 

hydrogen bond remains stable in toxin A throughout the simulation (HB9 formed between 

carbonyl oxygen ofVal119 and the amide nitrogen atoms ofLeul21) which belongs to loop 

C Whereas in case of toxin B three hydrogen bonds remain intact (HB2-, HB4 formed 

between amide nitrogen of Glyl84 and the carbonyl oxygen atoms of Glul82 & the side 

chain nitrogen atoms of Asnl85, HB9 the hydrogen atom of hydroxyl group ofTyrl77 and 

the side chain nitrogen atom of his 20l(H9)).HB2 and HB4 form within the Loopl residues 

and HB9 forms within beta sheets 1 0 and 12. 
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Figure-Sa: Hydrogen bond of toxin A : Hydrogen bonds within the binding site region of 

toxin A during the simulation time 

HBI : Hydrogen bonds between carbonyl oxygen ofTrp l4 and the amide nitrogen atom of Tyr l8 

HB2: Hydrogen bond between s ide chain oxygen ofTyrl 8 and the amide nitrogen atoms of Arg7 1 

HB3: Hydrogen bond between the s ide chain oxygen of Try 18 and the amide ni trogen atoms of Thrl 90 

HB4: Hydrogen bond between the carbonyl oxygen of Arg7 1 and the amide nitrogen atoms o f Ala74 

HBS: Hydrogen bond between the s ide chain oxygen of Aspl 20 and the amide nitrogen atoms of Arg71 

HB6: Hydrogen bond between the s ide cha in oxygen of Asp 120 and the side chain nitrogen atoms of His72 

HB7: Hydrogen bond between the s ide chain oxygen of Asp 120 and the amide nitrogen atoms o f His72 

HB8: Hydrogen bond between both side chains of Asp 120 and Scr2 11. 

HB9: Hydrogen bond between carbonyl oxygen of Val l l9 and the amide nit rogen atoms of Leu 121 

H 8 I 0: Hydrogen bond between the hyd rogen atom of hydroxyl g roup T yr 186 and the s ide chain nitrogen 

atom ofHis2 10 

HBll: Hydrogen bond between both side chains o fThrl90 and Lys2 13 

HB 12 : Hydrogen bond between the side chain oxygen of Asn 194 and the side chai n nitrogen atoms of Val191 

H B 13: Hydrogen bond between the carbonyl oxygen of Val l9 1 and the amide nitrogen atoms of Asn 194 

HB14: Hydrogen bond between the carbonyl oxygen of Pro l 92 and the amide nitrogen atoms of Ser195 

HB IS: Hydrogen bond between the carbonyl oxygen of Pro 192 and the side chain of Scrl95 (HIS). 

HB1 6: Hydrogen bond between the side chain oxygen of Aspl64 and the amide nitrogen atoms ofGiy193 
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Figure-8b: Hydrogen bond of toxin 8: Hydrogen bonds within the binding site region of 

toxin B during the simulation time 

H8 1: Hydrogen bond between amide nitrogen of Asn 158 and the side chain oxygen atoms of Glu 182 

H82: Hydrogen bonds formed between amide nitrogen ofGiy l 84 and the carbonyl oxygen atoms ofGiul82 

( I 12) 

1183: Hydrogen bonds between carbonyl oxygen of Glu 182 and the amide nitrogen atoms of Asn 185 (H3 ), 

H84: Hydrogen bonds formed between amide nitrogen o f Glyl84 and the side chain nitrogen atoms of 

Asn 185 (H4 ), 

II 85: Hydrogen bond between the side chain oxygen atom of G lu 182 and the hydrogen atom of hydroxyl 

group Tyrl80 

H86: Hydrogen bond between amide nitrogen o fTyr64 and the s ide chain oxygen atoms of Asp 11 4 (H6) 

H87: Hydrogen bond between the amide nitrogen ofHis65 and the side chain oxygen atoms of Aspll4 (H7), 

11 8 8: side chains of Asp 11 4 and Ser202 (H8), 

1189: Hydrogen bond between the hydrogen atom of hydroxyl group Tyr l 77 and the side chain nitrogen atom 

o fHi s20 1 (H9), 

11810: Hydrogen bond between both side chains of ll is65 and Ser i 86,(H IO) 

There are several hydrogen bonds, which fluctuate during simulation time, some time they 

cross the limit of hydrogen bond distance (H 82, H 84, li B I 0, HB 16 for toxin A and HB3for 
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tox in B)( fig. 8a, 8b ). Other hydrogen bonds in binding site region for both the toxins were 

broken during simul ation time. 
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Figure-9: Dihedral angle of catalytic triad: Distribution of shi for the Res. Pro 192 of 

toxinA and val l 83 of tox in B during simulation [1 DUA (Black) and I Dt2 (blue)] . 
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Figure- 10: RMSD of cluster of tyrosine residues: Time evolution RMSD of cluster of 

tyrosine residues in rETB (positions 155, 157, 159, and 162) 
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Time evolution of 'V for the Res. Pro 192 of oxyanion hole of toxin A and vall83 of toxin 8 

during imulation are hown in Fig. 9. It i een that Pro 192 of toxin A hov. a 

confon11ational transition where Valt 83 (corrc ponding residue from sequence alignment) 

do not hO\\ any conformational transition. 

Among the four tyrosine residue it is seen that Ouctuation of Tyr l62 is lowest and that of 

Tyrl 57 and Tyr9 are large indicating their high mobility which enable them to interact with 

other re idues (Fig. I 0). 

Figure- II a: Snapshot: Snapshot of the toxin Figure- !! b: Snapshot: Snapshot of the 

A (200p - white II OOps-pink, 21 OOps- green toxin B (200ps- white II OOps-pink, 

and 3000ps- yellow) are presented 111 thi s 2 1 OOps- green and 3000ps- yellow) are 

fi gure pre ented in thi s figure 

Snap hot of the toxin are presented in Fig. II a and II b where Pro 192 (Vall 83) an 

important re idue of oxyanion hole, catalytic triad re idues Serl95 (Ser186), His72 (hi 65) 

& Aspl20 (Aspl l4) and the primary pecificity pocket S l residues His210 (llis201 ), 
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Lys2 13 (Lys204), Tyr l86 (Tyrl 77) & Thrl90 (Thrl 8 1) are labeled for rETA and rET8 

respecti vely (in parentheses). 

The plot of distance of Ca-Ca of interacting residue of S I ubsite and helix 4 of toxin 8 

rc idues during imulation ti me (Fig. 12) shows the re iduc come together during 

im ul ation and interact with each other, we tried to find whether any hydrogen bond is 

formed between the e re idues, we ob erved no hydrogen bond is formed. So vanderwaals 

interaction is respon ible for their interaction. 

2 1 - l c --2c --3c - -tc --5c 

I 55 

~ -2 
v 
(.) -B 
•n 

c5 
(I -t ) 

0 500 1000 l )(H 1 Tun~~~Q\l :::!510 3000 350 ) -toon 

Figure- 12: Ca-Ca distance of interac ting residues: Time evolution Ca-Ca distance of 

interacting res idues of S I subsite and he li x 4 of tox in 8 

C I: Di lance between Ca atoms of residues Pro 19 and tyr 159 

2: Distance bet\\ een Ca atoms of residues Glul82 and tyrl57 

3: Distance between Ca atoms of rcsidues Vall83 and tyrl59 

C 4: Distance between Ca atoms of residues Glu l6 and Lys204 

C S: Distance between Ca atoms of residues Thrl81 and Lys204 

7.4: Discussion 

Toxin A and 8 have high degree of sequence and structural similarity. We investigated the 

motional propertie of the toxin in this work. During the dynamic , the structural 

\ariations, as mea ured by the RM D and the radiu of gyration as a function time for both 
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toxins suggest that the simulations are stable. It is also evident that toxin B is somewhat 

more rigid than toxin A. From RMSF analysis it is evident that nature of fluctuation for 

different secondary structures and loop regions are similar in both toxin A and toxin B. 

From the RMSF of Ca. atoms calculated after projecting trajectories along their respective 

Principal components (PC 1 & PC2) indicate that fluctuation is higher in case of toxin A 

along both the PC i.e. PC! & PC2. (Fig. Sa, 5b). 

It is clear from the probability of sampling the phase space determined by first two principal 

modes during the simulations the projection of the dynamics trajectory onto the first two PC 

that the protein A traverse one conformational space around the origin and another at the 

right side of the origin and also at the left side of the origin. It is evident from Fig. 6 that 

conformational freedom is more at the left side of the origin. In rET A Hydrogen bond 

between carbonyl oxygen of Valll9 and the amide nitrogen atoms of Leul21 (H9), was 

very strong suggesting the loop C is less flexible than toxin B. The hydrogen bonds 

between carbonyl oxygen ofTrpl4 and the amide nitrogen atom ofTyrl8 (HI) were broken 

during energy minimization which indicates that the helix! is much flexible. 

In rETB Glul82 Glyl84 and Asnl85 belong to loop! The two strong hydrogen bonds were 

observed in the amide nitrogen of Glyl84 and the carbonyl oxygen atoms of Glul82 (H2) 

carbonyl oxygen of Glul82 and the side chain nitrogen atoms of Asnl85 (H4), suggest that 

that loop!, is less flexible in toxin B than toxin A. The hydrogen atom of hydroxyl group of 

Tyrl77 and the side chain nitrogen atom of His 20l(H9) forms another strong hydrogen 

bond also reveal that beta sheets I 0 and 12 are also strong because tyrl77 belongs beta 

sheet I 0 and the residue His20 I belongs from sheet 12. Overall we can say that loop I and 

beta sheets of 10 and 12 are conserved. The hydrogen bond between amide nitrogen of 

Asnl58 and the side chain oxygen atoms of Glul82 (HI) were broken during energy 

minimization increases the flexibility helix-4 because Asnl58 belong helix 4, at the same 
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time Glu182 of S 1 subsite (loop 1) has less flexible because it forms another two strong 

hydrogen bonds mention above. 

In both toxin structures, the primary specificity pocket S 1 is formed by residues of domain 2 

and in both structures the binding of substrate in the S 1 pocket may be stabilized by His21 0 

(201). (Cavarelli eta!. 1997) The positioning of Tyr186 (177) helps in optimal orientation 

of His210 (201) on one side of the pocket. Moreover, Lys213 (204) a residue conserved in 

both ETs, interacts with the side chain of the glutamate moiety in the S 1 pocket. Low 

RMSD values of those residues support the above facts. In trypsin-like serine proteases, the 

cleavage of the scissile bond involves formation of a negative charge that is stabilized in a 

pocket called the "oxyanion hole," formed by the main-chain atoms (involving the NH 

groups of Gly193 and Ser195 in ETA and Gly184 and ser 186 in ETB) surrounding the 

catalytic serine (Papageorgiou et a/., 2000). In rET A, Pro 192 and Gly 193 have a unique 

conformation. In this case negative charge developed by tetrahedral transition state is 

stabilized by a conformational change of the loop, which needs a rotation of psi of pro 192 

from helical to strand nature. Residue Pro 192 of Toxin A overcomes the energy barrier and 

folded into another structure, on the other hand V al183 of toxin B "' value was very stable, 

remaining throughout our simulation shown in Fig. 9. 

It is seen from the plot of psi against simulation, the dihedral is free to rotation without 

involvement of much energy. During the simulation several times it jumps from -40° 

regions to 180° regions. 

Thus inactive toxin A becomes active gaining the preferred conformation. From the time 

evolution of V a! 183 the corresponding residue of toxin B, it is seen that the psi of has very 

less freedom, its value remains close to 140° without any major valine183 deviation. It is 

clear that in case of toxin B this residue is in preferred conformation to show activity. This 
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observation clearly indicates that prol92 and vall83 is key residue towards the activity and 

why toxin A and toxin B show the difference in initiation of activity. 

It is reported that mutation of Tyr 157, Tyr 159 causes the loss activity of the toxin B 

(Papageorgiou et al., 2000). High RMSD of these residues is supportive to the fact their 

interaction S 1 subsite residues is energetically favourable. From the plot of distance 

between Ca-Ca of interacting residues of S 1 subsite and helix 4 of toxin B against 

simulation time it also revealed that these residues are highly mobile and their mobility do 

not require much energy and any hindrance on their conformational free has immense 

impact on activity. 

155 



Chapter VII Motional properties of Staphylococcus aureus exfoliative toxins A and B 

7.5: References 

Amadei A, Linssen ABM & Berendsen HJC. (1993) Essential dynamics of proteins. 

Proteins: Struct. Funct. Genet. 17: 412-425. 

Arbutlmott JP & Billeliffe B (1976) Qualitative and quantitative methods for detecting 

staphylococcal epidermolytic toxin. J. Med. Microbial. 9:191-201. 

Bailey CJ & Redpath MB (1992). The esterolytic activity of epidermolytic toxins. Biochem. 

J. 284: 177-180. 

Berendsen HJC, Postma JPM, DiNola A & Haak JR. (1984) Molecular dynamics with 

coupling to an external bath. J. Chern. Phys. 81:3684-3690. 

Cavarelli J, Prevost G, Bourguet W, Moulinier L, Chevrier B, Delagoutte B, Bilwes A, 

Mourey L, Rifai S, Piemont Y & Moras D (1997) The structure of Staphylococcus 

aureus epidermolytic toxin A, an atypic serine protease, at 1. 7 A resolution. 

Structure 5:813-824. 

Darden T, York D & Pedersen L (1993) Particle mesh Ewald: An Nlog(N) method for 

Ewald sums in large systems. J. Chern. Phys. 98:10089-10092. 

Das A & Mukhopadhyay C (2007) Application of principal component analysis in protein 

unfolding: An all-atom molecular dynamics simulation study. The Journal of 

Chemical Physics 127, 165103-165108. 

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H & Pedersen LG (1995) A smooth 

particle mesh Ewald method. J. Chern. Phys. 103:8577-8593 

Garcia AE (1992) Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 

68:2696-2699. 

Hess B, Bekker H, Berendsen HJC & Fraaije JGE (1997) LINCS: A linear constraint solver 

for molecular simulations. Journal of Computational Chemistry 18: 1463-14 72. 

156 



Chapter VII Motional properties of Staphylococcus aureus exfoliative toxins A and B 

Jeyakumari D, Gopal R, Eswaran M & MaheshKumar C (2009) The staphylococcal 

scalded-skin syndrome in a new born. Journal of Global Infectious Diseases 1:45-

47. 

Johnson-Winegar AD & Spero L (1983) !so electric focusing patterns of staphylococcal 

exfoliative toxin. Curr. Microbial. 8:311-315. 

Kapoor V; Travadi, J & Stephen B (2008) Staphylococcal scalded skin syndrome in an 

extremely premature neonate: A case report with a brief review ofliterature. Journal 

of Paediatrics & Child Health. 44: 374-376 

Kapral FA & Miller MM (1971) Product of Staphylococcus aureus Responsible for the 

Scalded-Skin Syndrome. Infection and Immunity. 4: 541-545. 

Kondo I, Sakurai S & Sarai Y (1973) Purification of exfoliation produced by 

Staphylococcus aureus of bacteriophage group 2 and its physicochemical properties. 

Infect. Immun. 8:156-164. 

Ladhani S, Ioannou CL, Lochrie DP, Evans RW & Poston SM (1999) Clinical, microbial, 

and biochemical aspects of the exfoliative toxins causing staphylococcal scalded

skin syndrome. Clin Microbial Rev. 12:224-242. 

Lesk AM & Fordham WD (1996) Conservatiuon and variability in the structures of serine 

proteinases of the chymotrypsin family. J. Mol. Bio.258: 501-53 7. 

Lindahl E, Hess B & van der Spoel D (2001) GROMACS 3.0: a package for molecular 

simulation and trajectory analysis. J. Mol. Modeling 7:306-317. 

Lowney ED, Baublis N Kreye GM, Harrell ER & McKenzie AR (1967) The scalded-skin 

syndrome in small children. Arch. Dermatology. 95:359-369. 

Marrack P & Kappler J (1990). The staphylococcal enterotoxins and their relatives. Science. 

248:750-711. 

157 



Chapter VII Motional properties of Staphylococcus aureus exfoliative toxins A and B 

Melish ME & Glasgow LA (1970) The staphylococcal scalded-skin syndrome. N Engl. J. 

Med. 282:1114--1119. 

Monday SR, Vath GM, Ferens WA, Deobald C, Rago JV, Gahr PJ, Monie DD, Iandolo JJ, 

Stephen K. Chapes SK, Davis WC, Ohlendorf DH, Schlievert PM & Bohach GA 

(1999). Unique superantigen activity of staphylococcal exfoliative toxins. J. 

lmmunol. 162:4550--4559. 

Morlock BA, Spero L & Johnson AD (1980). Mitogenic activity of staphylococcal 

exfoliative toxin. Infect. Immun. 30:381-384. 

Papageorgiou AC, Plano LR, Collins CM & Acharya KR (2000). Structural similarities and 

differences in Staphylococcus aureus exfoliative toxins A and B as revealed by their 

crystal structures. Protein Sci. 9: 610-618. 

Perona JJ & Craik CS (1995) structural basis of substrate specificity in the serine proteases. 

Protein Sci. 4 337-360 

Scopes JW, Eykyn S & Phillips I (1974) Staphylococcal infection in the newborn. The 

Lancet 304:1392. 

Vath GM, Earhart CA, Rago JV, Kim MH, Bohach GA, Schlievert PM & Ohlendorf DH 

(1997). The structure of the superantigen exfoliative toxin A suggests a novel 

regulation as a serine protease. Biochemistry. 36:1559-1566. 

Vath GM, Earhart CA, Monie DD, Iandolo JJ, Schlievert PM & Ohlendorf DR (1999). The 

crystal structure of exfoliative toxin B: a superantigen with enzymatic activity. 

Biochemistry 38: 10239-10246. 

Wiley BB & Rogolsky M (1977) Molecular and serological differentiation of 

staphylococcal exfoliative toxin synthesized under chromosomal and plasmid 

control. Infect Jmmun.18:487-494. 

158 



Chapter VIII 

Homology modeling and MD simulation of the Cytolethal 
distending toxin B gene of Helicobacter hepaticus ATCC 51449 
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8.1: Introduction 

H. hepaticus is a naturally occurring pathogen of mice, has been used as a model for the 

study of hepatic carcinogenesis and gastrointestinal disease. H. hepaticus produces a 

soluble toxin known as cytolethal distending toxin (Cdt). Cdt is a bacterial toxin that 

induces cell cycle arrest of cultured cells in the G2 phase. It has been found in a number of 

mucosal pathogens, including Campylobacter jejuni (Johnson & Lior 1988) and other 

Campy/obacter species (Pickett et a/., 1996), certain Escherichia coli strains (Bouzari & 

Varghese 1990; Johnson & Lior 1988b) Shigella dysenteriae (Okuda et a/., 1995), 

Haemophilus ducreyi (Cope et a/., 1997) and A. actinomycetemcomitans (Sugai et a/., 

1998) and H. hepaticus (Young et a!., 2000). Cdt is composed of three subunits, CdtA, 

CdtB and CdtC, which form a tripartite complex (Saiki eta/., 2001; Saiki eta/., 2004; Lara

Tejero & Gala'n 2002). CdtA and CdtC are required for the delivery of CdtB, the active 

subunit (Lara-Tejero & Gala'n 2001; Deng & Hansen 2003; Lee eta/., 2003; Shenker eta/., 

2004). On delivery into host cells by CdtA and CdtC, the active subunit CdtB is transported 

to the nucleus and causes DNA damage (Elwell & Dreyfus 2000; Lara-Tejero & Gala'n 

2000). CdtB has an amino acid sequence similar to the DNase I family of proteins. The 

CdtB gene is found to be the most conserved among the three Cdt genes (Pickett et a!., 

1996; Young eta/., 2000; Mayer et al., 1999). Little work has been carried out on the CDT 

of H. hepaticus, owing to a limited toxin production by the bacterium and to the difficulties 

in producing a recombinant toxin. It makes it difficult to produce the toxin in sufficient 

quantities to perform cell culture studies (Avenaud et a/., 2004).Studies with CDT of 

Campylobacter jejuni and E. coli have shown that CdtB has a DNase activity in vitro and 

suggested that CdtB could be the active subunit of the holotoxin (Lara-Tejera & Galan 

2000; Elwell & Dreyfus 2000; Elwell eta/., 2001). Indeed, mutations in the CdtB's DNase 
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catalytic site abolish the cellular toxic activity of the holotoxin (Lara-Tejera & Galan 2000; 

Elwell & Dreyfus 2000). As CdtB DNase activity is very poor in vitro (Lara-Tejero & 

Galan 2000) some authors suggested that CdtB could be a phosphatase for either Wee! 

kinase or CDC25 phosphatase, or for other cell cycle regulatory proteins (Pickett & 

Whitehouse 1999; Dlakic 2000; Dlakic 2001). 

Cdt induces DNA double strand breaks in target cells. This was shown in yeast cells 

transfected with the CdtB gene (Has sane et a/., 2001) and in mammalian cells naturally 

intoxicated by extracellular treatment with the toxin (Frisan et al., 2003). The subcellular 

target of Cdt is known to be DNA. In H. hepaticus ATCC51449, four conserved residues 

(S93, Rl39, N190 and T224) are present (Dassanayake et al., 2005). 

It is observed that the CdtB does indeed possess a DNase activity, which is absent in the 

CdtA and CdtC subunits, and that this activity can be abolished by an amino acid change in 

the region identified as potentially responsible for this activity. Three CdtB mutants of H. 

hepaticus were constructed by Avenaud et al, one of them in the potential DNase activity 

region (CdtBH265L mutant) and two others in the potential phosphatase activity region 

(CdtBN271 and CdtBE60V mutants) (Avenaud et al., 2004). N27 residue was noted to be 

important as it surrounds the catalytic pocket and possibly the phosphate (Dlakic 2000). It is 

now widely documented in several bacteria that CdtB is responsible for the cell toxicity of 

the CDT via its DNase activity ( Lara-Tejero & Galan 2002). 

H. hepaticus ATCC51449 was isolated from liver tissue in the course of the initial 

investigation of the outbreak of hepatitis (Ward et al .. 1994). In spite of increasing research 

effort and complete genome of the bacteria H. hepaticus ATCC51449 is sequenced 

(Suerbaum et al., 2003) but the structure of Cdt of H. hepticus is not solved yet. 

The aim of this work is to construct the 3D model of CdtB proteins from H. hepaticus 

ATCC51449 strains taking the crystal structure of Cytolethal distending toxin B (CdtB) of 
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A. actinomycetemcomitans (Yamada et al., 2006) as template and to perform molecular 

dynamics simulation and principal component analysis to understand its motional properties 

and conformational space traversed by it. 

8.2: Materials and methods 

The amino acid sequences of the Cytolethal distending toxin B gene (CdtB) of H. hepaticus 

ATCC 51449 bearing protein id NP _860978.1 was obtained from the IMG database 

(www.img.jgi.doe.gov) (Suerbaum et al., 2003).The protein is 273 amino acid length and it 

was confirmed that the 3D structure of the protein was not available in Protein Data Bank 

(http://www.rcsb.org/pdblhomelhome.do), consequently the current work of constructing the 

3D model of the CdtB gene of H. hepaticus ATCC 51449 strains was initiated. 

Homology modeling 

The preliminary task in the homology modeling technique is to recognize protein structures 

linked to the target sequence and subsequently select those that will be used as templates 

(Centeno et a!., 2005). PSI-BLAST (Altschul et a!., 1997) was carried out against database 

specification ofPDB proteins, which were available at the National Centre for Biotechnology 

Information (NCBI) Web server (http://www.ncbi.nlm.nih.gov/blast/) to find out remote 

similarities. We retrieved the known homologous structures of CdtB of H. hepaticus ATCC 

51449 from the protein data Bank (PDB). We found that protein Cdt from A. 

actinomycetemcomitans [PDB entry: 2F2F (Chain B)] was structural template (percentage 

sequence identity 47.12) (See Fig. 1). 

An optimal alignment between the target sequence and template is required to construct a 3D 

model of the target protein, after the template sequence has been recognized. Multiple 

sequence alignments were performed using ClustalW 1.83 using default settings and the 

aligned sequences were extracted in (.) PIR format (Thompson et al., 1994). The aligned 

sequences were converted into(.) ALI format (Sali & Blundell 1993) the acquired alignments 
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were crucially assessed in terms of number, length and position of the gaps to make it more 

reliable. 

CLUSTAL W (1.81) multiple sequence alignment of the ~mele~ sequence and the sd~ gene from !t£m. 

Helicobacter IJtEE.IifU§.ATCC 51449 (Protein id NP _860978.1) 

!1P_860978.l 

2F2F 

!1P_;860978.l 
2FZF 

!1P_860978.l 

2F2F 

!1P_860978.l 
2F2F 

!1P_860978.l 
2F2F 

MRILLCFLMSFTFALANLEDYRVSTWNLQGSSANTESKWNISVRQLITGDNPANILMVQE 
----------------NLSDFKVATWNLQGSSAVNESKWNINVRQLLSGEQGADILMVQE 

**.*::*:*·******** *****":.***'*::*:: *:****** 

AGAIPASARRTGRMVQPGGTPVEEFTWELGTYSRPNTVYIYYAPLDVGARRVNLAIVSDR 
AGSLPSSAVRTSRVIQHGGT.PIEEYTWNLGTRSRPNMVYIYYSRLDVGANRVNLAIVSRR 
**::*:** ** *::* ****:*+:**:*** **'** *****: ***** *'******* * 

·RADEVLVVHQNVVATEASRPAIGIRIGNDVFFNIHALASGGGDAPALVTAVHDNFINMP
QADEAFIVHSD SSVLQS-RPAVGIRIGTDVFFTVHALATGGSDAVSLIRNIFTTFTS SP S 
:***.::**·· .. ***:·***** ****. :****:** ** :*: * * 

-----QINWLIAGDFNRDPALLQSGLDTR--IANHIRITAPNSATHFSSRGTNRTLDYAV 
SPERRGYSWMVVGDFNRAPVNLEAALRQEPAVSENTIIIAPTEPT.HRSG----NILDYAI 

*::.***** * *::.* * ** ** * 

VGRSSPSRSTIVLPQIAAILMAANIRAHLSSDHSPVHFGRF
LHDAHLPRREQARERIGASLMLNQLRSQITSDHFPVSFVHDR 
: : * :* * ** ::*:::·;*** ** *: 

****: 

Figure-1: Alignment: Alignment of target protein (2F2F) and cytolethal distending toxin 

protein B (CdtB) from H. hepaticus ATCC51449. 

The tnitial 3D model of the CdtB gene of H. hepaticus ATCC 51449 was constructed by 

MODELLER 9v4 program (Sali & Blundell 1993) using the alignment between the CdtB 

gene of H. hepaticus ATCC 51449 and the template protein(2F2F chain B). 

Model evaluation: 

VERIFY3D was used to validate the refined structures. For evaluation of their internal quality 

and reliability, the refined model was subjected to the following tests: ProSA (Wiederstein & 

Sippi 2007) analysis was performed to assess the accuracy and reliability of the modelled 

structure and check the 3D model for potential errors. Here, the 3D structure of the protein 

model is compared to its own amino-acid sequence taking into consideration a 3D profile 

calculated from the atomic coordinates of the structure of correct protein (Eisenberg et a/., 
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1997). Presence of pockets in the structure was predicted using CASTp server (Dundas et a! 

2006). The refined model was submitted to ProFunc (http://www.ebi.ac.uk/thronton

srv/databases/ProFunc) (Laskowski et a/., 2005) to recognize the functional region in the 

protein. The program PROCHECK (Laskowski eta!., 1993) has performed assessment of the 

predicted model of the CdtB of H hepaticus ATCC 51449 to evaluate their backbone 

conformation using a Ramachandran plot (Ramachandran eta/., 1963). Molecular surface and 

electrostatic potential of modelled CdtB subunit from H hepaticus ATCC 51449 were 

predicted using AutoDock Tools version 1.5.2 revision 2 (Goodshell eta!. 1996). 

Molecular dynamics simulation 

An understanding of the structural dynamics of the protein is essential to gain greater 

insights into their important biological functions (Yang et a/., 2006). The studies on the 

structural dynamics were performed using the GROMACS. Taking the rough 3D model of 

the Cytolethal distending toxin B gene was constructed by MOD ELLER 9v4 program was 

used as starting structures for dynamics of the protein model. A single monomer was 

solvated with SPC water molecules in a cubic box having edge length of 40A·. The 

simulation was performed using GROMACS (Lindahl eta!., 2001). The LINCS algorithm 

was used to constrain all bond lengths (Hess et a!., 1997). A cutoff of 0.9 nm for Lennard

J ones interactions was used and the particle mesh Ewald method (Darden et a!., 1993; 

Essmann et a/., 1995) was employed to calculate longer-range electrostatic contributions on 

a grid with 0.12-nm spacing and a cutoff of 1.0 nm. The simulation was conducted at 

constant temperature (300 K), coupling each component separately to a temperature bath 

using the Berendsen coupling method (Berendsen et a!., 1984). The time step was 2 fs, with 

coordinates stored after every 4 ps. MD simulation was performed for six nano seconds. 

Before running simulation, an energy minimization was performed in steepest descent 

method (converged at 107 steps) and this was followed by l.Ons of simulation imposing 

164 



Chapter VIII Homology modeling and MD simulation of the CdtB of H. hepatic us A TCC 51449 

positional restra ints on the non-11 atoms. The positi ona l res tra ints were then released and 6 

ns production run were obtained and analyzed. Analysis programs from GROMACS were 

used. 

Principal component analysis 

Principal component ana lysis (PCA) (Amadei et al., 1993; Garc ia 1992; Das & 

Mukhopadhyay 2007) was perfom1ed w ith theM D trajectory . 

8.3: Results 

Homology modeling and Model evaluation: 

The target seq uence [cytoletha l dis tend ing toxin protein B(CdtB) of H. hepaticus ATCC 

5 1449] compared with more ident ity and re leated fa mily using BLAST search and the best 

template was found 2F2F2 [PDB ID] chain 8, which is a crystal structure cytolethal 

d istend ing tox in prote in 8 (Cdl8) of A. Actinomycetemcomitans. The 8 chains of thi s 

protein (2F2F2) revealed percent sequence identity 48.7 1 with target seq uence (Fig. I). 

Figure-2: Ribbon diagram: The ribbon diagram of the modelled Cbt8 protein from H. 

hepaticus A TCC5 1449 is depicted and the four DNA binding res idues, namely S93, R 139, 

N 190, and T224 are labelled with red colour and the DNase activity region i.e. N27 , E60, and 

H265 are labe led with pink colo ur. 
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The modelled structure of the CdtB protein from H. hepaticus ATCC5 1449 i pre ented in 

Fig. 2. Four DNA binding residues, namely S93, R 139, N 190, and T224 are labelled with 

red colour and the DNa e activity region i.e. N27, E60, and H265 are labeled with pink 

colour in the ribbon diagram of the modelled CbtB protein from H. hepaticus A TCC51449 

and is also presented in Fig. 2. 

Some of the important feature of the modelled protein arc ummarized in Table I. 

Table I : Summary of the characteri stic of the cytolethal di tending toxin protein B from 

Helicohacter hepaticus A TCC 

General characteristics CdtB Characteristi cs of secondary structure CdtB 

Molecular weight 29,8 12.8 Alpha helix 20.88°o 

Net Partial Charge 3.00005 Extended strand 30.77% 

Number of atoms 2687 Random coil 48.35% 

Figure-3: Pockets for ligands interaction: Total of 33 pockets for ligands interaction region 

in the CdtB protein from H. hepatic us A TCC5 1449 arc predicted using CASTp servers and 

visualization on SPDBV software. 
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CASTp program (Dundas et a!., 2006) demonstrated the presence of a total of 33 pockets for 

ligands interaction in the CdtB protein with varying area and volume (see Table-2). 

Table-2: Total of 33 pockets for ligands interaction region in the Cdtb protein from 

Helicobacter hepaticus ATCC51449 is predicted using CASTp server. 

Pocket Residue No. Area Volume 
No. 
I ARG139,PR0140,ILE154,HISI55 24.9 11.6 
2 ILE154,ILEI67 ILE185 25.5 11.9 
3 ARG69GLU88 0.8 1.7 
4 ILE154,ALA164 ILE185,PHE189 25.8 12.2 
5 GLY160, ARG191 LEU195,ARG226 24.4 13.7 
6 PHE219,HIS260 0.6 1.5 
7 ILE41 ,SER42,ALA259,HIS260 28.4 13.9 
8 ALA14l,PHE152,ASN153,ILEI54,ILEI85 29.3 14.6 
9 HIS207,ARG235,PR0238 SER239,ILE243 37.1 20.2 
10 ALA141,ILE154,LEU167 ILE185 27.4 13.2 
II. THR35,GLU36,ALA63,ILE64,PR065 26.6 13.2 
12 THR25 TRP26,ASP229 SER266 42 23.1 
13 ALA254,ILE257 ,LEU262,SER266,PR0267 35.9 19.6 
14. SER42,GLN45 ILE257 ALA259 HIS260,LEU261 56.1 33.9 
15 PHE13 GLU19,TRY2l,ILE248,GLY271,ARG272 38 21.4 
16. ARG44,ILE47 THR48,LEU89 21.7 15.8 
17 SER138,ARG139,HIS155,LEU157,ASPI63 41 20.2 
18 GLNI97 ,ILE208,ARG209,ILE21 O,ILE243,V AL244 39.5 22.3 
19 THR169,HIS172,ARG203 ILE204 23.6 14 
20 ALAI64,V AL168,ILE185,PHE189,LEUI96,VAL232 55.6 30.8 
21 PROI65,VAL168 GLY199 LEU200 THR202,ARG203,ILE204 64.2 52.3 
22 GLU19,ASP20 TYR21 ARG22,GLY271,ARG272 40.3 30.1 
23 ASN51,ILE25l,LEU252 MET253,ALA255 ASN256,HIS269 50.4 47.1 
24 SER67,ARG69,THR86,TRP87,GLU88 64.1 51.3 
25 GLU60,ARGIII,VAL112,ARG139,HISI55,ALAI58 57.7 69.8 
26 VAL75,GLN76,PR077,V AL82,VAL125, LEU126,V ALI27 53.3 42 
27 GLNI97 ,LEU200,ALA205,ILE208 78.2 64.1 
28 PHE7,ILE47,PR052 ALA53 ASN54 ASN96,VAL98,ASP119 79.7 7.7 
29 GLN45 THR48,GLY49,ASP50 ASN51 ASN256 90.6 68.9 
30 LEU15,GLU19,ARG235,PR0246,GLN247 67 74.7 
31 PR0193 ALA194,GLN197,ILE210 81.5 134 
32 SER31 ,SER32,THR35,GL Y62,ALA63,ALA1 09 106.8 101.3 
33 LEUI05,ASPI06,VALI07,GLYI08 130.2 255.6 

The constructed model was corroborated by VERIFY 3D (Eisenberg eta/., 1997) to estimate 

the correctness of the model. The z-scores obtained from ProSA analysis for the modelled 

structures of CdtB protein found to be -5.15. 
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From the model led structure using SPDBV program (Guex & Peitsch 1997) residues of 33 

pockets for ligands interaction in the Cd tB protein are shown in Fig. 3. 

Figure-4: Clefts and cavities: Total I 0 clefts and cavities in the surface of the protein are 

predic ted using profunc server. 

The refi ned model was submitted to ProFunc (http ://www.ebi.ac.uk/thronton

srv/databases/ ProFunc) (Laskowski et a/. , 2005) to analyze the binding sites, showed the 

presence of I 0 c le fts and cavities in the surface of the protein shown in Fig. 4. 

Nest analysis of the CdtB protein revea led the presence o f six nests in thi s chain. It is fou nd 

that when modelled CtdB protein from H.Hepaticus is compared with different enzyme 

temp lets it matches with two Dnase (PDB entry code I dnk & 2dnj). 

The Ramachandran plots (Ramachandran et a l. , 1963; Rajesh et a l. , 2007) illustrating the 

backbone conformation for the modelled protein is presented in Fig. 5. 

168 



Chapter VIII 

Q() 

4-~ -

~ 
~ 
~ 0 
'0 

0: 
-l5 -

_..:_n 
.9(f ~tiO 

-U~ 

l50 

Homology model ing and MD simulation of the CdtB of H. hepaticus ATCC 5 1449 

Ra1r1achandran Plot 

• -
• 

• • • 

"1> 

1 • 
T ' LJ5 90 ~5 0 ~5 

P hi 1 de s, t~s) 

PI<;>~ • umli a 

._<loa ., ,.,... io.--.k4 ~,. I~.LI *-*'" ~ aiGd t to-nt.J ........ ...., rf'SIO• .a..JD..I ,P". 
11'--do- In • •• .-.... 110..«1 t "!!J:OU [ - to., l. Jl 
.:.-:tr" ., ;ttDJ., --.t ><abrw 

1•--t..•..: ~•rw.,....L& ..c-&•1 u .. u-,.-L~ •~la..uc. 

U1abc1 _,1 •-elldna e ... I C l . • ..t Pn>• 

........... .,"'"' ... -~ .......... hi;oJo&~ ' 

. .. .-NT_.; f JO hN .... ~ ... 

. ·I 
p 

J 
CX) 

,_ 
1:5 

~" 
: 

ll! 
1.1 

.. . 6 

'RIII~-i nn ,.. .. ,....._... . ,., ... ,.~~nt ~-r-... nt.,. ~ ... ._n~·,......,.., 

la a.J Lb. &a~ .. u.er&a ~-I~ ·~·· f}- ... ...:"rl td t-:r~ 
IDtu \ :~ c I .,. l ta:cll: UXiM l.-..1: .J •=tD.'li 

- b 

L35 l~O 

1).)<'0 

ur. 
0~ 

~ ..... 
CXl~ 

Figure-5: Ramachandran plot: Ramachandran plot of the CdtB proteins from H. hepaticus 

A TCC5 1449 shows the residue backbone conformations for the modelled CdtB protein . 

PROCHECK anal ys is on the stereochemical q ua li ty o f the 3D model structure of the 

modelled CdtB protein revealed that 83.3% of residues are in the most favored region in the 

Ramachandran plot. Moreover, the percentages of residues in the additiona l a llowed regions 

169 



Chapter VIII Homology modchng and MD simulation of the CdtB of//. hepa11c111 ATCC 51449 

and generou ly allowed regions arc 15.9° o and 0.4%, re pect ively. llowevcr. 0.4° o of residues 

remain on the disallowed region, 

Molecular surface and electro tatic potential of modelled CdtB was generated usmg 

AutoDock Tools version 1.5.2 revision 2 ( Good hell eta!.. 1996) and is pre entcd in Fig. 6. 

I ~8 .944.47 o 4 .4 7 8 .94 I 
. cmap -- --kT /e. 

Figure-6: Electrostatic urfaces: Electro tatic urfaces of modeled protein CdtB from H. 

hepaticus AT C5 1449 was ca lculated, which positive potential charges in blue, negative 

va lues in red and intermediate va lues in white by using AutoDock too ls 

Molecular dynamics imulation: 

Molecular dynamic simulation of the modelled CdtB i performed and the resulting 

trajectory is analyzed to tudy the motional properties of the modelled protein CdtB. The time 

evolution of root mean quare deviation (RMSD) is computed taking the modelled structure 

(CdtB) ofthe whole Protein as initial structure and presented in Fig. 7. 
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Figure-7: RMSD: Root mean square deviations (RMSD) of the CdtB proteins from H 

hepaticus ATCC51449 protein as a function of time with respect to modeled protein was 

starting structure during the MD simulations 

The time evolution of radius of gyration (Rg) is presented in Fig. 8. 
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Figure-S: Radius of gyration: Radius of gyration (Rg) as a function of time with respect to 

starting structure during the MD simulations are shown for modelled CdtB protein from H 

hepaticus ATCC51449 
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RMSF indicates the flexibility of the protein. RMSF of Ca is presented as a function of 

residue numbers in Fig. 9. 
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Figure-9: Fluctuations: Root means squared fluctuations (RMSF) of theCa atoms during the 

MD simulations are shown for modelled CdtB protein of H. hepaticus A TCC51449 

It is found that the number of hydrogen bonds ranged from 133 to 196 (Fig. 1 0) during the 

simulation. 
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Figure-10: Hydrogen Bond: Number of Hydrogen Bonds during the whole Simulation time 

for modelled CdtB proteins of Helicobacter hepaticus ATCC51449 
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Principal component ana lysis (PCA): In order to further explore the nature of the 

fluctuations, principal component analysis (PCA) is carried out for the modell ed protein 

CdtB (Amadei et al. , 1993; Garcia 1992; Das & Mukhopadhyay 2007). It is een that for the 

toxin 76. 12 % fluctuations are captured by first I 0 eigenvectors and the first eigenvector 

corre ponds to 40.05 % of the total motion and the second 14.73% and third to a further 

5.68 %. 

The first four eigenvectors with large t eigenva lues were selected a the four principal 

components PC I, PC2, PC3 and P 4. Time evolution of principal component I (PC I), 

principal component 2 (PC2), principal component 3 (PC3) and principal component 4 

(PC4) in water is reprc ented in Fig. II . 

I ' 

T u ne<ps> 

Figure- II : Time evolution of PC: Variati on of four principle components wi th simulation 

time for modell ed CdtB protein of H. hepaticus A TCC5 1449 

The RMSF of Ca. atom calculated after projecting trajectories a long their respective four 

principa l components are presented in Fig. 12. It is ev ident from the ana lysis for CdtB that 

fluctuation is highest in the project ion on PC I. 
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Figure- 12: Projections on PC: The RM F of Ca atoms cal culated after projecting 

trajectories along their respective PC I , PC2, PC3 and PC4 directions for the modelled CdtB 

proteins of H. hepaticus A TCC5 1449 

The probabil ity of sampling the phase space de termined by the first two principa l modes 

during the imula ti ons of the tox in is presented in r ig. 13. 
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Figure- 13: Conformational Sampling: The probability of sampling the phase pace 

determi ned by principal modes I and 2 during the simulations of the modelled CdtB protein 

of H. hepaticus A TCC5 1449. 
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4. Discussions: 

The modelled structures of the CdtB protein from H. hepaticus ATCC51449 shows that the 

helix and sheets remain interspersed throughout the protein structure (Fig. 2). VERIFY 3D 

revealed that 96.72% of the residues had an average 3D-1D score> 0.2. 

Results of z scores from ProSA analysis specify that the z score of our model is very much 

within the range of scores normally found for proteins of comparable size. The value of the z

scores signifies that the 3D model of the CdtB protein is reliable and precise. 

It is evident from Ramachandran plot (Fig. 5) that our predicted model protein CdtB carrying 

characteristics of a good quality of a model protein 

Study of the molecular surface and electrostatic potential of modelled CdtB shows charged 

and polar residues are mostly on the surface. (Fig. 6). 

It is evident from Fig.-7 that RMSD increased slowly up to 3,900 ps, and then decreases 

upto 4200ps then again slightly increases upto 5000ps. It is also clear from Rg, which 

shows a little variation upto 3000ps and after that almost attains equilibrium (Fig. 8). The 

RMSD and Rg calculations of CdtB suggest that the protein is less flexible in nature. 

From RMSF, it is evident that the first and last residue fluctuates considerably. 

Interestingly, pronounced fluctuations are observed along some amino acid stretches (43-47, 

75-81, 236-244,), which indicate the flexibility of the toxin in that region (Fig. 9). 

The number of hydrogen bonds ranges from 133 to 196 (Fig. 10) revealed the fact that 

during the simulation, several hydrogen bonds broke and formed. 

It is seen from Fig. 11 that time evolution of principal component 1 (PC1), principal 

component 2 (PC2), fluctuates remarkably in comparison to principal component 3 (PC3) 

and principal component 4 (PC4) 
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It is evident from the RMSF of Ca. atoms calculated after projecting trajectories along their 

respective four principal components analysis for CdtB, fluctuation is highest in the 

projection on PC! which indicates that PC! will provide more information regarding the 

collective motion of the protein (Fig. 12). 

It is clear from the probability of sampling the phase space determined by first two principal 

modes during the simulations the projection of the dynamics trajectory onto the first two PC 

that the protein A traverse one conformational space around the origin and second one at the 

right side of the origin and third one at the left side of the origin which are much scattered 

indicating slightly high conformational freedom (Fig. 13) 

The aim of our study was to construct three-dimensional model of the CdtB protein from H. 

hepaticus ATCC51449 using the homology modelling technique. The structures presented 

here are reliable on their biochemical features. The model may help to explain the functional 

mechanism of the Cdtb protein from H. hepaticus ATCC51449. The RMSD and Rg study 

explain the rigidity of toxin. This model is expected to assist the scientists working with the 

H. hepaticus ATCC51449 to recognize structure-function relationships of the CdtB protein. In 

absence of crystallographic or NMR structure this model will enlighten us about three 

dimensional structure and dynamic properties of the toxin CdtB and opening newer 

possibilities for exploring the molecular mechanism and activity in CdtB protein H. hepaticus 

ATCC51449. 
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APPENDIX 

Appendix 1: Software used in molecular dynamics simulation. 
I. Abalone (classical, implicit water) 
2. ABINIT (DFT) 
3. ACEMD (running on NVIDIA GPUs: heavily optimized with CUDA) 
4. ADUN (classical, P2P database for simulations) 
5. AMBER (classical) 
6. Ascalaph (classical, GPU accelerated) 
7. CASTEP (DFT) 
8. CPMD (DFT) 
9. CP2K (DFT) 
10. CHARMM (classical, the pioneer in MD simulation, extensive analysis tools) 
II. COSMOS (classical and hybrid QMIMM, quantum-mechanical atomic charges with BPT) 
12. Desmond (classical, parallelization with up to thousands of CPU's) 
13. Culgi (classical, OPLS-AA, Dreiding, Nerd, and TraPPE-UA force fields) 
14. DL POLY (classical) 
15. ESPResSo (classical, coarse-grained, parallel, extensible) 
16. Fireball (tight-binding DFT) 
17. GROMACS (classical) 
18. GROMOS (classical) 
19. GULP (classical) 
20. Hippo (classical) 
21. Kalypso MD simulation of atomic collisions in solids 
22. LAMMPS (classical, large-scale with spatial-decomposition of simulation domain for 

parallelism) 
23. LPMD Las Palmeras Molecular Dynamics: flexible an modular MD. 
24. MacroModel (classical) 
25. MDynaMix (classical, parallel) 
26. MOLDY (classical, parallel) latest release 
27. Materials Studio (Forcite MD using COMPASS, Dreiding, Universal, cvff and pcff 

forcefields in serial or parallel, QMERA (QM+MD), ONESTEP (DFT), etc.) 
28. MOSCITO (classical) 
29. NAMD (classical, parallelization with up to thousands of CPU's) 
30. nano-Material Simulation Toolkit 
31. NEWTON-X (ab initio, surface-hopping dynamics) 
32. ORAC (classical) 
33. ProtoMol (classical, extensible, includes multigrid electrostatics) 
34. PWscf(DFT) 
35. RedMD (coarse-grained simulations package on GNU licence) 
36. S/PllllnX (DFT) 
37. SIESTA (DFT) 
38. VASP (DFT) 
39. TINKER (classical) 
40. YASARA (classical) 
41. XMD (classical) 
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Related software 

1. VMD- MD simulation trajectories can be visualized and analyzed. 
2. PyMol -Molecular Visualization software written in python 
3. Packmol Package for building starting configurations for MD in an automated 

fashion 
4. Sirius- Molecular modeling, analysis and visualization of MD trajectories 
5. esra- Lightweight molecular modeling and analysis library 

(Java!Jython/Mathematica). 
6. Molecular Workbench- Interactive molecular dynamics simulations on your desktop 
7. BOSS- MC in OPLS 
8. Punto is a freely available visualisation tool for particle simulations. 

Specialized hardware for MD simulations 

1. Anton- A specialized, massively parallel supercomputer designed to execute MD 
simulations. 

2. MD GRAPE - A special purpose system built for molecular dynamics simulations, 
especially protein structure prediction. 
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Appendix II : Software used in Homology modeling 

Name M ethod 

LOMETS Local Meta threading server 

3D-JIGSAW Fragment assembly 

Biskit wraps extemal programs into automated 
workflow 

Description 

Meta-server combining 9 different 
programs 

Automated webserver 

BLAST search, T-Coffce 
alignment, and MODELLER 
construction 

CABS Reduced modeling tool Downloadable program 

CPHModel Fragment assembly Automated webserver 

ESyPred3D Template detection, aligrunent, 3D modeling Automated webserver 

FoldX Energy calculations and protein design Downloadable program 

GeneSi lieo Consensus template search/fragment Webserver 
assembly 

Geno3D Satisfaction of spatial restraints Automated webserver 

HHpred Template detection, a ligrunent, 3D modeling Interactive webserver with help 
facility 

LlBRA I Light Balance for Remote Analogous Webserver 
proteins, ver. I 

MOD ELLER Satisfaction of spatial restraints Standalone program in Python 

EasyModeller GUI to MOD ELLER Standalone windows executable 

Protinfo CM Comparative modelling of protein structure Web server 
using minimum perturbation and looop 
building 

ROSETTA Rosetta homology modeling and ab initio Webserver 
fragment assembly with Ginzu domain 
prediction 

Selvita Protein Package of tools for protein modeling 
Modeling 
Platform 

SWISS
MODEL 

Local similarity/ fragment assembly 
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Free demo, interactive webserver 
and standalone program including: 
BLAST search, CABS modeling, 
3D threading, Psi-Pred secondary 
structure prediction 

Automated webserver based on 
ProModli 


