CHAPTER - 5
 STUDY OF COINTEGRATION BETWEEN RUPEE / NEPALESE RUPEE EXCHANGE RATE AND RELATIVE PRICE LEVEL

5.1 Introduction:

Rupee/ Nepalese Rupee exchange rate $\left(\mathrm{e}_{\mathrm{t}}\right)$ and relative price level $\left(\mathrm{p}_{\mathrm{t}}\right)$ series are nonstationary and both the series are $\mathrm{I}(1)$. Since both the series possess the same order of integrability, the possibility of cointegration between these series exists. The study of the cointegration between e_{t} and p_{t} is important in view of the fact that the existence of such cointegration implies long-run relationship between exchange rate and relative price level of the two countries concerned. In that case, exchange rates quoted between the currencies will be in parity with the relative prices prevailing at different time sequences of the period of study. This implies, on the other hand, that exchange rates quoted for the currencies are related to and in parity with the relative purchasing power of the currencies over the study-period. Consequently, 'Purchasing Power Parity Doctrine' becomes a valid phenomenon in the determination of exchange rate of currencies of the countries concerned (viz, India and Nepal). It is, therefore, pertinent to examine if these variables (e_{t} and p_{t}) are cointegrated. The study in this chapter is devoted to address this issue.

5.2 Johansen Cointegration Test

The Johansen Cointegration Tests are used to examine if Rupee/ Nepalese Rupee exchange rate $\left(e_{t}\right)$ and the relative price level $\left(p_{t}\right)$ series are cointegrated at level over the period 1976:1-2006:1. The results of such tests are being presented through the Table5.1.

Table-5.1

Results of Johansen Cointegration Tests for
e_{t} and p_{t} at level [Period 1976:1-2006:1]
Trend Assumption: Linear Deterministic Trend (Restricted)
Lag Intervals (in first Difference): 1-4

I Unrestricted Cointegration Rank $\lambda_{\text {trace }}$ Test Variables Involved: e_{t} and p_{t} at Level					
Null	Alternative	Eigen	Trace	Critical	values
Hypothesis	Hypothesis	Value	Statistics ($\lambda_{\text {trace }}$)	5\%	1\%
$\mathrm{r}=0$	$r>0$	0.082	14.529	25.32	30.45
$\mathrm{r} \leq 1$	$\mathrm{r} \geq 1$	0.039	4.641	12.25	16.26
II Unrestricted Cointegration Rank $\lambda_{\max }$ Test Variables Involved: e_{t} and p_{t} at Level					
Null Hypothesis	Alternative Hypothesis	Eigen Value	Maximum Eigen Statistics ($\lambda_{\text {max }}$)	Critica 5%	Values 1\%
$\mathrm{r}=0$	$\mathrm{r}=1$	0.082	9.888	18.96	23.65
$\mathrm{r} \leq 1$	$\mathrm{r}=2$	0.039	4.641	12.25	16.26

5.3 Findings From the Table 5.1

It is observed from the Table 5.1 that
i. for the null-hypothesis $\mathrm{r}=0$ against the alternative hypothesis $\mathrm{r}>0, \lambda_{\text {trace }}(0)=14.529$ is lower than the corresponding 5% and 1% critical values. Therefore, the nullhypothesis of 'no cointegrating' relation cannot be rejected even at 5% level.
ii. for the null-hypothesis $r \leq 1$ against the alternative hypothesis $r>1$, the value of $\lambda_{\text {trace }}$ (1) statistic is 4.641 which is lower than 1% and 5% critical values. So the null hypothesis of $\mathrm{r} \leq 1$ cannot be rejected even at 5% level.
iii. for the null hypothesis $\mathrm{r}=0$ against the alternative hypothesis $\mathrm{r}=1$ under $\lambda_{\max }$ test, $\lambda_{\max }(1,0)$ value is 9.888 . It is lower than the corresponding 5% and 1% critical values. It implies that the null hypothesis of 'no cointegration' cannot be rejected at even 5% level.
iv. for the null hypothesis $\mathrm{r}=1$ against the alternative hypothesis $\mathrm{r}=2$ under $\lambda_{\max }$ test, $\lambda_{\max }(1,2)=4.641$ falls short of the corresponding critical values at 5% and 1% levels. Consequently, the null hypothesis of 'no cointegration' between the variables appears to be accepted at even 5% level.

5.4 Overview of the Findings of Cointegration Study and Economic Implications

It is observed from the findings in Section 5.3 that
i. there does not exist any 'cointegration' between Rupee/Nepalese Rupee exchange $\operatorname{rate}\left(\mathrm{e}_{\mathrm{t}}\right)$ and the relative price level $\left(\mathrm{p}_{\mathrm{t}}\right)$ at level over the period of study (1976:12006:1).
ii. though both of e_{t} and p_{t} are $I(1)$, these are not $C I(I, 0)$.

The absence of cointegration between exchange rate $\left(\mathrm{e}_{\mathrm{t}}\right)$ and relative price level $\left(\mathrm{p}_{\mathrm{t}}\right)$ at level bears some important economic implications. The 'non-cointegration' between e_{t} and p_{t} implies that the exchange rates quoted between Indian and Nepalese Currency were not related to the relative purchasing power of the currencies over the period of study. Consequently, there did not exist any long-run relationship between exchange rates quoted in international trade and the relative price levels in these countries.

Study of cointegration enquires into the existence of equilibrium relationship postulated by the economic theory. In the present context the economic theory refers to the 'Purchasing Power Parity Theory' which stresses upon the long-run relationship between exchange rate and relative purchasing power of currencies concerned. Under this theory exchange rate, in the long-run, establishes, the law of one price (LOOP).

However, the absence of cointegration between e_{t} and p_{t}, as found in section 5.3, fails to testify for the validity of the 'Purchasing Power Parity Doctrine' over the period of study concerned. It, therefore, appears that the Rupee/ Nepalese Rupee exchange rates,
prevailing over the period of study, were largely determined by some factors other than contemporary relative price levels.

5.5 Limitations of Study with the Historical Dataset (Covering the period 1976:1-2006:1)

Lucas (1976) has pointed out that econometric relationships change over time following changes in economic policies, social set-ups, administrative decisions, management considerations, political liabilities and institutional opportunities etc. Thus multiforced changes affect the behaviour of macroeconomic variables leading to changes in their relations as a consequence. Thus historical dataset embodies such varying economic relations. Consequently, the econometric relations among the variables estimated with the historical dataset fail to represent the true econometric relations among the variables concerned.

The historical dataset used in this study covers a period of about thirty-one years (1976:12006:1). This period is marked by spectacular changes in economic-social-administrative-political fronts. In this period fixed exchange rate system gave away for 'crawling peg' system which was finally replaced by 'flexible exchange rate' system. Thus exchange rate system finally became free from government intervention and varied over time following variations in market forces. Within this period, era of liberalization dawned and globalization was welcome in the realm of trade. Bilateral and multi-lateral trade expansion took place among the South Asian Countries. SAARC was established and consequently both India and Nepal took important steps in bringing forth expansion of trade. Thus both the countries experienced changes in economic-social-political fronts and consequently economic relations among variables also underwent changes.

It may also be noted that these changes do not occur everyday. Changes in economic relations occur and continue for some time. Then again such relations change after the
passage of some time. Such changes in relations embody 'structural changes' by nature. Consequently, historical dataset is marked by the presence of 'structural changes'.

In the historical dataset (1976:1-2006:1) used in our study is found to contain two subperiods giving forth two distinct relations between exchange rate $\left(\mathrm{e}_{\mathrm{t}}\right)$ and relative price level $\left(\mathrm{p}_{\mathrm{t}}\right)$. The first sub period ranges from 1976:1 to $1993: 1$ and the second sub period extends from 1993:2 to 2006:1.

These two sub periods have been identified through the 'Chow Tests'. However, the exact period i.e, the coverage of the each of the sub-periods has been identified through laborious 'trial and error' methods. Identification of the end of the first sub-period and the beginning of the second sub period involved laborious econometric estimations. The justifications of such identifications becomes evident from the econometric findings presented in subsequent chapters.

5.6 Stationarity of e_{t} and p_{t} in the Sub-period 1976:1-1993:1: ADF Unit Root Test

The stationarity of e_{t} and p_{t} in the sub-period 1976:1-1993:1 has been examined through
i. the ADF Unit Root Test, and
ii. the Correlogram Study.

The results of the ADF Unit Root Tests on e_{t} and p_{t} at level and at first difference have been presented through the Tables 5.2 and 5.3 below.

Table: 5.2
Results of the ADF Unit Root Tests for $\mathbf{e}_{\mathbf{t}}$ and $p_{\mathbf{t}}$ at Level
(Sub-period: 1976:1-1993:1)

Variable	Null Hypothesis	Lag*	ADF Test Stat.	Prob.	Mac-Kinnon Critical Value**		
					1\%	5\%	10\%
e_{t}	e_{t} has unit root Exogenous: Constant	0	-2.010	0.282	-3.530	-2.905	-2.590
	e_{t} has unit root Exogenous: Constant and Linear Trend	0	-2.719	0.232	-4.099	-3.477	-3.166
	e_{t} has unit root Exogenous: None	0	0.184	0.737	-2.599	-1.946	-1.614
p_{t}	p_{t} has unit root Exogenous: Constant	2	-0.737	0.829	-3.533	-2.906	-2.591
	p_{t} has unit root Exogenous: Constant and Linear Trend	0	-4.196	0.008	-4.099	-3.477	-3.166
	p_{t} has unit root Exogenous: None	2	-1.503	0.123	-2.600	-1.946	-1.613

**MacKinnon (1996) one-sided p-values. *Based on SIC, Max Lag $=10$

Table 5.3

Results of the ADF Unit Root Tests for \mathbf{e}_{t} and p_{t} at First Difference ($\mathbf{D e}_{t}$ and $\mathbf{D p}_{t}$)

(Sub-period: 1976:1-1993:1)

Variable	Null Hypothesis	Lag*	$\begin{gathered} \mathrm{ADF} \\ \text { Test } \end{gathered}$	Prob.	Mac-Kinnon Critical Value**		
			Stat.		1\%	5\%	10\%
De ${ }_{\text {t }}$	e_{t} has unit root Exogenous: Constant	0	-9.953	0.000	-3.530	-2.905	-2.590
	e_{t} has unit root Exogenous: Constant and Linear Trend	0	-9.917	0.000	-4.099	-3.477	-3.166
	e_{t} has unit root Exogenous: None	0	-9.971	0.000	-2.599	-1.946	-1.614
Dp ${ }_{\text {t }}$	p_{t} has unit root Exogenous: Constant	1	-8.554	0.000	-3.533	-2.906	-2.591
	p_{t} has unit root Exogenous: Constant and Linear Trend	1	-8.492	0.000	-4.099	-3.477	-3.166
	p_{t} has unit root Exogenous: None	1	-8.407	0.000	-2.600	-1.946	-1.613

**MacKinnon (1996) one-sided p-values. *Based on SIC, Max Lag $=10$

5.7 Findings From The Tables 5.2-5.3

(A) The Tables 5.2 shows that
i. the ADF test statistic for e_{t} with intercept term as well as that for e_{t} with 'intercept and linear trend term in the maintained regression equations fall short of critical values even at 10% level.
ii. the ADF test statistic for e_{t} with 'no intercept term and linear trend' term in the maintained regression equation also falls short of the critical values even at 10% level.

All these findings indicate that e_{t} is 'non-stationary' in the period 1976:1-1993:1.
(B) The Table 5.2 further shows that
i. the ADF test statistics for p_{t} with 'intercept' and without 'intercept as well as linear trend' in the maintained regression equations are lower than the corresponding critical values even at 10% level.
ii. the ADF test statistic for p_{t} with intercept and linear trend term in the maintained regression equation exceeds 1% critical values.

These findings indicate contradictory status regarding stationarity of p_{t}. In order to ascertain its stationarity, study of its correlogram becomes necessary.
(C) The Table 5.3 shows that
a. the ADF test statistic for De_{t} (i.e. e_{t} at first difference) with intercept or 'with intercept as well as linear trend' or 'without intercept and linear trend' term in the maintained regression equations exceed the critical values even at 1% level.
b. the ADF test statistic for Dp_{t} (i.e. p_{t} at first difference) exceed the critical values even at 1% level when the maintained regression equations are estimated with 'intercept only' or 'with intercept and linear trend term' or without 'intercept and linear trend term'.

These findings indicate that
i. both De_{t} and Dp_{t} are stationary even at 1% level, and therefore,
ii. $\quad e_{t} \sim I(1)$ and $p_{t} \sim I(1)$.

5.8 Stationarity of e_{t} and p_{t} in the Sub-period 1976:1-1993:1: Correlogram Study

The stationarity of e_{t} and p_{t} over the sub-period 1976:1-1993:1 has been examined through the study of their correlograms. The correlogram for e_{t} at level and at first difference for this sub-period are given by the Figures 5.1-5.2. The correlograms for p_{t} at level and at first difference for this sub-period are being presented through the Figures 5.3-5.4.

Figure 5.1

Correlogram of Rupee/Nepalese Rupee (e_{t}) Series at level

[Sub-Period: 1976:1-1993:1]

Fncludec observations: 69				Fample: 1976:1 1993:1		
Autocorrelation	Partial Correlation		$A C$	PAC	Q-Stat	Prob
]	$1 \square$	1	0.898	0.898	58.061	0.000
$1 \square$	10	2	0.828	0.115	108.22	0.000
1	101	3	0.785	0.123	153.92	0.000
1 1	181	4	0.727	-0.051	193.80	0.000
1	1	5	0.684	0.045	229.59	0.000
1	11	6	0.607	-0.195	258.20	0.000
1	$1 \square_{1}$	7	0.567	0.126	283.58	0.000
1	111	8	0.542	0.053	307.19	0.000
1	11	9	0.491	-0.070	326.84	0.000
$1 \sim$	111	10	0.448	-0.025	343.54	0.000
1 -	141	11	0.398	-0.055	356.95	0.000
1	11	12	0.371	0.057	368.79	0.000
1 -	$\square 1$	13	0.303	-0.246	376.81	0.000
$1 \square$	11	14	0.237	0.002	381.81	0.000
1 1	11	15	0.197	-0.002	385.34	0.000
P1	11	16	0.164	0.078	387.82	0.000
1	181	17	0.130	-0.058	389.40	0.000
1	$1{ }^{1}$	18	0.075	-0.059	389.94	0.000
11	11	19	0.050	0.064	390.19	0.000
$1[1$	\square^{1}	20	0.061	0.132	390.56	0.000
11	1	21	0.042	-0.039	390.74	0.000
11	11	22	0.021	-0.024	390.79	0.000
1	11	23	-0.013	-0.093	390.80	0.000
111	181	24	-0.037	-0.064	390.95	0.000
,	1	25	-0.066	-0.065	391.43	0.000
15	1	26	-0.104	0.009	392.66	0.000
1	1	27	-0.154	-0.172	395.42	0.000
1	11	28	-0.186	-0.011	399.57	0.000

Figure 5.2
Correlogram of Rupee/Nepalese Rupee (e_{t}) at First Difference
[Sub-Period: 1976:1-1993:1]

Inclucied observations: 68			Sample: 1976:1 1993:1			
Autocorrelation	Partial Correlation		$A C$	PAC	Q-Stat	Prab
1	[1	1	-0.214	-0.214	3.2584	0.071
! !	$1 \square$	2	-0.119	-0.173	4.2789	0.118
1]	,	3	0.058	-0.010	4.5224	0.210
$1{ }^{1}$	101	4	-0.070	-0.085	4.8894	0.299
		5	0.188	0.174	7.5690	0.182
	$1{ }^{1}$	6	-0.200	-0.152	10.627	0.101
		7	-0.003	-0.025	10.627	0.156
11	1.1	8	0.050	-0.029	10.823	0.212
11	11	9	-0.038	-0.005	10.938	0.280
$1]$		10	0.107	0.064	11.886	0.293
		11	-0.187	-0.119	14.795	0.192
		12	0.240	0.214	19.701	0.073
11	11	13	0.017	0.043	19.325	0.102
	11	14	-0.171	-0.072	22.293	0.073
111		15	-0.013	-0.134	22.308	0.100
	14	16	-0.056	-0.044	22.597	0.125
		17	0.190	0.086	25.956	0.075
	,	18	-0.165	-0.110	28.540	0.054
	-	19	-0.244	-0.251	34.319	0.017
1 B	$1 \text { 困 }$	20	0.112	-0.089	35.565	0.017
		21	-0.090	-0.155	36.394	0.020
		22	0.150	0.024	38.719	0.015
		23	-0.080	0.025	39.106	0.019
	11	24	-0.027	0.020	39.182	0.026
	$1{ }^{1}$	25	0.016	-0.144	39.212	0.035
		26	0.033	0.093	39.332	0.045
	1.1	27	0.031 -0.110	0.020 -0.019	39.445 40.896	0.058
'回1		28	-0.110	-0.019	40.896	0.055

Figure 5.3
Correlogram of Relative Price Level ($\mathbf{p}_{\mathbf{t}}$) at level
[Sub-Period: 1976:1-1993:1]

Inclucled observations: 69				Sample: 1976:1 1993:1		
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prab
$1 \square$	$1 \square$	1	0.880	0.880	55.729	0.000
1 T	1 I	2	0.814	0.177	104.14	0.000
t	11	3	0.768	0.107	147.94	0.000
1	11	4	0.318	0.008	186.82	0.000
$1 \sim$	1	5	0.644	-0.125	218.56	0.000
$1 \square$	'	6	0.559	-0.144	242.84	0.000
1	$1-1$	7	0.534	0.172	265.39	0.000
1	1	8	0.523	0.156	287.40	0.000
$1 \quad 1$	1	9	0.496	0.034	307.48	0.000
$1 \square$	$1{ }^{1}$	10	0.444	-0.127	323.87	0.000
1	1 -	11	0.464	0.202	342.09	0.000
1	11	12	0.465	-0.017	360.67	0.000
$1 \square$	1.	13	0.435	-0.078	377.26	0.000
1 -	14	14	0.396	-0.067	391.21	0.000
1	11	15	0.382	0.041	404.45	0.000
1	14	16	0.366	-0.056	416.82	0.000
1	181	17	0.313	-0.073	426.03	0.000
1	1.	18	0.252	-0.076	432.13	0.000
1	11	19	0.222	0.022	436.96	0.000
1 -1	${ }^{1}$ 텰	20	0.183	-0.131	440.31	0.000
11	18	21	0.114	-0.093	441.63	0.000
1	$1 \square^{5}$	22	0.039	-0.132	441.79	0.000
1	11	23	-0.003	-0.026	441.79	0.000
11	151	24	-0.039	-0.057	441.96	0.000
t	18	25	-0.111	-0.115	443.32	0.000
1	$1{ }^{1}$	26	-0.181	-0.133	447.07	0.000
	,	27	-0.211	-0:001	452.29	0.000
-	1 1	28	-0.226	0.003	458.40	0.000

Figure 5.4
Correlogram of Relative Price Level $\left(p_{t}\right)$ ät First Difference
[Sub-Period: 1976:1-1993:1]

Included observations: 68			Sample: 1976:1 1993:1	
Autacorrelation	Partial Correlation	$A C$ PAC	Q-Stat	Prob
\square	1	$1-0.325-0.325$	7.4976	0.006
15	-	$2-0.124-0.256$	8.6035	0.014
11	$\underline{\square}$	$3 \quad 0.042-0.110$	8.7330	0.033
1 P1	181	$4 \begin{array}{lll}4 & 0.123 & 0.083\end{array}$	9.8578	0.043
11	-	50.0250 .131	9.9059	0.078
-		$6-0.243-0.171$	14.449	0.025
1		7-0.015-0.201	14.467	0.043
11	1.	$80.098-0.096$	15.234	0.055
1 1	$1{ }^{1}$	90.0960 .108	15.985	0.067
明		$10-0.360-0.270$	26.623	0.003
1 P $^{\prime}$	$1{ }^{\text {B }}$	11 0.108-0.105	27.601	0.004
1 T	18	$12 \quad 0.099-0.069$	28.434	0.005
1 1	11	$130.0008-0.014$	28.439	0.008
$10^{\circ} 1$	10 0	14-0.109-0.062	29.486	0.009
11	11	1500.0350 .030	29.598	0.013
1 11	11	$16 \quad 0.150 \quad 0.027$	31.645	0.011
1	11	$17-0.007 \quad 0.018$	31.649	0.017
$1{ }^{1}$	1	$18-0.141-0.108$	33.555	0.014
11	181	1900.0720 .054	34.065	0.018
1	11	$20 \quad 0.131 \quad 0.035$	35.772	0.016
9	1 1	$21-0.0300 .087$	35.862	0.023
1	1 1	$22-0.0370 .114$	36.006	0.030
$1{ }^{1}$	11	23-0.078-0.018	36.644	0.035
1 P1	11	240.1610 .051	39.450	0.024
151	1 回	$25-0.00700 .120$	39.456	0.033
$1{ }^{1}$	11	26-0.173-0.005	42.842	0.020
$1{ }^{1}$	18	27-0.026 -0.064	42.923	0.027
	$1{ }^{1}$	$128 \quad 0.054-0.127$	43.266	0.033

5.9 Findings From the Correlogram Study (Sub-period: 1976:1-1993:1)

(A) It is observed from the Figures 5.1-5.2 that
i. the $A C F$ for $\cdot \mathrm{e}_{\mathrm{t}}$ at level displays a long dying out pattern of spikes.
ii. the $P A C F$ for e_{t} at level contains a singular significant spike at lag one.
iii. the $A C F$ for e_{t} at first difference is marked by the absence of any dying out pattern of spikes.
iv. the $P A C F$ for e_{t} at first difference contains no singularly significant spike at lag one.

All these observations confirm that
i. $\quad e_{t}$ at level in the sub-period 1976:1-1993:1 is non-stationary.
ii. $\quad e_{\mathrm{t}}$ attains stationarity upon first differencing over the sub-period 1976:1-1993:1.
(B) The Figures 5.3-5.4 show that
i. the $A C F$ of p_{t} at level over the sub-period 1976:1-1993:1 is marked by the presence of a long dying out pattern of spikes.
ii. the $P A C F$ of p_{t} at level over the sub-period 1976:1-1993:1 contains unique significant spike at lag one.
iii. the $A C F$ of p_{t} at first difference exhibits no long dying out pattern of spikes.
iv. the PACF of p_{t} at first difference is marked by the absence of any singularly significant spike at lag one.

These features of the correlograms of p_{t} at level and at first difference indicate that
i. $\quad p_{t}$ is non-stationary at level, and
ii. $\quad p_{t}$ is stationary at first difference over the sub-period 1976:1-1993:1.

5.10 Review of the Findings on Stationarity of e_{t} and p_{t} Over the Sub-period 1976:1-1993:1

The Finding in Sections 5.7-5.9 confirm that over the sub-period 1976:1-1993:1
i. both e_{t} and p_{t} are non-stationary at level.
ii. both e_{t} and p_{t} attain stationarity upon first differencing, and, therefore,
iii. $\quad e_{t} \sim I(1)$ and $p_{t} \sim I(1)$.

5.11 Stationarity of e_{t} and p_{t} in the Sub-period 1993:2-2006:1: ADF Unit Root Tests

Stationarity of e_{t} and p_{t} in the sub-period 1993:2-2006:1 has been examined through ADF unit root tests. Results of such tests for e_{t} and p_{t} at level and at first difference are being presented through the Tables 5.4-5.5.

Table 5.4
Results of ADF Unit Root Tests for \mathbf{e}_{t} and p_{t} at Level:
[Sub-period: 1993:2-2006:1]

Variable	Hypothesis	Lag*	ADF Test Stat.	Prob.	Mac-Kinnon Critical Value**		
					1\%	5\%	10\%
e_{t}	e_{t} has unit root Exogenous: Constant	2	-1.626	0.462	-3.571	-2.922	-2.599
	e_{t} has unit root Exogenous: Intercept and Linear Trend	2	-1.946	0.615	-4.157	-3.504	-3.182
	e_{t} has unit root Exogenous: None	2	0.906	0.900	-2.613	-1.948	-1.612
p_{t}	p_{t} has unit root Exogenous: Constant	6	-1.383	0.582	-3.585	-2.928	-2.602
	p_{t} has unit root Exogenous: Intercept and Linear Trend	6	-1.307	0.874	-4.176	-3.513	-3.187
	p_{t} has unit root Exogenous: None	6	-1.067	0.254	-2.617	-1.948	-1.612

**MacKinnon (1996) one-sided p-values.*Based on SIC, Max Lag = 10

Table 5.5
Results of ADF Unit Root Tests for $\mathbf{e}_{\mathbf{t}}$ and $\mathbf{p}_{\boldsymbol{t}}$ at First Difference:
[Sub-period: 1993:2-2006:1]

Variable	Null Hypothesis	Lag*	ADF Test Stat.	Prob.	Mac-Kinnon Critical Value**		
					1\%	5\%	10\%
De ${ }_{\text {t }}$	De t_{t} has unit root Exogenous: Constant	1	-8.977	0.000	-3.571	-2.922	-2.599
	De e_{t} has unit root Exogenous: Intercept and Linear Trend	1	-8.892	0.000	-4.157	-3.504	-3.182
	De ${ }_{\mathrm{t}}$ has unit root Exogenous: None	1	-8.938	0.000	-2.616	-1.948	-1.612
$D p_{t}$	$D p_{t}$ has unit root Exogenous: Constant	5	-4.646	0.0005	-3.585	-2.928	-2.602
	Dp_{t} has unit root Exogenous: Intercept and Linear Trend	5	-4.621	0.003	-4.176	-3.513	-3.187
	Dp_{t} has unit root Exogenous: None	5	-4.700	0.000	-2.617	-1.948	-1.612

**MacKinnon (1996) one-sided p-values. *Based on SIC, Max Lag = 10

5.12 Findings From the Table 5.4-5.5

(A) Tables 5.4 and 5.5 show that
i. the ADF Test Statistics for e_{t} at level fall short of the critical values even at 10% level when the maintained regression equations are estimated with an intercept term only or with an intercept term along with a linear trend or without an intercept term as well as a linear trend.
ii. the ADF Test Statistics for $D e_{t}$ (i.e. e_{t} at first difference) exceed the critical values even at 1% level when the maintained regression equations are estimated with an intercept or with an intercept along with a linear trend or without any intercept and linear trend.

These findings indicate that
a. e_{t} is non-stationary at level even at 10% level of significance, and
b. De e_{t} (i.e. e_{t} upon first differencing) is stationary even at 1% level.
(B) It is further observed from the Tables that
i. the ADF test statistics for p_{t} at level are lower than the corresponding critical values even at 10% level when estimated regression equations contain an intercept term or an intercept term together with a linear trend or without an intercept term and a time trend.
ii. the ADF test statistic for D_{t} (i.e. p_{t} at first difference) exceed the corresponding critical values at 1% level when maintained regression equations are estimated with an intercept term or with an intercept term together with a linear trend or without any intercept term and a linear trend.

These findings indicate that in the sub-period 1993:2-2006:1
i. $\quad \mathrm{p}_{\mathrm{t}}$ is non-stationary at level, and
ii. $\quad p_{t}$ attains stationarity upon first differencing such that $D p_{t}$ is stationary at level even at 1% level.

5.13 Stationarity of e_{t} and p_{t} in the Sub-period 1993:2-2006:1: Correlogram Study

Stationarity of e_{t} and p_{t} in the sub-period 1993:2-2006:1 has also been examined through the study of their respective correlograms. The correlograms of e_{t} at level and at first difference are being presented through the Figures 5.5-5.6. Moreover, Figures 5.7 and 5.8 present the correlograms of p_{t} at level and at first difference respectively.

Figure 5.5

Correlogram of Rupee／Nepalese Rupee（ e_{t} ）at Level

［Sub－Period：1993：2－2006：1］

Inclucled obsermations： 52				ぶample：1993：2 2006：1		
Autocorrelation	Partial Correlation		$A C$	PAC	Q－Sitat	Prob
1 －	1 －－－	1	0.622	0.622	21.322	0.000
1 －	1 1	2	0.551	0.266	38.344	0.000
1 －－	1 －	3	0.576	0.280	57．381	0.000
1 1	1.	4	0.419	－0．099	67.643	0.000
1 －．	1 國	5	0.297	－0．145	72.926	0.000
1 －	1 回	6	0.226	－0．114	76.057	0.000
1 －	1 － 1	7	0.244	0.154	79.759	0.000
1 11	1 园	8	0.100	－0．106	80.395	0.000
171	10	9	0.115	0.106	81.266	0.000
$1] 1$	1 目	10	0.062	－0．130	81.523	0.000
$1 \quad 1$	11	11	0.008	－0．005	81.528	0.000
$1 \text { 目 } 1$	151	12	－0．039	－0．119	81.636	0.000
181	1 －1	13	－0．116	－0．080	82.612	0.000
10 1	$1 \square_{1}$	14	－0．153	－0．102	84.350	0.000
!	1 1	15	－0．233	－0．057	88.483	0.000
1	11	16	－0．213	0.032	92.031	0.000
I[苗	1 回	17	－0．194	0.131	95．0．40	0.000
$1 \square 1$	111	18	－0．166	0.082	97.324	0.000
$1 \text { 回 }$	121	19	－0．104	0.100	98.241	0.000
101	111	20	－0．027	0.088	98.304	0.000
111	18	21	－0．013	－0．047	98.320	0.000
14	1 1	22	－0．052	－0．153	98.570	0.000
11	111	23	0.015	－0．008	98．590	0.000
11	1 ¢ 1	24	－0．011	－0．038	98.603	0.000

Figure 5.6

Correlogram of Rupee／Nepalese Rupee（ e_{t} ）at First Difference
［Sub－Period：1993：2－2006：1］

Included observations：51			Sarmple：1993：2 2006：1	
Autocorrelation	Partial Correlation	AC PAC	Q－Stat	Prab
\square	$\square 1$	$1-0.444-0.444$	10.664	0.001
1.	1	2－0．130－0．408	11.599	0.003
1 可	，	$\begin{array}{llll}3 & 0.259 & -0.006\end{array}$	15.365	0.002
151	1 1 1	$4-0.046$	15.488	0.004
10	1	$5-0.0750 .0 .059$	15.819	0.007
101	${ }^{1}$	6－0．097－0．209	16.389	0.012
$1]$	19	70.2610 .100	20.571	0.004
1	$1{ }^{\text {國1}}$	8－0．276－0．176	25.363	0.001
1 日	17	90.1180 .063	26.257	0.002
	$1[1$	10－0．005－0．108	26.259	0.003
		$\begin{array}{lll}11 & 0.022 & 0.107\end{array}$	26.290	0.006
11	1	$\begin{array}{lll}12 & 0.007 & 0.025\end{array}$	26.293	0.010
$1 \text { II } 1$	111	$13-0.0590 .046$	26.541	0.014
1	151	$14 \quad 0.053-0.120$	26.743	0.021
	1 1	$15-0.133-0.146$	28.080	0.021
	1	$16 \quad 0.026-0.257$	28.132	0.030
$1 \int 1$	151	$17-0.012-0.102$	28.143	0.043
	1 1	18－0．021－0．145	28.177	0.059
	$1{ }^{4}$	19－0．036－0．085	28.290	0.078
		20.0 .0990 .021	29.144	0.085
1		$21 \quad 0.028 \quad 0.130$	29.213	0.109
$1 \text { 回 }$	10	$22-0.135-0.061$	30.914	0.098
$1 \square^{1}$	1	$\begin{array}{llll}23 & 0.138 & 0.000\end{array}$	32.749	0.086
1 目	0	24－0．105－0．261	33.863	0.087

Figure 5.7
Correlogram of Relative Price Level ${ }^{(} \mathbf{p}_{\mathbf{t}}$ ）at Level
［Sub－Period：1993：2－2006：1］

nncluded observations： 52			Sample：1993：2 2006：1			
Autocorrelation	Partial Correlation		$A C$	PAC	Q－Sitat	Prob
1 －	\pm	1	0.779	0.779	33.449	0.000
1 1	$1 \mathrm{Br}^{2}$	2	0.525	－0．209	48.951	0.000
		3	0.474	0.379	61.853	0.000
	1目	4	0.430	－0．163	72.693	0.000
1 回		5	0.169	－0．461	74.406	0.000
		5	－0．030	0.171	74.462	0.000
11	$1 \longrightarrow$	7	0.048	0.333	74.603	0.000
1 四		8	0.153	0.032	76.093	0.000
$1 \square^{1}$	11	9	0.078	－0．038	76.489	0.000
	1	10	－0．015	－0．201	76.507	0.000
121	－	11	0.076	0.031	76.905	0.000
1 11	［1］	12	0.134	－0．088	78.157	0.000
11		13	－0．006	－0．050	78.160	0.000
1國	10	14	－0．171	－0．070	80.322	0.000
$1{ }^{1}$	1 1	15	－0．165	－0．058	82.400	0.000
1回	1 －	16	－0．148	－0．062	84.114	0.000
回	1 回	17	－0．290	－0．151	00.852	0.000
	1 I	18	－0．416	－0．062	105.13	0.000
	19	19	－0．381	－0．109	117.49	0.000
	，	20	－0．311	－0．014	125.95	0.000
－	$\square 1$	21	－0．354	［0．061	137.31	0.000
	＇	22	－0．379	0.020	1.50 .74	0.000
15	1 F1	23	－0．229	0.213	155.82	0.000
1 M	1 If	24	－0．087	－0．117	156.59	0.000

Figure 5.8
Correlogram of Relative Price Level（ $\mathbf{p}_{\mathbf{t}}$ ）at First Difference
［Sub－Period：1993：2－2006：1］

5.14 Findings From the Correlogram Study (Sub-Period: 1993:2-2006:1)

(A) It is observed from the figures 5.5-5.6 that in the Sub-Period: 1993:2-2006:1
i. the $A C F$ of e_{t} at level exhibits a long dying out pattern of spikes extending beyond $20^{\text {th }}$ lag.
ii. the PACF of e_{t} at level exhibits the presence of a 'unique' significant spike at lag one.
iii. the $A C F$ of De_{t} (i.e. e_{t} at first difference) is marked by the absence of a dying out ladder like pattern of spikes.
iv. the $P A C F$ of De_{t} contains no singularly significant spike at lag one.

All these features of the correlograms of e_{t} at level and first difference confirm the findings of the ADF unit root tests that over the period 1993:2-2006:1
i. $\quad \mathrm{e}_{\mathrm{t}}$ is non-stationary at level, and
ii. $\quad D e_{\mathrm{t}}$ is stationary at level i.e, e_{t} attains stationarity upon first differencing.
(B) The Figures 5.7 and 5.8 show that in the sub-period 1993:2-2006:1
i. the $A C F$ of p_{t} at level contains a long dying out pattern of spikes extending beyond the $20^{\text {th }}$ lag.
ii. the $P A C F$ of p_{t} at level is devoid of any such pattern and any singularly significant spike at lag one.
iii. the $A C F$ of Dp_{t} (i.e p_{t} upon first difference) exhibits no dying out pattern of spikes.
iv. the $P A C F$ of De_{t} is marked by the absence of any unique significant spike at lag one.

All these features of the correlograms of p_{t} at level and at first difference testify that over the sub-period 1993:2-2006:1
a. p_{t} at level is non-stationary, and
b. $D p_{t}$ is stationary at level and, therefore, p_{t} attains stationarity upon first differencing.

5.15 Review of Findings on Stationarity and Integrability of e_{t} and p_{t} over the Sub-

 Period 1993:2-2006:1The findings on Stationarity and Integrability of e_{t} and p_{t} over the sub-period 1993:22006:1 in the sections 5.12 through 5.14 confirm that
i. $\quad e_{t}$ and p_{t} at level are non-stationary.
ii. $\quad e_{t}$ and p_{t} are stationary upon first differencing, and
iii. $\quad e_{t} \sim I(1)$ and $p_{t} \sim I(1)$.

5.16 Summary of the Findings and Economic Implications

The findings in this Chapter (Chapter 5) over the subsections 5.7-5.14 confirm that
i. $\quad \mathrm{e}_{\mathrm{t}} \sim \mathrm{I}(1)$ and $\mathrm{p}_{\mathrm{t}} \sim \mathrm{I}(1)$ over the sub-period 1976:1-1993:1, and
ii. $\quad \mathrm{e}_{\mathrm{t}} \sim \mathrm{I}(1)$ and $\mathrm{p}_{\mathrm{t}} \sim \mathrm{I}(1)$ over the sub-period 1993:2-2006:1.

In both the sub-periods, e_{t} and p_{t} are non-stationary while both of them possess the same order of integrability. These are integrated of order one. This indicates that there exist a scope of enquiring into the existence of long-run relationship between these variables in both the sub-periods. Consequently, the study of cointegration between e_{t} and p_{t} is theoretically justified in both the sub-periods. The cointegration between e_{t} and p_{t}, if established in any of the sub-periods, would support the doctrine of 'Purchasing Power Parity' for the quoted exchange rates between the currencies of India and Nepal in that sub-period. The study in the next chapter is devoted to address this issue.

