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CEAPTER IX

TUR GUAVEX OF BIR EXISTING LITERATURE AND THB
4TATE. OF- TUR-ARD

2.0 Intvedustion

The cutesme of the present investigation is the
rvesults of our experinents with the applisntions of diffesent
setheds of eoybverneties W the eleetrical power indwsiwy,
The metheds vhieh are relevant to the present favestigation
are diseussed vith the assosiated state-of-the-ars,

2.1.0 On-line Simulation of Hourly River Flows

The chapter 1II deals vith the en-1ine simmlation of
Mourly river flows for run-of- the-river hydreeleetris plant.
Rr on-1ine cperation of hydresleetris power plant on regl- tine
basis 4t is essential b have an assurate one step ehead
sstimation of river flow The presens investigation develeps
the hourly fiow simulation technique with the oybermetisal
methad of resursive least square instrument varialle algeritim
vith pareneter trasking adaptivensss.

fhere are many ways of obtaining resursive algeritims.
Sone of m‘ﬁlj’m on recureive idmtification netheds
are given in . It is not attewpted %o present all 1%
variants in their vide spectrum of use. The diseussion is

linited to that part wvhich is relevant % the present



investigation and it deals vith more than just the subjess

of estimation algoriths ¢ 1% treats alse the sudjeets of
system identification and foreeasting. This is due %o the
faet that the techniques of estimation derive in part fyem
the troader field of system identificatisn wvhieh ingezporates
oS timation with model strugture identifisation, medel
verificetion and mpdel validation. T investigater iz heavily
debted to Boot‘ Um his excellent treatment of the suldest
in & highly understandable tuterial mmhlgvu-lm
Exesllent treatment of the time series by !m has aoted
as a guide.

In the present investigation hlask btox models have
botn assumed and therefore only such wedels are disoussed,
™is type of models is often encountered in physieal system.
W¥hen suitadly transfommed the model vy anstable %

thij doderstrom ot @l y and
has given & good eoverage on resursive
identificaticn aethods,

Recursive teshnique has been defined W !‘.“4.11.7
as "a technique in whioch an estimate 1is Wpdated an reeeipt of
fresh informations.” &teps of develcpusns of the Resursive
paraneter ostimation algoritim has besh depieted in
Mg & 10
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L. LINEAR LEAST >QUARL REGRLISION ANALY G

2. LEAST SGUARE ESTIAATION OF PARAMEITERS.

5, RECURSIVE LEAST SOURE ESTIMATION OF PARMETERS
AND ALGORITHAMS.

4. RECURSIVE INSTRUMENT VARIABLE ALGDRITHMS.

5. RECURSIVE ESTIMATION OF SLOWLY VERYING PARAMETER
WITH EXPEMENTIAL.WE%GHHNG OF PAST DaT4 .

FIG. 2.1.0
AN OUTLINE OF THE DERIVATION OF RECURSIVE
ESTIMATION ALGBRITHMD




il Linear Least Square ﬂ_“.!‘” Q_n is

Without making any asswmption about the physieal
phenmmena of the system vhieh are thought to govern the
systen's dynanie bdehaviour the systen is often viewed as &
Mack doxn. Identification means that a model is fitted %0
measured Uy /71 = 1,84000n _/ of the inpus signal amd
¥ £ 4 % Lifyees n 7 of the cutput signal. Tw analysts
of time series suggests that there 1is & prebadility that
he eurrent values of the output X (8 ) is a funetion of
the previous ocufput observations, the autoregressive tevms
Tt 22y Tt glyeee § and the past odservatisns of
tpnt Tyt )0 Ugltg 0y Uil g)y Ugtyy)
Wgether vith the current unknown realistie noise process
V(). Therefore the system may be asswned as

28 a ”
Iin) = z ALYty )¢ E‘ ZS“B‘(C._‘MV(Q)
i=d J=l A=l

eee (B 1.1)

. Betemmination of _n 4s known as model erder
detemination, Mm&‘ whu suggested cuiput. cutpus
and output- L1put eorrvelation as an intuitive eensideration
for medel erder determination vhieh is alse the medel
strusture identifisation.

10
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In the polynomials of backward shift eperator,
e oquation ( 2.1,1 ) ean de rearranged s

n
aghxiw = D 3@ huy N « Vi (% 2.8)
, - _,

where the Dackvard shift operater ¢ 2 1s defined ly

Tlrm = 34 ®1.3)

and
A =2 A e p, F e - p " e led)
.“Q“) - S‘1 q"" * S" ‘-ﬂ ose * SJ‘Q‘. (8 L.8)

Mis nedel is quite auam‘g, 1t requirves that
the eguations be 1linear in paraneters .
Bguation ( R i.8 ) can bs represented &

X(t) = Z3()e=c » Vity) = L.6)

where -
%) =/ Ty eee Xl 00y Uil 3) oee Uyl )

coelplty 1) vor Uplty ) __/7 ®2.7)
“ | ,
o< U‘/ﬂloﬁoﬁ.' Su ses Sh Y gll Y S“../7 ﬂul-”
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S.1.8 Least Estina of Pavemetors

Least square estimate of the parsueters is odiained
W mininising the loss funstion defined as the sun of the

squared errors,

E (X )e ¥ )3 )" 9
knl

s 4

-~

in vhieh the estimtes < of =< that minimises J ave
onlled $he least aguare estimates. The medel respense ePrer
Tity) = Y(hy) = Z7(%)<are net in general idemtisal vith V(%)
Mt converges to V(%) as < eonverges is true valwe of < .
Differentiating J with respest 0 paraneter veetor
and then setting the vester of derivatives egual % sete
ve have the well known equations for the least square parenster
estinates,

< vl 7
X w/ E () z’(u) / ‘/ E_ () XYiw)/ B 1 20)
L =i ' Xl >,
Seded fecursive Leash Rstia of

Rostrsive form of least square estinmatioh of pareneters
45 en elegant way of wpdating estimtes < whieh changes as it
echverges W true value < ,



13

Consider the equaticn

Y(ty) = 2T () < o Vi)

The least square estimate < of < 4s givem by the
oguation (R 1,10), With direct analogy frem eguation (8, 1.10)
we Bay wribe.

- K -1 k
A / T /4 ‘ 7
XSy = / 2(8g)2"% (84 )/ a(sglxls4) / R 10 21)
" = z “/ Z e

i=d 3=1

Bgation (8.1.41) can be written in esincise form as

Tloe) = Pltg) bitg) 0 4s 18)
vhere
-k 1
A/ >
Plg) = / z (%)% «,JJ/
€ m
and

- K
A £ 7
plty) = / Bl )XC8g) /
W B ) e

3=

Resuraive relationship for P(. ) and d(.) oan be set a¢
T |
CrapS e ) satayg
=l

i
W IR ARY T8t o 1S O 1.42)
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Sintlarly
Blt) = Bty ;) + (%) X(ty) 0 2 20)

Preaitiplying ly Pt) and post-maltiplying Wy P(v, ;)
ve got frem equation (3.1.13)

Py, 1) = Plb)eP (n)2(0)2% ()P (8 ;) (= L, 18)
Post multiplying by Z(%y) equation (R,1,18) gives,
Pty )5() = POIZNI 103 ()P (8, V2 ()T Buli28)

Post malsiplying W O~ 13T ()P (8, )3 (0) T ! ey, )
oguation (B, 1,18) gives,
Py, 2108t ()P (o, ) Z(0) T L orin
» Png)i ()3T ()P (b, ) = 2.17)
Bren equation (.1.18) ve got

Pltg) = P(by ;) = P(o)3 ()3T (0)P (0, 1)  (Rul28)

Finally sudstitmtion of equation (8.1.17) in equation (% 1.18)
gives,

Pnde Pl 1= Py (0 S2esTo)r . Datop T

2t ()P (0. 1)
voo (B 2.19)
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Bov from eguation (8. 1.48)
Zity) = Pltgde bity)
t WS

2l LV ) e P (5, Qz (1o r (o, pria) T
TN TR [ Bl 1 )43 ()X ()
and sinee P8y, ) By, ) = (% Q)
T (agde 2y 0eP (8, )34 102T (0 )P (4 )2 ()] 122 ) ey 2
P "u. VRO ()P (4 D2 ()18 (P (4, D3t T '
x 2 (gIP(y, IZON ()

sinee 2¥(wy) P(y, ;) 3(8) 15 sealer and henes

}
Creatog)re, )2 T 10 alee sealars Meretere
N\ - - 3
2 tagdm Dy JeP (8, )E () 203T )P (4, )2 (007 2T () Dty )
o poy 30y Jstapray D3 T oy

At honee we get the recursive least square parameter estimation

: senyy »
- Q%Qla -lnnrrv“n"
gLy 4 2euMOgpNppy
14 0a306
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slgprive as
L) Ly, 1) Pty )30 w) Saeating) 2oy, 3 00).]

X)) <28 (0) 2 (9, 0.7 (a1, %0)
where

PindoP (4 =P (4 2 (00102 I (4 5 (T KT COIPCH, )

ees (BadeBl)

vith
- bl |

/ 7
Py y) =/ amyaty)  / o2 98)
il W
3=

Least cwz_,wxgc is of great Lpertanes N
Fareneter estimation o Iut this does Mt overecns the prediem
oF bas.

The protlien of bias is diseussed delow

he non-resuraive least square estinstion of pavemeter
is given Wy

-k I _ X

. / e . 7 4 7

< (e )w / } 2(v)5°(8) / 7/ Z B850 (84)/ (2 1. 99)
A jul < & Pty J

wvhere the system equation iz taken as

X(ty) = 22 (8) = + Viyy) (B Le86)
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Upoa substitution of eqgmation (R 1.84) in equation (% 1.23)
we have

»d _ k -
7/ r 7
“(i.)a/ } 3(33)3 (t‘) /7 E 3“" VZ | (")"90'(") //
IA oty L Py A ' --/_/
-k d _ k
/ 7 / ? 7
»/ E Z(vy )2 (ta) / L/ Z 3('3) 4 (i‘) < f
& iy o Jul o/
Q.l 7
4-/ E ztt,)z“(t,) / / ?- 3(") "“‘) /
4 o
I
Wn;
- D SR
. / ? /o 7
Ctylmcc+ / } 8(‘3)3 8)/7/ o+ E I(O‘)V(C‘)/ (2 1.98)
' el 4 & oty

Equation (R.4,85) shows that for estimate < (4y) %o be unbiased
the folloving nxm.mu st hold

£a v} « 0 fral K LIS

Whis 1s mmuh.u Vitg) = o(ty) where o(ty) is a
vhite moise uqumo .
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A pointed out W lnk‘ “Jm nost prastienl
ecases of interest V(ty) 4is not a wvhite gassian sequense and
the estimate < 1s mot unbiased. %o oversome the preblen of
bas many variants of resursive parameter estimation algeritims
have doon suggested_snf yhieh recursive instrument varialle
algeritim of !m‘  and 1sed least square formiatien
of Bastings and James et al are isportant. The essential
somponents of these algorithms are similar, The recursive
mwmt variable np?,f;: n’l‘: l;:s.gyua:m to esompuiation
and as olwerved by Young it may wvell
offer and unified and eomprehiensive gpproach to system
fdentification,

®i4 Romursive Instrument Wariabdle Algoritha

Nest likely souree of biased estimate is the presense
of anto correlated molse process R§V(ty) Vit )i e 0 fer
all k whteh taplies E{X(ty ;) V() %= O, L.0. theve is
a sigaifisant eerrelation betwesn the noise sequenge and the
past values of ocutput. Refersing to squation (%.1.3) and with
suitable estimate of the paremeters in AW 2) and By (¢"Y) as
QY ana By (L) respestively a deteratnistie time series
Gemoted oa anxiliery model ean be ecmputed as

» ,
YL lAG H A e ) By e ) (@, 1.27)
=
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Bywation (8,4.8) and (8.1.97) suggest that (1) variation
in T'(y,) should be strongly eorrelated vith variations in the
avise eorrvpted outpus observations X(ty) bt (11) wese
veriations in (%) should be uneorrelated vith V(t,)
previded V(w) 1s wot esrrelated vith the measured irput
sequence Uy (%) 1.0 BiTy(wx) V()] = 0 for
Al 3,k1, |

Sequense of Y(8y) 1s ealled the sequence of
instrunental variables. Consequently the vestor 2(%;) 1s
nodifiod a5 (%) defined by

Bode [/ Tl pduees Tty 2)s U0 Dyees Uity ),

ooe Ugltyp) _/7, (% 1.98)

Conditions of unbiased estinates are modified as
a{?ctg) V)i = 0 feral1 k

Meplacing Z(ty) W (%) and not 3T(y) wy 2T(yy)
houristically, Recursive Instrument varisbdle Algeritim is given
w

2 (mde @ (a0 Pty PRI 18T 0P (4, NS ()

2% () 2 (4 ) (8 1,99)



Pow) = Py, ) -Pir, ) Zity)

- -, i
Szt Py, 2000 T 2T ()Pl ) (e 2. 30)

with
wd :
({RT ) C XN Y

/
Pig) = 7
VA

g

This recursive algorithm is used %0 estimte the
pareneters of a Yegnession relationship whieh varies with tine
%y passing thyough time series data and atteapting %o trask the
parameter variations. The data may de proeessed iteratively,
oaeh ting using a data set in order to further refine the
otinates 1o obtain better statistical efficiensy. Nor a given
bloek of X data elements the recursive methed Serminate afber
K steps where as the iterative progediire eontinnes wntil
parameters no longer ahanges with further iteratien, Nor en-line
proeess this oan also be used as the mu‘n.;j-m
wdating af the aunxiliary model parameters .

dometines large errors are found betwesn the predieted
and the ebserved cutpat. IMis is not so ateh a eunsequange of
spurious errors in the measurement bt are due primarily %
ehanging values af the model parsmeters.
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e .8 Setermination of Instrument Warialles

The instrument variables Y(.) ins(.) are

obtained through a separate paraneter trasking alperithn oo
detatled delowe

n » n
Y e ) A GO 7 ) STyl

i} isl im0
.

. Z Oy (T =Rl e st @lam
et

wvhare the third ecmponent is the moving average esmponent (%)
is the ervor sequence.

Tis), the estimate of X (%) ean de vritten as

Teo) = a¥(h g) 2y, p) (% 2,39)

lr(ﬁb‘) 'L/ ﬁl’ /3‘”", Slﬁ' Su“oonn. Sn’

3%1. c%‘. oes J/
z “h-l) = /, :‘%1). !“b-.)”“’ ﬂl(l‘_u)
L

7
Ssepeney v.“‘m‘) _// (8 10 34)



he coefficiont veetor ‘a’ ean de estimated nmun?
| L 94,58,86,87
the quadratic performance eriterion Jy(a) ’

defined as,
k
Ixa) 4 z (x(%y) .l'l“‘_l”’ *
d=d

T «1
v (aealty)) 8 () (0 alty)) (B 10.38)

where a(ty,) 4is the availadle a priori estimate of the
oveffivient vestor ‘a' and 3(%) 1is the positive definite
weighting matrix of the order al xml wvhere al = nem(nel)+Q.

Nr nininisation,
x
Sixa)
; ' =8 z s(sy_1 208y -u"z(i,,;)
a Py
-l
+88 ((a-alsy)) (2 1, 38)

It follows fyom equation (8.1.36)

k k
el -
E a sy, X0, )ﬂ (%o)a(ty)= Z s (s, l)l’(t‘_ e l(t.)a
=Y Ind
d soe (B1.37)
¥ 1
X k
S e ) sty et ety B 2038)

Imd
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k

an) = 2 sl E()e § L glatty) R0 1, 39)
J=d

Bemoting the esefficient vester 'a' as a (tk) at the tim
instant O,

-l
i () alhy) = dlny) (B, 1. 00)

altg) = Bin) alty)

Rren oqations (2.1.38) and (2. 1.30) the fellowing reeursive
oguations are oBtained,

wd - |
§ 0,0 =8 ) 0 sty sTow) R Lo 1)

d(t'u) = dlty) *» s(hy) Xy, ) Bele48)

N um inversion lemma the resursive parameter estimation
algerithns %0 odtain the instrument vartables X (4,) are,

8(heg)e (I8 (0 )8 (IS (b )oa® (W8 ()T (Beledd)

8ty 0n B0 8 (0dn (40T (08 () ava T ida Cuds () T
vee (Beli6e)



The algeritime ave initialised with
Blty) =
!“‘) s 0 fer 3 = 0O -l’t.; ‘000 »

I (unttmatrix ) a(ty) = O

and g(") s 0 for d = 0, ody ~3§ o;o’i

S le ppiication of Reeursive least iquare

Zaghnique

In the foregeing diseussion a mrmin
nethodolegies of w? estinmation have been presented.
Waitohoat and !am have demonstrated the feasidility of
oonstrusting realistie dynanie stochastic vater @ality
( BoD = DO ) models for non-tidal river systems. The models
arve satisfastorily 1dmtified and satistieally validated by
referense %o prectical field data of flow BOD« DO in a 85 Kn
stretehr oz Cuse River fystem in u.yn} Whitehead
and Young y Joung, Waitehead and Beck have been able
%o demonstrate the partisular utility of resursive methods of
tiae series analysis both for idmtification and estimation
of wvater rescurces systems models. The recursive algoritims
have preved %o be valuable aids for obtaining relatively
officint sstimtes of various model pareneters in g straight
forvard and simple manner, Resursive algoritims provide a
poverful general methods of data prosessing well suited to
e modelling prodlen of vater resocurges systems,
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den Gupta and Mﬁﬂ“ o have used recursive
least square nensistionary time series analysts teshaique fer
on-1ine foresasting of daily dissolved oxygen levels of &
non~tidal river, dep OGupta, Maulik and Chandduri have deserided
an wpplisation” = ~of the dynsmie least square sstimatien
algoritims for on~line modelling of dissolved oxygen levels of
a nob- tidal river passing through a highly industrislised region.
The mathenatical deseription of the dissolved exygen levels
allows for the real time monitoring of vater quality. ey
have modelled the blo-chemicel oxygen demand of a en~ tidal
river by recursive least sguare instrument variable algoritim.
ey hmz_'g.w}nd vith observed data that recursive instrwaent
variahle teshnique is amenable %o on-line essputation
provided adequate Yeal time data are availadle in time.
They have used a separate paraneter tragking alporvitim for
estimting the instrument variables. The present investigator
has used this technigue in the investigation. -
Maulik, den OGupta and Chaudhuri have OWL uJ
a oimple dynamie model of daily fiows of a nob-Sidal river bW
reoursive least square non-stationary time series teshuique,
Taey have gisco_used recursive least sguare instrument variadle
dprlﬂ-‘ ’Jter on-11ns estimatioa of hourly flew of a
non-tidal river. Instead of a separate parsmeter tresking
algoritha they have estimated the instrument variabdles in the
form of a memory sequence estimated apriori from an odserved



segueties ©f past data. The errors of the medel ave found
% be guite high,

2.2.0 Annual Electrical Energy Consumption Model

In chapter IV a mathematical deseription of anmmgl
eleetrical energy consmmption in India hes deen developed vith
population, gross national produet, gross demestie saving and
gross domestic oapital formation a8 exogenous variadles in the
form of a polymcamial of cptimum ecmplexity with the help
of a learning identifisation technique known as multilayer
growp method of data handling algerithm.

%%l Mltileyer Growp Methed of buta Nendling

Algoritims

Ivaxinenke'sS **/muitilazer grow methed of data
handling is a heuristic method of self-organisation of
different partial medels, Mis methed involves the generation
and comparison of all possidle esmbinations of imput ocutpus
and to salect the Dest possille ones aseording o the
eriterion of integral square error,

In sultilayer growp method of data handliag
algoritims, polynomials are used as the basiec neans of
investigation of complex dynsuical systems. The polynemials
of prediotion are regression equations vhieh eonneet the
current values of cutput with the current and/or past values
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of Lput variables. Regression analysis allows to evaluate
the os-efficients of the polyncmial by eriterion of ainimum
nesh square error. Then the polynomnials are trested in the
Same manner as are sesds in the agricultural seleetion,
;’n wnigue sathenatical eonoept propagated and “%:ﬁ
by Aosdemieian A, 0. Ivakhnenko and his eo-workers
of the Institute of c”'?:o?' Kiev, Udik.

Yolterra series _ {ntroduced to non-linear
systes analysis Yty um" “J. learning filter of Gador,
Wiy and Weodooek Mand the peresption of hnﬂntl‘
have prOvided the eongep basis for multilayer GNDN,
Astron ard Wtf‘ pointed cut that prodlems may arise
with the use uf volterra series or high degree polymmisl %
pprexisate non-linear funetions bdecanse of the fasgt that
WMiero are nany ev-officients to estimate, many data are needed
and the computation with the resulting large matrices may b
prohiditive, Ivakhnenko's sultilayer GMIN algorithms are free
of these prodlems. He medels the inpat ocutput relationships
of eomplex p using sultilayer network struoture of
mmw-‘ ® poreeption type, who designed the model
of Wwaln's pereep tion.

dalient features of sultilayer GNDE as spplicadle
An multilayer seleetion preesss vhieh is used in the present
Savestigation are Wriefly deseribed here.

Bach cutput element in the network implements a
malinear funetion of its inputs, The function fwplemented -



15 usually a seeond oxder polyncmial of its inputs, dinee

sach elment generally takes Swo inputs, the implemented
funetion by an element in one of the layers is given by

R R R X X (22 4)

Only these dmu whose perfomance indices exeeed the
Shresheld at that layer are sllowed %o pass to the next layer.
Merefore; the netwerk represents a feed forvard transformation
wherely cach succeeding layer in the netwerk inereases by two
the degree of the multipolynomial fit to the input preperties
of ;o Figure %.2.1 depiets the conoept of feed forward
transformation.

The selestion hypothesis enpleyed ty Ivakhnenko to
selest the elements t© be tised in the sugeesding layers involves
o basie eonhelusions ; the eouposith charaster of e system must
be based on the use nf the signals whieh control the totality of
the elenents of the system, and the long history of the art of
selection as odserved in the case of plants and animals ean %
nmﬁMly extended % the eeience of enginesring sydernetics.

Let us saplain the two sonditions, To get, say, plants
in the agriewlteral sense vith sertain specific prepesties,

a large mmder of plants are sown which may have these
preperties, and the plants are evcssed. From the harvest of
the first generation, the plants are chosen which better cur
requirenent ( the first self selection ) as compared to others.
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The sesds of the selected plants are again sown and
erosseds From the sesond harvest we select certain seeds and
the seels are sown, and 80 en.

Mles employed in the proeess of mass selestion ave

as follows

1) or each generation eertain optimal mmbder of
seeds are sown.

11) The seleetion process sanmot be sompleted in &

single generation ( at least 3 %o 4 generations

are needed ),

Pereep tion amw‘ ‘Uot Mosenblast duplicate
the above mentioned process. Pereeption ean be used for
fdentification of extremal processes, in contrel theery sense.
The conplex surfaes of extremal hunp is sppreximated by
pelyncaials. The signals appiied to the pevesption inpus
eontain information about the surfase of interest %o us,
e surfece is usually deserided by a number of eperiamtal
points and simple funotion of their eowordinates. In acsordanes
with the seleetion hypothesis, the siwple M of sesond
degres that are casiest to inseride in the surfases are taken.
he combination of data are subjected t0 the first thresheld
selection, in accordange wvith the integral square sryor
sriterion aa a separate eheeking set. Only seme of the
polynomials vhich fit best intc the sought surfase are allowed
to pass into the second layer vhere they form mere etaplex
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eonbinations of polymomials of fourth degree. Frem the
Second layer again the polynomials vhieh f£it best inte the
sought surface are singled out and sre allowed % pass inte
the third layer and 80 on. The precess econtimes sv long as
niniaum of a selestion eriterion is obtained, This
sonstitutes Ivakhnenko' s‘g“;:%:y‘n nothed of

data handling algoritims .

The so~efficients of sach layer in the network are
deternined in the feolloving aanner.

Consider one element in the first layer. It
implesments the function Ag(x) ehown in equation (B %.1),
The data are divided into two sets - training and cheeking
sets ). Assume that these are N. input vectors in the
training sat sach one af them 1is couposed of p-property

values,
]" - (m.%,..:;‘.)
Re 1;'. see g ] m.'l.)

Denote the n th desired cutput as @y A set of six
so-offigients for the elements (mmmmtu:uu:.,)
must de ultained so that the integral square ermy bdetween the
outprss of this element Yy and the true outpat § 1s sinimised.
The es-effigients are adtained by solving Geuss Novmal
equations. The system of equations are writtun as
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02 = 0ge 0" agT S Ayt aghy ¢ aEy
. 23

L

* 8 8
O = 0yt 0,3y % 0gky * Aglipedyyt agly, * Ag¥y,

in the matriz form ¢ = YA wvhere ¢, X and A are Nxli, Nxs and
Gzl matriees respestively ( the first element of eash rov of
R~ mateix is unity ). Veetor A eontains a set of six
es-effistents vhieh enables Shis slement %o be appreximated to
the true cufputs in assordanes with the method of least aguare.
While estimating the co-efficients 1t has been intuitively
assumed that the equation errer is a wvhite moise process vith
sere Bead, esnstant variange and unecrrelated with inputs,
and 1t 1s significantly small., The seeond assuaption i3 that the
mnu_pujawnh are exactly known without any seasurement
m‘“ .

his process 1is repeated for each element in the
fizat layer vith the components in matrix x changing each
tine depending sn the identity of two inpats t©o the partievlar
slenents. he same technigue i repeated to find the six
so-offisients of cach element in the sugoeeding layers.
After the Yalues of the co~effisients are obtained the
perfommanee index of a given clement is deternined by
somputing the integral asguare error between the cufput
of each slement and the true output on the whole data set,
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Galy these elements wvhose perfornanee index are satisfactery
are allowved %o pass %o the next layer. Figure 2.5, 8 shows a
flov chars of aultilayer GMIK algoritim « the Ivakhnenko's
thesry of self-organisation,

Computational method for multilayer QMIE algoritims
has besn briefly deseribed in the ensuing sestion,

The conplete deseription of any prosess is given
w

O.f ‘llg !'. l” YY) ‘l) (2 2.4)

The precess is to be eonstrusted of several layers of partial
deseription of two input variables taken at a time.

'l - f(‘*al.)p ,. - f(laul‘): ssey l‘. - t“bl".)

e ‘(,‘Q")’ l. = ﬂr,a‘h eve " - ‘(’I-l',.)

n
’ % ooneeosen

2 a-2)1

and so ohy vhere B and p are the mamber of pairvise
oombingtions of first and sesond layer respectively.



RATIONALIZED QUTPUTS AND INPUTS

CHOOSE TIME LAGS ON THE BASIS OF AUTO CORRELATION AND
CROSS CORRELATION FUNCTIONS OF OUTPUTS) 4ND OUTPUTS -
INPUTS RESPECTIVELY

OF VARIATIONS

SEPARATE DATA INTO 1RAHING AND CHE CKING SETS ON THE BASIS

OUTPYT
BECOME
INPUTS

YES

FlG.

CO - EFFICIENTS

FROM QUADRATIC POLYNOMIALS WITH ALL INPUTS TAKEM TWO
ATA TIME THE TRANING SET DATA TO CALCULATE THE REGRESSION

i
v

RV [ S

OETERMINL THE BEST FITS TC THE CHECK NG SET DATA ON THE
BASIS OF INTEGRAL ERROR CRITERION: PASS BUT PREDICTORS TO

THE NEXT LAYER WHERE THEY BECOME INPUTS

LOWEST INTEGRAL SGQUARE ERROR OF TUIS

No

LAYER 15 LESS THAN THAT OF THE PREVIOUS LAYERY /

PICK BEST CVYERALL

PREDICTOR

2.2.2 FLOW CHART OF MULTILAYER GMDH ALGORITHMS .
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Irputs whioh have styong sorrelation with the
output are selected. Correlation funstions are defined a»

B2
Ebm- 7) gUer ) F)
I’"( A )= Oén'}-"““n-omm—un--nv—-----ou---mwu aWae)
/“m . X 2 7'3
et ) aw.D/
_, 1=l Jnle)
| ) -
z W)=y ) ®@*+7 ) X)
Kyg()) = IR T, (5. 2,7)
. ‘
/ B - B 78
. Z Q@) -y E_ (x(3) « x) _//
f1al ‘ P ))

where Ky () and Ky () are sutossrrelation and eress
sorrelation of cuput and sutput-inpus respectively for
differens lag 72 , 7 ®w 04,8yeed § N = mmbder of

data ”ut!.
Data are retionalised in the form
X(k) « X@ain)
xk) & ae. - (2 2.8)
Xnax)-X @atn)

vhere X(k) is the actual value of data at the b-th instang
of Sime.



he eo-efficients of the first layer of partial deseription
% given as shown in the equation

Ta ® foa® S SR S Sy * gy )

where a, is the mmber of etabinations and dye are indiess of
combinations of inpat variables taken two at & times The
et-efficients are computed ly solving a system of mosmal
Gaussian equations, The left hand sides of the eguation are
sat ogial to the values of cufput ut every peints, After
finding the values of the ev~-efficients the values of the
internediate variables are obtained. IThen using the data set
the integral square error between the intermediate variabdles
and the true output is determined, Only the variables wvhieh
give lov error are selected for subsequent use. These variables
are retained veriables wvith high erver figure are discarded,
The nmmbder of intersediate variables should de kept same a8
the naaber of imput variables. In the seeond layer of
selection the co-effigients of the partial deseription,

| s _®
IR N AR RASNIASNE NS * A

of the layer are caloulated and the accuracy is cheeked again
te select the aseurats intermediate variables of the layer.
The presess of selecotion gontinmues sc long as the integral
a@cmmhunmmm the next layer
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starts inereasing: Thms multilayer GNDE oomes to practical
sonvergeney.
e integral square error criterion is defined as
L 23
S (11 (emerved) - 11 (mote1))”

? ‘ - ..?é..-nu-“.—Q--q\‘“-u‘u-a-uaouou ‘& &u)
4

2
E ( X3 (odeerved))
iw}

Bvery internediate variable is exmamined for its eoffeet
oh predietion assuraey. e training set is used for finding the
w-effigients of the partial deseription, whereas the checking
S0t is used to evaluate the quality of partial deseription.

Thas sl tilayer GNIR has inherent decision regularisation,

Polynomial deseription of the process is odtained in
the ferm of partial deseription of intermediate variables of
different layers. Kliminating the intermediate variables the
etuplete pelynomial deseription of the process is obtained
in the form of Gader-Eolmogerev type of polynomial a»

In
e Seme 33

a =a
+ } E z MagaX Ty ¢ o0s (2., 18)
iel Jul Kk |



B8 ,&;..m of Jaltilayer GNDN

With the help of multilayer GNOH algovittms
Ivakhneaks obtained the polynomial deseription of British
ssommy for prediction and eontrol on the basis of
eharasteristie varisiles established by Parks and — %/
Houristic self-organisation sethod proposed Yty Ivakhnenke in

GMIE o) poritims hnz_,:::’ in a modified form Yy Ikeda,
Oohial and devargi for developing a non-linear river

flov model from the availadie data of river fiows and mean
areal precipitation, It is observed from the numerieal
eonparisons mede betwesn the prediction model by OMIM and

by eladorate hydraulis methods, that there are significant
isprovenents in the heuristie prﬁiﬂhz_gla’rlm for

real tine eowputation. Iamura and Xonda have used GMIN
algoritims for identifying spatial pattern of air pellution
eoneentration in a large area. maﬁ:‘s‘ QMO algoritims
have been used bty Duffy and Frankiin 0 model an
mviromeental system producing high nitrate leval in

agrisul tural drain wvater in the eorn bdelt in the United dtates.
e nethod amounts to fitting a polynomial th the multiinpug
single output response surface. They ebserved that the GIEN is
advantageous vith systes characterised Ny complexity with
many variables and paremeters, 11l defined aathesatieal
strustures and limited data, These algorittms are useful

for espirically generating hypothesis about vhich relatively
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| e/
11ttle 1is known. R K. Mehra has enployed GNBE for

forecasting vheat erop ﬂzlg’?lu wealher data, A comparison
of the results with Bater shows that erep predietion
using GMIH compares faveurally with the results shlained wesing
theoretical-empirical nodels based on over ten years of
research. The structural inforsation obdtained frem GMIN as %o
which input variables bave significant effeet on wvheat erep
yield 15 also quite significant. Mehra has suggested the use
of all data points alternstively as training and oheeking
sets. mz_.ww. is expected to give good resulis,
Chandhuri has used GNDE for fdentification of the
interactions of meteorelogical proeesses on monthly tess
oop produstion. It is obdserved that mul tilayer QMM gives
good prediction results, identifies the significant variadles,
and gives an insight into the eontrolling aspects to adhere
0 4 desired level af tes orop pmumz.,” 7
Maulik, Sen Gupta and Chaudhuri have developed
a dynamie model for sixth hourly predistion of river flows,
by sultilayer growp method af data handling algorithm,
correlating the different wp-stream fleows and the ratnfall
at the different gauging stations in the catohment region
af a river with the flow et the point af forecasting.. -
ey have also edbtained a real time predistion Md‘ ot
for hourly flow at a point in a river system eorrelating the
heurly flows at different gauging stations in the Wp-strean
region, e models are found the sisulate adequately



the major variations observed 12.&0/_’10“ neasurenonts,

den Gupta, Maulik and Chaudhari have Peported that the
multilayer GMDH s quite sapable of modelling on real time
basis the dissolved oxygen levels, ineorperating interseting
paraneters of a non-tidal river passing through a highly
industrialised region.

220 Combinatorial Grewp Nethed of Pata Handliag

In chapter V the medel of anmmal installed plant
sapacity of electrical enevgy of India has besn edbtained in
the forms of polynomial of optinum complexity bWy cewputer
aided self-organisation of mathematieal models,

With the theory of m-nmmn‘ ‘Wum
heuristie learning algoritha ecumotly known as grewp methed

of data handling it has been possible % formulate mathematieal
apdels for ecomplex processes vith prediction optimisations

The ecnoept of self-organisation can be illustrated
o8 fullows. When the model ccaplexity gradually inereases the
somputer finds ty shifting the different models, the mininum
of a selection eriterion which the eccaputer has beon ordered
o look for. Thus the computer indicates to the operetor the
model of optimum complexity.
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%31  Preeess Bquatien

m:nm‘. yam besn developed fyem the
fllustration given in .

™e physieal process involved in a stomm pericd
418 stechastie in nature. The process can be represented in
the ferm of a finite order stochas tic €1 fference equation
of the type as

Tx) = £0x; Ooen)y 3p Otem)y %g(Rep)pore) ®31)

DyRePressy a%e the instants af the

R1y Bgy Xgy sy respectively
which have highest eorrelation vith 7y, ) Ve write

k)™ ¥ flov at the »-th instant

x(k-n) = x5 flov at a W=strean gauging station 1
vhieh has highest esrrelation at lag
iastant n

ag-m) = 3gy flov at a Westrean gauging station 8
 whieh has highest sorrelation et lag
instant =) and so an
Let us assume

(ke ) a0 1 wdy23,4,85 J =mngdyqr
S0 the precess equation becomes
yof (x3, gy Xgo Ry By ) 2 38)
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The funetion £(.) in equation (R 3.8) 1s sought
in the elass of guadratic polynomials on the basis ef ¢ tadle
of polymemials of gradually ineresasing cemplexity of eight
variables as shown in Table £, 3.1 with the theory of
self-organisation of different mathematical models,

The model af optimum complexity is selested on the
basis of minimum of integral sguare eriterion, Iategral square
ozver is defined as

i 8
S Teap) = 74,4

a im .
x T s ar o 48 e B G W - band “ & a)

2 2
E_ ( Feaph))
isl

vhere rm(t). £81,8)000) ¥ hours, are the tatulated values
of the oupus variadle in the interpelatisn region and yq (1)
are the values ef the variadie obtained from the medel,

%8  ipplicstisn of Combimatorial Grewp Methed

of Data ‘ Al thm

emm‘ qu used eombinatorial GMDR algorithm
% odiain the nediun term and long term prediction models of
snnal Indian tea predustion. Different types of models of
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polymaials of incressing ecuplexity have besn Sested.

‘The polynomials vhich give miniwun of & selection eriterion
have been found, It is found that anmual tea evep predustion
is a nonstationary preeess. It is olwerved that the lav of
anmial tea crzg‘g uction varies vith time, mn:. Sen Gmpta
and Chaudhuri have obtained a sinple dynamieal model of
hourly flov of s river vwith a minimum of sixth lag instange

in the measurements of up-strean flows at different vp-stresn
gmging stations using eombinatorial GMUK algorithm. The medel
has been verified w‘wm against field data. Sen Gpta,
Manlik and Chaudhuri have odtained a dynanie model of
optimun eomplexity for daily foresasting of disselved oxygen
levels of a non tidal river wvith the help of the ssmbdinatorial
GMIE technique. The model has been verified by field measuresent
of the diseslved exygen eclliected over a 30 day peried froa tw
Tiver Cem in Eastern England. The distinet periodicity has been
ohserved in the daily dissclved oxygen levels. The simmsoidal
terms have besn ingorporated in the polyncmial medel.

240 States Estimation of Rectrical Pover 20‘

he realiable ocperation of ¢ pover network depends
on a real tine data dase for menitoring, security and eontrel
of power system. States estimation programme ean enhanse the
data dase for on line real tinme operation of pover networks,
The basie funetion of an estimstion programme is te eonvers
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the telenetered raw measurement data intw a reliable
information base. The infommation base eontains all essplex
s voltages, pover and current flovs as well as injunstions
along with the network status and parameters erre¥s,

el A £ o 8 e

States Betimators

The powver system state nz;ap’ya results frem
tvo big fields, lo:g %og is and estimtion theery.
.G dchweppe~ ' ' ' appears %o be firet sstentist %o

initiate the spplication of the modern contrel Steshaique of
state estimtion, detestion and parameter identifieation,
originally developed for W’;’o jons, o meet the pever
system needs. Dopaso et.al. have developed A. R.P,
dtate estimators for real toring ef pover systea
state variables. Arafeh u.al‘ " have given ¢ goed eonverage
providing assessment and ecomparison of different state
estimation techniques.

e veighted least eguare nethod is the general
basis of state sstimtion algeritins aetually used. An fiterative
progedure based on Fewton-Maphson'e methed is used % ashieve
sonvergengs of the state variables,

e state estimation algorithus are divided fato two

eategories, nanely, static state estimation algorithm and
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Srasking ‘,;7. j-u-uu algorithm, Static state estimation
is defined a8 the proeess of somputing the network ncde
voltnges vhish are the etates of the power asystems from a set
of measurenents made upon the network at a saspling instant
(f.0:. ) snap shot measurements ). The set of measurements
inglude astive and reastive node injesticons or line flows
eurrent and voltages ete. Ia real time on-line cperation
quasi-dynamic tragking state estimator is used for recursive
estimation of the state eariables. Recursive estimation is @
process uf updating the estimated state sach sampling instant
on the reeeipt uf fresh information,

In the method 2% Sed in chapter 1V a recursive
Ups tragking algoritim is used, Tough a snap shot of
asssurenents is considered %o illustrate the application eof
the developed netheod in an Literative sequences, the metiwd
1a quite usuable for on-line diserete time contrel cperation
for the powver network. Ia shapter Vi s complete derivation
of the pever system states estimator vith a tragking
algorithe has been given in details vith the Reeetsary
1llustration.

56,0 nss-de vith ordered
Nodes s Pre Al gori thm

1t 1s desired that transmission system should de able
% tranmmit electric energy economically and relially frem
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gonsration eentres to all load eentres at a generally
aseeptaile voltage level, This negessiates the study of the
load flov in a pover system W determine steady operating
states. Results of the load flov analysis are used for
stability analysis and for power system planning eperstion
and eontrol. A large number of rageriesl_algoritims have been
developed over the last W yur:?”'”'?nnn most of the
algorithms are variations of two mumerical technique such

a» (1) Causs-Seldel method and (11) Newton Taphson method.
e present effort is an exposure of the Gauss-ieidel method
ander different s conditions vith optimal ordering of duses
by Dynamic Pregramming algorithm.

Be8. 1 gm mﬂng of Nodes

™he computational effiefiency of load flow analysis
depends on the order in vhich the Gaussian eliminmation is
pexformed on sparee matriges and total number of new non sero
slements are generated in course of elimination, It is observed
that the emputational efficiency is greatly faproved if the
asdes are ordered in an optinal way.

The Principle of solution of spagsity oriented node
ordering prodlem oan be stated as huoé%:‘om“’“aﬂ'u‘?

An initial segnent of an optimal ordering is a gromp ©f
asdes of a network which has She preperty that their optimally



ordered elimination of the remaining nodes in a netyerk
eonstitutes an cptimally ordered eliminatien of all Whe
nodes in s network.

e principle of cptinality as stated adove s
applied to the prodlem of optimal ordering of spareity eriented
nodes in power system network. Mis cptimisation prodien is
solved h‘.;:ot:;r}un procedure ty Rynanic Pregramming
al gorithm following an optimum decision poliey,

The objective of the sparsity oriented cptimum oxdering of
nodes 18 to determine ths best possibdble wvay of performing
Gaussian elimination, so that the amount of f£1ll1 in or the
valengy af the elimination is minimum } the valengy of n
node is the number of aew paths added among the Pemaining
set of nodes as a result of elimination of the node and

the valenoy of an ardering is the total number of mevw paths
gonerated in the process of performing the nede elimination
in the order speecified,

in ohapter WII & eomplete derivation of the
dynanis progranming algoritim has deen given vith an
11luatration on IERE 14 W08 aystem,



