KNOWLEDGE ACQUISITION AND REPRESENTATION

4.1. Introduction

Knowledge is as much an essential ingredient to the artificial intelligence of a computer as it is also to the natural intelligence of a person. Knowledge is the essential part of an expert system; it is what distinguishes an expert system from a conventional program. Knowledge acquisition is of critical importance to the ultimate success of the expert system development. Knowledge is a collection of specialized facts, procedures, and judgement rules. Knowledge may be collected from many sources. A representative list of sources includes domain experts, books, computer databases, maps, flow diagrams, pictures, web-sites etc. These sources can be categorised into two types: documented and undocumented sources.

Domain experts are generally considered as the primary source of knowledge for an expert system development. Experts should have developed domain expertise by task performance over a long period of time. One of the objectives of the knowledge acquisition is to find the experts' heuristics related to the task. Project experts should have enough experience to have been able to develop the domain insights that result in these heuristics.

Experts should be capable of communicating their knowledge, judgement, and experience and the methods they use to apply these to the particular task. Experts' temperament, cooperativeness, and working relation with the project team can have a major impact on the success and the speed of the knowledge acquisition.

After the knowledge acquisition, this knowledge has to be put into an objective form for the knowledge base. The proper selection and design of a suitable knowledge representation scheme should be in tune with the requirements of the application domain. In addition, the proper selection should also depend on certain important properties of a scheme like expressive power and adequacy in context to the application domain. In this chapter, we have tried to analyse some of these issues from the viewpoint of an expert system designer.
Section 4.2 will be devoted to describe levels of knowledge. Knowledge categories are presented in section 4.3. In section 4.4, we describe different sources of knowledge. Methods of knowledge acquisition are presented in section 4.5. Knowledge acquisition problems and possible ways of overcoming them are discussed in section 4.6. Section 4.7 contains the prime sources used in the present research. Section 4.8 will be devoted to describe some knowledge representation schemes from the literature. In section 4.9, we shall analyse the relative suitability of such schemes as described in section 4.8. In section 4.10, we have presented some representative expert systems and ES-developmental tools along with the KR-schemes and control mechanism, they use. In section 4.11, the knowledge of the present problem domain has been represented in different schemes as discussed in section 4.8. Finally, we end up with some discussions.

4.2. Levels of knowledge

Knowledge can be represented at different levels, of which two extremes are - shallow knowledge and deep knowledge. Shallow knowledges are the surface level informations, that can be used to deal with very specific situations. Deep knowledge refers to the internal and casual structure of a system and considers the interactions among the systems component. Deep knowledge can be applied to different task and different situations. It is based on a completely integrated, cohesive body of human consciousness that includes emotions, common sense, intuition etc.

4.3. Knowledge categories

Knowledge can be differentiated into various categories - such as declarative knowledge, procedural knowledge, semantic knowledge, episodic knowledge and metaknowledge.

4.3.1. Declarative knowledge

Descriptive representation of knowledge is a declarative knowledge. It is expressed in a factual statement. Declarative knowledge is especially important in the initial stage of knowledge acquisition.

4.3.2. Procedural knowledge

It includes step-by-step sequences and how-to types of instructions, it may also include explanations.

4.3.3. Semantic knowledge

Semantic knowledge reflects cognitive structure that involves the use of the long term memory.
4.3.4. **Episodic knowledge**

Episodic knowledge is autobiographical, experimental informations organized as a case or an episode.

4.3.5. **Meta-knowledge**

Metaknowledge means knowledge about knowledge. In AI, metaknowledge refers to the knowledge about the operation of knowledge based systems i.e., about its reasoning capabilities.

4.4. **Sources of knowledge**

From many sources knowledge can be collected. We may classify them into two broad categories: (i) classical sources, and (ii) more recently available web-based sources.

4.4.1. **Classical sources**

A representative list of classical sources includes domain experts, books and literature, films, computer databases, pictures, maps, flow diagram, stories, songs, investigating tools such as ECG, ultrasound scan etc. Furthermore, these sources can be divided into two types: documented and undocumented knowledge. Undocumented knowledge resides in people’s mind. Worthwhile to mention that in medical domain there are scopes of accumulating undocumented knowledge as gathered by medical practitioners during the examinations of the patients. In this respect, domain medical experts might be considered as a good source of knowledge. Although there is a need for better methods of knowledge acquisition, including techniques to automate the process, but for the foreseeable future, most of the knowledge for any practical expert system in a complex domain will be obtained through the interaction of knowledge engineers and domain experts [1]. To mitigate the lack of domain experts, recently web-based knowledge acquisition can be used; the details of which is presented in the following sub-section.

4.4.2. **Web-based knowledge acquisition**

Since the introduction of expert systems in medical domain nearly 30 years back, as a matter of fact, most expert systems have not been found their places in routine clinical use. At per the 1994 reports [2] only 25 systems were used by tapping into the global collected wisdom of the Artificial Intelligence in Medicine special interest group on the Internet. At per 14th June, 1999, this number increases to 39 as shown in Table 3.3. (Chapter 3). The situation was very different a decade ago when most of the systems were in experimental stages. Many peoples were in doubt whether AI technology should find its place in actual medical floor. The current picture is quite different. What is apparent from Table 3.3 is that AI Systems are actively working in many different roles.
But this number is not large enough as expected. Why? Various investigators have proposed different explanations in this context as follows:

1. Knowledge acquisition and representation have been considered as the prime factor in the development process of a medical consultation system.
2. Some authors point to the inadequacy of a formal theory for knowledge engineering demanding a more principled methodologies that can be used by the system developers.
3. Some point to the inadequacy of formal models of knowledge representation.
4. Some authors stress more on the lack of time and poor availability of medical experts for establishing high-quality knowledge-bases.

4.4.2.1. Internet and WWW

With the introduction of Internet and world-wide-web (WWW) knowledge acquisition has got a new dimension. WWW has not only revolutionized the dissemination process of information but also it has created novel opportunities for sharing data via Internet. Physicians are now getting acquaintance with web-based computer technologies. A good number of medical web-sites in general and paediatric web-sites in particular are now available via Internet.

4.5. Methods of Knowledge Acquisition

Once the problem domain has been selected, knowledge acquisition is very likely the most important task in an expert system development. The elicitation of knowledge from the expert can be done by various ways. We may classify the methods of knowledge acquisition in three categories: manual, semiautomatic and automatic.

4.5.1. Manual methods

Manual methods are basically structured around some kind of interview. The knowledge engineer elicits knowledge from the domain expert and/or other sources and then codes it in the knowledge base. The three major manual methods are interviewing (structured, semistructured, unstructured), tracking the reasoning process, and observing.

4.5.1.1. Interviewing

4.5.1.1.1. Structured interview

Systematic goal-oriented interview is a structured interview. It establishes an organized communication between the expert and the knowledge engineer. It allows the knowledge engineer to prevent the distortion caused by subjectivity of the domain expert and
structured interview reduces the interpretation problem inherent in unstructured interview. Attention to a number of procedural issues are necessary for structuring an interview. To identify major demarcation of the relevant knowledge the knowledge engineer should study available material(s) on the domain. During the knowledge acquisition session he / she should identify target question to be asked. Sample question, questioning techniques, question(s) type and level should be written prior to structured interview. Knowledge engineer should follow the guide lines for conducting interviews. During the interview the knowledge engineer uses directional control to retain the interview's structure.

In this study the author himself is a doctor having some amount of domain knowledge, and domain experts are well experienced paediatritians. Moreover during structured interview principal supervisor was readily available. So, knowledge elicitation from domain expert(s) was methodical and easier.

4.5.1.1.2. Unstructured interview

As a starting point, informal interviews are conducted for many knowledge acquisition requirements. It helps to get quickly to the basic structure of the domain and saves time. According to McGraw and Harboson-Briggs[3], unstructured interviewing seldom provides complete or well organized descriptions of cognitive processes. Firstly, they observed that the expert system domains are generally complex; thus, the knowledge engineer and the expert must actively prepare for interview situations. Unstructured interviews generally lack the organization that would allow this preparation to transfer effectively to the interview itself. Second, domain expert usually find it very difficult to express some of the more important elements to their knowledge. Third, domain expert may interpret the lack of structure as requiring little preparation on their part prior to the interview. Fourth, data acquired from an unstructured interview are often unrelated, exist at varying levels of complexity, and are difficult for the knowledge engineer to review, interpret, and integrate. A fifth problem cited by McGraw and Harbison-Briggs concerns trainings. Because of a lack of training and experience, few knowledge engineers can conduct an efficient unstructured interview. Thus, knowledge engineers appear disorganized and may unwittingly allow the expert to have low confidence in the knowledge engineer. This may decrease the rapport needed to work together on a large scale development effort. Finally and most importantly, unstructured situations generally do not facilitate the acquisition of specific information for experts.

4.5.1.1.3. Semi-structured interview

Semi-structured interviews are obviously a compromise between structured approach and unstructured approach. This approach is required when complete unfolding of the complexity of the problem domain is not possible.
4.5.1.2. Tracking the reasoning process

Tracking the reasoning process refers to a set of techniques that attempts to track the reasoning process of an expert. Cognitive psychologists use this technique in discovering the expert's "train of thought" while he / she reaches a conclusion.

4.5.1.3. Observations

Sometimes, it may be possible to observe the expert at work and thereby one can acquire knowledge.

4.5.2. Semi-automatic methods

Methods intended to help the knowledge engineers by allowing them to execute the necessary tasks in a more efficient and / or effective manner and also intended to support the experts by allowing them to build knowledge bases with little or no help from knowledge engineers are semiautomatic methods.

4.5.3. Automatic methods

In this method the role of the expert is minimal (limited to validation) and there is no need for a knowledge engineer. For example, the induction method can be administered by any builder(e.g., a system analyst).

4.6. Problems in knowledge acquisition

4.6.1. Problems with knowledge acquisition in general

There are a number of problems with knowledge acquisition [4] mainly concentrating on two aspects: (i) availability of source(s) and (ii) Transferring knowledge. To overcome these problems many efforts have been made [5]. For example, research on knowledge acquisition tools are going on [6] focus on ways to decrease the representation mismatch between the human expert and the program under development. Several expert system development software packages such as EXSYS, Level5 and VP expert greatly simplify the syntax of the rules (in a rule-based system) to make them easier for an expert system builder to create and understand without special training. Also, a natural language processor can be used to translate knowledge.
4.6.2. Problems with Web-based Knowledge Acquisition

• Finding the proper medical web sites of interest

Searching by "medical web sites" using 'msn' search engine one may get the number of search results as 2, 12, 243. The number of search results is 5, 01, 70, 810 with 16 directories using 'Infoseek' search engine. It is reported that the number of web sites is increasing 10% in every month. It is sometimes very difficult to have a comprehensive list of the proper web sites of domain interest. Although one may get some good starting places. Pediatrics, for example, we may start some web sites like: American Academy of Pediatrics, American Board of Pediatrics, Pediatric Points of Interest.

• Internet Information is different from printed Information; Why?

1. Lack of quality control at stage of production, leading more easily to lack of reliability.
2. It is possible to read a web page without having seen context pages or the cover page containing disclaimers, warnings etc.
3. Authors of web pages, news articles, e-mails, etc., sometimes remain unidentified.
4. Health information that is valid in a specific healthcare context may be wrong in a different one.

• Judging the quality of medical information

The quality of medical information is particularly important because misinformation could be a matter of life or death. Thus studies investigating the "quality of medical information" on the various internet venues - websites, mailing lists and newsgroups, and in E-mail communication between patients and doctors - are mostly driven by the concern of possible endangerment for patients by low quality medical information. Thus quality control measures should be enforced during the knowledge acquisition process with first and foremost objective "first, do not harm".

Well known sites such as those of BMJ, JAMA, and Human Genome News are dependable, but what about all the material in usenet groups, listserves, and E-mail messages? In this respect medicine is closer to astrology than to hard sciences - hence the need for assuring quality [7]. So we should encourage doctors and biomedical researchers, as well as institutions, to comment on what they see on the Internet.

So, the filtering of medical information is particularly important. Different tools and techniques are now in proposition. PICS (platform for internet content selection) is one such platform meant for supplying professionals and consumers with labels to help them separate valuable health information from dubious information [8, 9].
4.7. Representative sources used in this work

The following prime sources were used during knowledge acquisition connected to the present research:

- Domain experts:
 1. Dr.(Mrs) Mridula Chatterjee, M.D.(PEAD).
 2. Dr. D. Pal, M.D.(PEAD).
 3. Dr. Salil Dutta, F.R.C.S, F.R.C.O.G.
 4. Dr. Durgesh Rastogi, M.D.(Radiologist).

- Books and Literature:
 4. IAP Text Book of Pediatrics, Jaypee, New Delhi.
 5. Appendix A

- Sonographic Studies: (Chapter 5)

- Web-sites:

Some of the reviewed web-sites of our interest are given below:

<table>
<thead>
<tr>
<th>Pediatrics, Perinatal & neonatal medicine reviewed Web sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>***Best **Very Good * Good **Pediatric Health</td>
</tr>
<tr>
<td>Part of the Health Answers site, this section focuses on children’s health and health-related topics.</td>
</tr>
<tr>
<td>http://www.healthanswers.com/health_answers/search</td>
</tr>
<tr>
<td>**American Academy of Pediatrics(AAP) **Pediatric Points of Interest</td>
</tr>
<tr>
<td>Provides parents and professionals with information on children’s health care and the organization.</td>
</tr>
<tr>
<td>http://www.aap.org/</td>
</tr>
<tr>
<td>**Department of Pediatrics-Loyola University Medical Center **National Association of Neonatal Nurses</td>
</tr>
<tr>
<td>Information about this perinatal center, including research programs, clinical guidelines, residency programs, fellowship programs, Ronald McDonald House, and related topics.</td>
</tr>
<tr>
<td>http://www.meddean.luc.edu/lumen/DeptWebs/peds/ped-hm.htm</td>
</tr>
<tr>
<td>**Neonatology on the Web: Neonatology Teaching Files, Outlines and Guidelines **NICU-WEB: An On-line Neonatology Resource</td>
</tr>
<tr>
<td>A list of links to online resources for parents and medical practitioners.</td>
</tr>
<tr>
<td>http://external.csmc.edu/neonatology/syllabus/syll...</td>
</tr>
<tr>
<td>Comprehensive resource on neonatal intensive care issues from the University of Washington Children's Hospital Medical Center.</td>
</tr>
<tr>
<td>http://weber.u.washington.edu/d08/neonatal/</td>
</tr>
<tr>
<td>**Pediatric-Perinatal Pathology Index **PEDIWORLD: Pediatric Pathology Resources</td>
</tr>
<tr>
<td>Image gallery of newborns’ pathologies.</td>
</tr>
<tr>
<td>http://www-medlib.med.utah.edu/WebPath/PEDHTML/PED...</td>
</tr>
</tbody>
</table>
4.8. Some knowledge representation (KR) schemes

A knowledge representation method is the way a knowledge engineering models the facts and relationships of the domain knowledge. The two types of knowledge that need to be represented in a computer are declarative knowledge and procedural knowledge. Declarative knowledge signifies facts about objects, events, and about how they relate to each other and procedural knowledge signifies the way to use the declarative knowledge.

In the present state-of-the-art of the subject there is no best theory of knowledge representation and so there is no best way to represent knowledge. Each method has its own advantages and disadvantages.

Several common knowledge representation schemes have been discussed in the literature [4, 10-14] including logic, semantic networks, frames, OAV-triplets, scripts and production rule systems as classical methods; and the relatively new paradigm: object-oriented (O-O) approach.

4.8.1. Knowledge representation using Logic

The formal logic systems used to represent declarative knowledge in AI are propositional calculus, predicate calculus, and first order predicate calculus.

An inference in propositional calculus is as follows:

Tommy is a cat.
If Tommy is a cat then she is a mammal.

In such a case according to an inference rule in propositional calculus known as modus-ponens the following must be true:

Tommy is a mammal.

In predicate calculus a generalization like the following is possible.

Tommy is a cat.
All cats are bigger than all mice.

If the above two statements are true then

Tommy is bigger than all mice.

First-order predicate calculus is created by adding functions and some other analytical features. For example, a function “is-owned-by” is represented as
It may be noted that, the first AI program "The Logic Theorist" was written using formal logic. A somewhat less formal systems of logic, such as fuzzy logic are used to represent concepts that are relatively vague and approximate such as "moderately expensive", "somewhat tall", "not so beautiful" etc.

There are merits and dimerits of using logic. The idea of logic, having matured for centuries are understood by intellectual community throughout the world. But, everybody will agree that, only a limited portion of intelligent human behaviour can be described in terms of logic [15]. However, different aspects of logic, along with the proofs and rules of inferences such as modus-ponens, modus tolens, hypothetical syllogism and resolution are treated in different text books on AI and Expert Systems.

4.8.2. Knowledge representation using semantic nets

Semantic nets were originally developed for use as psychological models of human memory but are now a standard representation method for AI and expert systems. A semantic network method represents knowledge using two tuples : \((N,L)\). \(N\) is a set of nodes representing objects and descriptors. An object may be a physical or conceptual entity. A descriptor provides additional information about an object. \(L\) is a set of links connecting the nodes and representing the relations among them. Mainly three types of links are used : has-a link, is-a link, and definitional links. A has-a link shows that a node has a certain property. An is-a link represents class and instance relationships. A definitional link is used for representing declarative relations.

For example, a simple description of a bluebird might be "a bluebird is a small blue-coloured bird and a bird is a feathered flying vertebrate". This may be represented as a set of logical predicates [16] :

\[
\begin{align*}
\text{size(bluebird, small).} \\
\text{hascovering(bird, feathers).} \\
\text{hascolour(bluebird, blue).} \\
\text{hasproperty(bird, flies).} \\
\text{isa(bluebird, bird).} \\
\text{isa(bird, vertebrate).}
\end{align*}
\]

Instead of predicates to indicate relations, this description could also be represented graphically by using the links in a graph (fig.4.1). This description, called a semantic network, is a fundamental technique for representing semantic meaning. Because relationships are explicitly denoted by the links of the graph, an algorithm for reasoning about the domain could make relevant associations simply by following links. In the bluebird illustration, a system need only follow two links in order to determine that a
bluebird is vertebrate. This is more efficient than exhaustively searching a data base of predicate calculus descriptions of the form \(\text{isa}(X,Y)\).

Moreover, knowledge may be organized to reflect the natural class-instance structure of the domain. Certain links in a semantic network (the ISA links in fig.4.1) indicate class membership and allow properties attached to a class description to be inherited by all members of the class. Inheritance is a natural tool for representing taxonomically structured information and ensures that all members of a class share common properties.

![Semantic network description of a bluebird.](image)

Fig. 4.1. Semantic network description of a bluebird.

4.8.3. Knowledge representation using rules

Rules provide a formal way of representing recommendations, directives, or strategies; they are often appropriate when the domain knowledge results from empirical associations developed through years of experience solving problems in an area. A rule has two parts. The first part is a premise of conditions connected by logical-AND or logical-OR relationships. The second part is a conclusion. When the premise of a rule is true, the conclusion of the rule will become true. In some systems rules may be implemented by semantic networks or OAV, as in MYCIN [17], the medical diagnostic system developed at Stanford University. Alternatively, rules may be represented by frames, as in IntelliCorp's knowledge engineering environment [18].

In expert systems jargon the term rule has a much narrower meaning than it does in ordinary language. It refers to the most popular type of knowledge representation technique, the rule-based representation. Rules are expressed as IF-THEN statements, as shown below [19]:
Rule 1. If a flammable liquid was spilled, called the fire department.

Rule 2. If the pH of the spill is less than 6, the spill material is an acid.

Rule 3. If the spill material is an acid, and the spill smells like vinegar, the spill material is acetic acid.

These are rules that might exist in a crisis management expert system for containing oil and chemical spills. Rules are sometimes written with arrows (→) to indicate the IF and THEN portions of the rules.

Rule 2 in this notation would look like:

If the pH of the spill → the spill material
is less than 6 is an acid.

In a rule-based expert system, the domain knowledge is represented as sets of rules that are checked against a collection of facts or knowledge about the current situation. When the IF portion of a rule is satisfied by the facts, the action specified by the THEN portion is performed. When this happens the rule is said to fire or execute. A rule interpreter compares the IF portions of rules with facts and executes the rule whose IF portion matches the facts, as shown in fig. 4.2.

The rule’s action may modify the set of facts in the knowledge base, for example, by adding a new fact, as shown in fig. 4.3. The new facts added to the knowledge base can themselves be used to form matches with the IF portion of rules as illustrated in fig. 4.4. The action taken when the rule fires may directly affect the real world, as shown in fig. 4.5.
FACTS

A flammable liquid was spilled less than 6 is an acid.

RULES

If the pH of the spill is less than 6, the spill material is an acid.

FACTS

A flammable liquid was spilled less than 6 is an acid.

RULES

If the spill material is an acid, and the spill smells like vinegar, the spill material is acetic acid.
FACTS

| A flammable liquid was spilled | The pH of the spill less than 6 | Spill smells like vinegar |

MATCH \[\uparrow \] EXECUTE \[\rightarrow \] Fire department is called

\[\downarrow \]

If a flammable liquid was spilled, call the fire department

RULES

Fig. 4.5. Rule execution can affect the real world

This matching of rule IF portions to the facts can produce what are called inference chains. The inference chain formed from successive execution of rules 2 and 3 is shown in fig. 4.6. This inference chain indicates how the system used the rules to infer the identify of the spill material. An expert system's inference chains can be displayed to the user to help explain how the system reached its conclusions.

There are two important ways in which rules can be used in a rule-based expert system: forward chaining and backward chaining. The spill material example just presented used forward chaining.

Forward chaining is a 'data-driven' approach. In this approach one starts from available information as it comes in, or from a basic idea, then to draw conclusions. Backward chaining is a 'goal-driven' approach in which one starts from an expectation of what is to happen(hypothesis), then seek evidence that supports (or contradicts) his/her
expectation. The inference chain created by backward chaining is identical to the one created by forward chaining; but however, the order and actual number of states searched can differ. The preferred strategy is determined by the properties of the problem itself. These include the complexity of rules, the shape of the state space, and the nature and availability of the problem data. All these vary for different problems.

Depth-first search and Breadth-first search [4]

In addition to specifying a search direction (data-driven or goal-driven), a search algorithm determines the order in which states are examined in the tree or graph. This section considers two possibilities: depth-first and breadth-first search.

Depth-first search

A depth-first search begins at the root node and works downward to successively deeper levels. An operator is applied to the node to generate the next deeper node in sequence. This process continues until a solution is found or backtracking is forced by reaching a dead end.

A simple depth-first search is illustrated in fig. 4.7. The numbers inside the nodes designate the sequence of nodes generated or searched. This process seeks the deepest possible nodes. If a goal state is not reached in this way, the search process backtracks to the next highest level node where additional paths are available to follow. This process continues downward and in a left-to-right direction until the state goal is discovered. Here, the search would actually end at node 13.

When a dead-end node is discovered, such as node 4 in fig. 4.7, the search process backtracks so that any additional branching alternative at the next higher node level is attempted. The search backs up to node 3. It has no alternate paths, so the search backtracks to node 2. Here, another path through node 5 is available. The path through node 6 is explored until its depth is exhausted. The backtracking continues until the goal is reached.

The depth-first search guarantees a solution, but the search may be a long one. Many different branches will have to be considered to a maximum depth before a solution is reached. (By setting a "depth bound", it is frequently possible to reduce the search.) The method is especially attractive in case where short paths exist and where there are no lengthy sub-branches.
Breadth-first search

A breadth-first search examines all of the nodes (states in a search tree), beginning with the root node. The nodes in each level are examined completely before moving on to the next level. A simple breadth-first search is illustrated in Fig. 4.8. The numbers inside the node circles designate the sequence in which the nodes are examined. In this instance, the search (follow the broken line) would actually end at node 7, as that is the goal state.

A breadth-first search of the state space will usually find the shortest path between the initial state and the goal state, with the least number of steps.

The process usually starts at the initial state node and works downward in the tree from left to right. A terminal node is not necessarily a goal node; it can be a dead-end node. Breadth-first procedures are good when the number of paths emanating from each goal is relatively small and where the number of levels in each branch is of a different depth (number of levels).
4.8.4. Knowledge representation using frame

A frame is used to describe an object [20]. It is composed of slots storing information associated with the object. The function of the slots is similar to that of the attributes in OAV. However, frames differ from OAV in that the slots may contain default values, pointers to other frames, sets of rules, or procedures. Frames may also be linked to allow for inheritance. So, frames and OAV can be considered special cases, or subsets, of semantic networks. The representational power of the three systems is the same. The difference lies in the structure and concept of their knowledge organizations.

According to Marvin Minsky [20] when we mentally recall the image of a particular object, we recall a group of typical attributes of that object at the same time - this cohesive grouping of attributes is called Frames. For example, if somebody mentions about a chair, that would "trigger" a series of expectations - such that it is an object with four legs, a seat, a back, and possibly but not necessarily two arms.

A preconception about the colour may not be there but a general expectation of size will be there [12, 13]. A frame of the word "chair" is shown in figure 4.9.
4.8.5. Knowledge representation using scripts

Another knowledge representation system that is especially useful in the area of natural language understanding is a system called scripts, proposed by Roger Schank [21] at Yale University. Scripts are composed of a series of slots that describe, in sequence, the events that we expect to take place in familiar situations. Just as the concept of frames is based on the assumption that we have a set of expectations about objects, the use of scripts assumes that we also expect certain sequences of events to occur in particular times and places. Schank and Childers in their book [21] the Cognitive Computer uses a resultant script. Visit to a restaurant is composed of a series of scenes, for example, an entering scene, a sitting scene, an ordering scene, an eating scene, a bill payment scene etc. Fig. 4.10 shows a script for entering scene.
4.8.6. Object-attribute-value triplets as KR scheme

The object-attribute-value triplets (OAV-triplets) method represent knowledge using three tuples: (O, A, V). O is the set of objects, which may be physical or conceptual entities. A represents the set of attributes characterising the general properties associated with objects. V (values) specify the nature of the attributes.

The OAV method is actually a special form of semantic network. The relation between an object and an attribute is a has-a link, and the relation between an attribute and a value is an is-a link. The objects, attributes, and values of OAV are equivalent to the nodes in semantic networks. Knowledge can be divided into dynamic and static portions. The triplet values are the dynamic portion. These values may change, but the static portion (usually facts and rules) remains unchanged for different consultations.

An expert system stores data about real-world entities. In knowledge representation theory, the real-world entities are objects. Each object has one or more attributes or properties, and the attributes have values; for example,

<table>
<thead>
<tr>
<th>Object</th>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>Colour</td>
<td>Blue</td>
</tr>
<tr>
<td>Amal</td>
<td>Fever</td>
<td>High</td>
</tr>
</tbody>
</table>

The object is bus, the attribute is colour, and the value is Blue. Another example, the object is Amal, the attribute is fever, and the value is high.

OAV is more structured than a semantic network. However, when the number of objects increases, an OAV system becomes difficult to manage.

4.8.7. Object-Oriented approach

The world consists of different objects. An object is an independent entity represented by some data and a set of operations (methods and capabilities) [22]. Therefore, an object can be used to represent a variety of knowledge. Knowledge (K) can be formally represented by three tuples, K = (C, I, A). C is a set of classes represented by class objects. I is a set of instances represented by instance objects. A is a set of attributes possessed by the classes and instances.
4.8.7.1. Classes

A class is a description of a group of similar instance objects [22]. It is a mold that determines the behavior of its instances. Each class has a unique name and a set of attributes that define the properties of the class. A class may be a sub-class of another class and may inherit properties from its parent class as discussed in sub-section 4.8.7.4.

4.8.7.2. Instance objects

Instance objects are members of classes. Their properties are defined by their parent classes. Each instance object consists of three sets of attributes:

(a) Name - the name of the object, which is unique in the system. It is used to identify the object.
(b) Class - the class that contains the object.
(c) Instance attributes - attributes belonging to the instance object. Some operations may be performed on these attributes. The behaviour of the object is determined by the values of these attributes.

4.8.7.3. Attributes and methods / operations

The property of an attribute is determined by its type and value. The type of an attribute is defined by its class, while the value may be defined in its class or its instance object. A set of generic attributes can be associated with every object in a class, say furniture, for example. All furnitures has a cost, dimensions, weight, location, and colour among many possible attributes.

Methods are a kind of attribute belonging to objects. They are used to represent capabilities, not to store data, and are defined in classes. Methods cannot be modified during consultations.

4.8.7.4. Inheritance

Properties of a class can be inherited from its parent’s class. This feature permits factoring knowledge into a class hierarchy. Thus, it encourages modular design of knowledge. The system adopts the inheritance rules, which are similar to those in smalltalk [22], as follows:

(a) If class A inherits from class B, then the objects of class A support all operations supported by objects of class B.
(b) If class A inherits from class B, then class A’s attributes are a superset of class B’s attributes.
For example, Chair is a member of the class furniture. Chair inherits all attributes defined for the class. This concept is illustrated schematically in fig. 4.11.

![Diagram illustrating inheritance from class to object](image)

Fig. 4.11 Inheritance from class to object

Once the class has been defined, the attributes can be reused when new instances of the class are created. For example, assume that we were to define a new object called chable (a cross between a chair and a table) that is a member of the class furniture. Chable inherits all of the attributes of furniture [23].

Every object in the class furniture can be manipulated in a variety of ways. It can be bought and sold, physically modified, or moved from one place to another. Each of these operations will modify one or more attributes of the object. For example, if the attribute location is actually a composite data item defined as:

\[
\text{Location} = \text{building} + \text{floor} + \text{room}
\]

Then an operation named move would modify one or more of the data items (building, floor, or room) that comprise the attribute location. To do this, move must have "knowledge" of these data items. The operation move could be used for a chair or a table, as long as both are instances of the class furniture. All valid operations (e.g. buy, sell, weigh) for the class furniture are "connected" to the object definition as shown in fig. 4.12 and are inherited by all instances of the class.
The object chair (and all objects in general) encapsulates data (the attribute values that define the chair), operations (the actions that are applied to change the attributes of chair), other objects (composite objects can be defined [24]), constants (set values), and other related information. Encapsulation means that all of this information is packaged under one name and can be reused as one specification or program component.

4.8.7.5. AI, Expert systems and O-O technology

In recent years, the term or adjective 'object-oriented' has become a popular slogan of any kind of systems regardless of its actual qualities. But however, we must admit that behind the slogan there must be some interesting ideas and concepts people suggest for developing large, integrated systems. Although there is the lack of standard definition of what is the O-O approach, but however, the properties like encapsulation, inheritance, polymorphism are considered useful for O-O approach. O-O is now being exploited for analysis and design, and people are sharing their experiences.
The ideas behind object oriented programming (OOP) and object oriented technology (OOT) date back to the forties [25]. These ideas, however, were not put into practice until the introduction of the Simula_67 programming language [26]. Simula, a superset of Algol, was designed for describing a wide class of discrete event simulations and implementing them for simulations. Simula objects represent data and an operation on the data. These objects communicate with each other through messages to determine their next action. Although primitive by today's standards, Simula provided the first insight into the value of OOP.

The form of OOP we are accustomed to seeing took shape in the seventies with the development of Smalltalk at the Xerox Palo Alto Research Centre. Although Smalltalk is used to develop expert systems, its real value is that it offers a user-friendly programming environment.

What made Smalltalk easy to use and conceptually appealing was the extensive use of techniques commonly found today in OOP languages: class / object representations, inheritance, message-passing and encapsulation, to name a few. Researchers at Xerox Palo Alto Research Centre found that these techniques enabled a programmer to easily perceive an object system's structure and operation and to use this understanding to efficiently develop an interface, or for that matter, an entire functioning program. OOP's intuitive approach was the key to Smalltalk's success. Programming solutions frequently followed the methods that humans use to address everyday problems.

Given Smalltalk's intuitive programming environment, coupled with AI researchers' interests in computers representing and reasoning with knowledge similarly to humans, it was only natural for these researchers to adopt object-oriented techniques. This trend was most noticeable during the eighties.

One of the most important events during the eighties that spurred the interest in AI was the marketing of expert system development shells. Most of the early shells were rule-based. However, given the appeal of object-oriented systems, as demonstrated by Smalltalk's success, the demand pushed vendors to offer tools with object-oriented techniques. These tools, commonly called frame-based development programs (but sometimes called hybrid tools), usually combine object-oriented techniques with rule-based programming. New procedural languages with object-oriented techniques also surfaced, such as Objective C, C++, Pascal Object, Modula-2 and Lisp extensions such as Scoops, Flavors, Loops and the Common Lisp Object System (CLOS).

Armed with powerful object-oriented shells and languages, expert system developers took aim at problems that were often out of the reach of rule-based approaches. A review of systems developed during the later eighties and early nineties clearly shows a swing toward object-oriented techniques [27]. This trend was due partly to the
availability of relatively inexpensive frame-based shells that ran on a variety of platforms. Two of the earliest frame-based shells, the knowledge engineering environment from IntelliCorp and the automated reasoning tool from Inference, offered AI researchers powerful tools, but were costly and ran on mainframes or workstations, preventing their widespread use. In the mid-eighties, vendors began marketing cheaper object tools, many of which ran on a PC. This situation led to the accelerated development of frame-based expert systems. Most important, it opened the door at most universities for teaching object-oriented technology (OOT) techniques to the next generation of AI researchers. Flourishing development of object-oriented knowledge-based systems continues. Vigorous development of object-oriented knowledge-based systems continues. Most corporations - including many in the Fortune 500 - are focusing on client-server and object-oriented problems. These organizations have come to recognize AI in general and OOT in specific, as a standard way of doing business. Whereas many of these companies first ventured into AI by forming a dedicated group of AI specialists, most of these specialists now work in the more traditional programming departments, where they routinely carry on their trade of knowledge-based programming.

A look at the recent marketing approach of vendors of AI object-oriented tools is also revealing. As any good business would do, these vendors have kept a finger in the air to sense the direction of their clients' interests. They found that although terms such as "AI" and "expert systems" might have fallen out of favor in some circles, their clients' still wanted the object-oriented capability of their products. To go with the flow, these vendors began to advertise their products as "intelligent applications tools". AI capability was still there, but the idea of AI faded into the background. This presents an interesting situation: companies using AI but not promoting it, and vendors marketing products with AI capabilities but not advertising it. Although abandoning the AI label, both have created a new infrastructure on which to build the knowledge-based technology that should flourish in the latter part of the nineties. The irony: even if the spotlight is no longer on AI, AI's contributions will continue to positively affect future information processing, only under other labels [28].

4.9. Analysing relative suitability

The major advantage of semantic networks is flexibility, since new nodes and links can be defined as required without restriction. This flexibility also exists in object-oriented (O-O) knowledge representations where, by storing the names of their objects as the attributes of an instance object, relations between instance objects can be established dynamically. These relations have the same power as links in semantic networks; in fact, this object-oriented (O-O) construct can be viewed as dynamic semantic network. The is-a links of semantic networks can be implemented in object-oriented (O-O) representations by relationships between classes and sub-classes or between classes.
and instances. Has-a links can be implemented by the relationships between classes and attributes. Therefore, object-oriented knowledge representation has the same power as a semantic network but is much more structured.

A common disadvantage in semantic networks, rules, and OAV representations is that they are not structured enough. A significant increase in the number of objects or rules makes the system difficult to manage. This is because the knowledge cannot be modularized and interactions among rules and objects become too complex. When the value of an object or an attribute is modified, it is difficult to pinpoint the effects on the whole system. Therefore, such knowledge representations are difficult to develop and maintain, especially for a large knowledge base. The encapsulation property and structuredness of object-oriented (O-O) knowledge representations give them a distinct edge over these three representations.

Frames are more structured than semantic networks, rules, and OAV representations, since related attributes and rules can be grouped into frames hierarchically. However, modularity of knowledge represented in frames cannot be clearly defined, and frame representation lacks flexibility. In a frame system, relationships between frames may be member or subclass links and thus are not unique. Moreover, in some systems, a rule is represented by a frame linked to another frame with a special relationship. These factors greatly reduce the structure in a frame system. In object-oriented (O-O) knowledge representation, which is quite similar to frames, knowledge can be arranged in a hierarchical form using classes. However, a subclass link is the only possible relationship between two classes, an is-a link is the only possible relationship between a class and an instance object, and rules are defined as methods in classes - clear cut distinctions that reduce ambiguity and improve understandability.

In tune with our identified key requirements the domain lays on an expert system, we now analyse the relative suitability of different KR schemes discussed in section 4.8. When the domain knowledge is vast and varied, the knowledge can become unmanageable. To handle a large knowledge base it is suggested [29] that the structuredness and modularity is necessary where knowledge is varied. A common disadvantage in Semantic Networks, Rules and OAV representations is that they are not structured enough [14]. It is very difficult to manage a system with these representations when the number of objects and rules increases significantly. According to some researchers [30], some applications such as engineering processes, manufacturing and communications are expected to contain 100,000 rules or more. It is then very difficult to pinpoint the effects on the whole system if a value of an object or an attribute is modified.

The major advantage with semantic networks is its flexibility in defining new nodes and links as when required. The type of flexibility is also with the O-O approach which may
be viewed as a dynamic semantic networks. The O-O knowledge representation has the same power as of semantic networks but is much more structured. Frames are more structured than Semantic nets, rules and OAV representations, since related attributes and rules can be grouped into frames hierarchically. This is a passive data structure which lacks flexibility and the relationships within this system are not unique. The active data structure, the O-O representation of knowledge where declarative as well as procedural knowledge can be mixed, is structured and is much more meaningful semantically. The O-O form of KR encourages modular designs supporting the improvement of the efficiency of knowledge acquisition and management. The properties like encapsulation and inheritance of O-O approach are really attractive for large, integrated information systems. The encapsulation property prevents object manipulation except by defined operations. Inheritance is a valuable mechanism which enhances reusability and maintainability of software. Because this approach minimizes object interdependency [31] the knowledge can be structured.

A common disadvantage in OAV triplets and rules is that there may be some redundancy in information which may lead to some inconsistency. There is no such redundancy problem with Semantic Networks, frames and O-O forms. Moreover, O-O approach to KR supports high level of knowledge abstraction, an important advantage over other classical approaches. Considering all these factors, we advocate O-O representation to improve consistency, understandability, maintainability and modifiability of knowledge base. Last, but not least, in the evolution of an expert system [19], prototyping may have an adverse impact on modifiability and maintainability of knowledge bases since these may be patched and modified several times. This may, however, be overcome by the use of O-O approach. As the system grows, the major changes will be with the addition of new objects or deletion of old objects rather than modifying the old objects. In this respect O-O approach is considered very useful for rapid prototyping, an added advantage.

4.10. Representative expert systems and ES-development tools

The following table 4.1 represents some expert systems and ES-developmental tools [19, 32-34] with the kind of knowledge representation scheme(s) and control for knowledge base scanning.

<table>
<thead>
<tr>
<th>ES/ES-tools</th>
<th>Representation</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYCIN</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>EMYCIN</td>
<td>Rule-based</td>
<td>Restrictive backward chaining</td>
</tr>
<tr>
<td>PROLOG</td>
<td>Logic-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>Name</td>
<td>Type Description</td>
<td>Chaining Method</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>EXPERT</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>LISP</td>
<td>Procedure-oriented, functional, symbolic expressions</td>
<td>Forward, backward chaining</td>
</tr>
<tr>
<td>ADVISOR II</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>EXSYS</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>GURU</td>
<td>Rule-based</td>
<td>Backward chaining, Limited forward chaining</td>
</tr>
<tr>
<td>KES II</td>
<td>Rule-based, classes</td>
<td>Backward chaining, Limited forward chaining</td>
</tr>
<tr>
<td>LEONARDO</td>
<td>Rules, Frames, Procedures</td>
<td>Backward and forward chaining</td>
</tr>
<tr>
<td>XI PLUS</td>
<td>Rules, Induction</td>
<td>Control over direction</td>
</tr>
<tr>
<td>GOLDWORKS</td>
<td>Rules, Frames, Objects</td>
<td>Control over direction</td>
</tr>
<tr>
<td>NEXPERT</td>
<td>Rule-based</td>
<td>Forward, backward chaining</td>
</tr>
<tr>
<td>ESE</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>OPS5</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>ART</td>
<td>Rule-based, Frame-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>DUCK</td>
<td>Logic-based, Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>GUSS/1</td>
<td>Rule-based</td>
<td>Backward and forward chaining</td>
</tr>
<tr>
<td>KES</td>
<td>Rule-based, Frame-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>M.1</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>OPS5</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>RITA</td>
<td>Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>SAVOIR</td>
<td>Rule-based</td>
<td>Backward and forward chaining</td>
</tr>
<tr>
<td>S.1</td>
<td>Rule-based, Frame-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>ARBY</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>Plant/cd</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>XCON</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>XSEL</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>YES/MVS</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>TALIB</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>DELTA</td>
<td>Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>System</td>
<td>Logic Type</td>
<td>Chain Type</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>SPERIL-I</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>SPERIL-II</td>
<td>Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>DIPMETER ADVISOR</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>DRILLING ADVISOR</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>MUD</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>CODES</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>FOLIO</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>PROJCON</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>DSCAS</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>SAL</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>TAXADVISOR</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>IMACS</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>PTRANS</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>AI/RHEM</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>BABY</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>CLOT</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>MEDICO</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>MI</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>NEURAX</td>
<td>Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>ONCOCIN</td>
<td>Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
<tr>
<td>PUFF</td>
<td>Rule-based</td>
<td>Backward chaining</td>
</tr>
<tr>
<td>SPE</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>THYROID MODEL</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>WHEEZE</td>
<td>Frame-based</td>
<td>Backward and forward chaining</td>
</tr>
<tr>
<td>MES</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>TATR</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>PDS</td>
<td>Rule-based</td>
<td>Forward chaining</td>
</tr>
<tr>
<td>FAITH</td>
<td>Frame-based</td>
<td>Backward and forward chaining</td>
</tr>
<tr>
<td>LEVEL5 (OBJECT)</td>
<td>Large-hybrid-object-oriented, Rule-based</td>
<td>Forward and backward chaining</td>
</tr>
</tbody>
</table>
4.11. Paediatric Problem domain

OAV-triplets

The general form of OAV-triplets representation of the knowledge of Appendix A is shown as \[35\]: \((\text{age-of-the-baby}, \text{activity}, \text{value})\).

For examples:

- \((1\text{-month}, \text{Axial-muscle-tone}, \text{Head-drops})\),
- \((1\text{-month}, \text{Axial-muscle-tone}, \text{Turns-head-from-side-to-side})\),
- \((1\text{-month}, \text{Spontaneous-Gestures}, \text{Athetoid})\),
- \((1\text{-month}, \text{Spontaneous-Gestures}, \text{Stays-lying-on-side})\),
- \((1\text{-month}, \text{Rhythms-sleep}, 21\ \text{hours})\),
- \((1\text{-month}, \text{Rhythms-meals}, 5\ \text{meals})\).

Semantic networks

From the Appendix A, we show a small portion of the total semantic networks drawn as an example.

![Semantic networks diagram](image-url)

Fig. 4.13. Semantic networks.
Rules

In the form of rules the knowledge is represented as:

Rule 1.

If the baby of age between 1 day and 1 month drops his/her head when he/she is pulled up sitting and turns head from side to side when he/she is prone
Then the axial muscle tone is normal.

Rule 8.

If the baby of age between 1 day and 1 month sleeps 21 hours and takes 5 meals
Then rhythms are normal.

Frames

The knowledge of Appendix A may be represented using frames as:

[Diagram of frame description of baby]

Fig. 4.14. Frame description of baby.
Object-Oriented approach

The knowledge of Appendix A may be represented using O-O approach as:

<table>
<thead>
<tr>
<th>Class name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super class</td>
<td>baby</td>
</tr>
</tbody>
</table>

Instance variables

- Head:
- Limbs:
- Gestures:
- Reflexes:
- Vision:
- Pulled-up-sitting:
- Prone:

Instance methods

Axial-muscle-tone () :

begin
 message (Pulled-up-sitting, head-drops);
 message (Prone, head-turns-side-to-side);
 :
end.

Fig. 4.15. object-oriented representation.

4.12. Discussions

In this chapter, we have considered the vital issues of knowledge acquisition - types and sources. In this connection, we have tried to explore the difficulties associated with knowledge acquisition. Potential sources used in this research have been pointed out. We have tried also to analyse the relative suitability of different KR schemes from the viewpoint of an expert system designer for the paediatric domain. Our analysis finds O-O approach more suitable for the problem domain.

While above analysis and consequent results might lead one to believe that the O-O paradigm is a panacea for all the woes of knowledge engineering / abstraction / representation, the paradigm does have some drawbacks [36]:
• One of object-oriented technology's disadvantage is its long learning curve. The classical developers have to devote several months before they are skilled enough to start a project.

• Second problem may be that is expected in the initial stages of any relatively new technology is the unavailability of robust and reliable tools such as AI-language or a shell. However, at present, there are some ES-shells using object technology (e.g. Level5 object) are coming into the market.

• The third problem may come from the very nature of abstraction. The reliability of the abstraction layer(s) should be sufficiently high so that there should not be any bug with these layer(s). These bugs are rarely trapped by the application layer due to the shielding property of abstraction. A careful design is, obviously, required to overcome this problem.

At this stage, there is no doubt that O-O technology should certainly assist us: (i) in developing a complex system; (ii) in maintaining the system; and (iii) in modifying the knowledge base of a system.

References

22. A. Goldberg and D. Robson. Smalltalk-80: The language and its Implementation. Addison-Wesley; NY, 1983.

