Introduction

1. Introduction 1
 1.1. North-Bengal Districts of India 5
1.2. The Rise of Medical Informatics 8
1.3. Usage and benefits 12
 1.3.1. Levels of usage of a technical artifact 13
 1.3.2. Usage of expert systems 14
 1.3.3. Benefits 16
1.4. Aim of the work 18
1.5. Summary of the work 19
References 20

The paediatric domain

2.1. Introduction 23
2.2. Statistical Importance 23
2.3. Children in developing countries 25
2.4. Age related health problems in India 26
2.5. Burden of diseases in India 26
2.6. Indicators and denominators in India 29
2.7. Low birth weight (LBW) 33
 2.7.1. Incidence of low birth weight 35
 2.7.2. Importance of reducing low birth weight rates 37
2.8. Socio-cultural and economical problems in India 37
2.9. Status of rural health centres in India 38
References 40
Artificial intelligence, expert systems and the domain

3.1. Introduction 42
3.2. Expert systems technology 43
 3.2.1. Categories and application areas of expert systems 43
 3.2.2. Trends of using expert systems 57
 3.2.3. Component of an expert system 60
 3.2.4. Typical features of an expert system 62
 3.2.5. Major stages of an expert system development 63
 3.2.6. Classifications of expert systems 65
 3.2.6.1. Based on reasoning 65
 3.2.6.2. Based on other technical issues 67
3.3. Why it is an expert system domain 71
3.4. What requirements the domain lays on an expert system 72
3.5. Discussions 75
References 76

Knowledge acquisition and representation

4.1. Introduction 81
4.2. Levels of knowledge 82
4.3. Knowledge categories 82
 4.3.1. Declarative knowledge 82
 4.3.2. Procedural knowledge 82
 4.3.3. Semantic knowledge 82
 4.3.4. Episodic knowledge 83
 4.3.5. Meta-knowledge 83
4.4. Sources of knowledge 83
 4.4.1. Classical sources 83
 4.4.2. Web-based knowledge acquisition 83
 4.4.2.1. Internet and WWW 84
4.5. Methods of knowledge acquisition 84
 4.5.1. Manual methods 84
 4.5.1.1. Interviewing 84
 4.5.1.1.1. Structured interview 84
 4.5.1.1.2. Unstructured interview 85
 4.5.1.1.3. Semi-structured interview 85
 4.5.1.2. Tracking the reasoning process 86
 4.5.1.3. Observations 86
 4.5.2. Semi-automatic methods 86
 4.5.3. Automatic methods 86
4.6. Problems in knowledge acquisition 86
 4.6.1. Problems with knowledge acquisition in general 86
 4.6.2. Problems with Web-based acquisition 87
4.7. Representative sources used in this work 88
4.8. Some knowledge representation (KR) schemes 89
 4.8.1. Knowledge representation using logic 89
 4.8.2. Knowledge representation using semantic nets 90
 4.8.3. Knowledge representation using rules 91
 4.8.4. Knowledge representation using frame 97
 4.8.5. Knowledge representation using scripts 98
 4.8.6. Object - attribute - value triplets as KR scheme 99
 4.8.7. Object-Oriented approach 99
 4.8.7.1. Classes 100
 4.8.7.2. Instance objects 100
 4.8.7.3. Attributes and methods / operations 100
 4.8.7.4. Inheritance 100
 4.8.7.5. AI, expert systems and O-O technology 102
4.9. Analysing relative suitability 104
4.10. Representative expert systems and ES-development tools 106
4.11. Paediatric problem domain 109
4.12. Discussions 111
References 112
Selecting an appropriate expert system tool 141

6.1. Introduction 141
6.2. Potential inconveniences 141
 6.2.1. No general purpose tool 141
 6.2.2. Single or multiple tools 142
 6.2.3. In search of a bird after constructing a cage 143
 6.2.4. Exaggerated claims from vendors / agents 143
 6.2.5. Non-standard terminologies 143
 6.2.6. Miscellaneous issues: Price, training and documentation support 144
 6.2.7. Language, shell or toolkit 144
 6.2.7.1. Applicability 144
 6.2.7.2. Abstraction 145
 6.2.7.3. Facilities 145
 6.2.7.4. Costs 145
 6.2.8. Left no stone unturned - Is it practically feasible? 147
 6.2.9. Potentially active research field 147
 6.2.10. Any unique framework? 147
6.3. ES-building tools' capabilities 148
 6.3.1. Level5 Object 149
 6.3.1.1. What is Level5 Object? 149
 6.3.1.2. What kind of problems are best solved with Level5 Object? 150
 6.3.1.3. Capabilities of Level5 Object 151
 6.3.2. Turbo prolog 155
 6.3.3. Requirements vs. Capabilities 156
6.4. Conclusions and discussion 168
References 168

Uncertainty management 170

7.1. Introduction 170
7.2. Sources and nature of Inexact Information 170
7.3. Tools for managing inexact information 174
 7.3.1. Bayesian probability theory 174
 7.3.2. Dempster / Shafer theory of evidence 175
 7.3.3. Stanford certainty factor model 177
 7.3.4. Fuzzy set theory 178
 7.3.5. Non-monotonic reasoning 179
7.4. Suitability Analysis 179
 7.4.1. Bayesian probability theory 180
 7.4.2. Dempster / Shafer theory of evidence 180
 7.4.3. Stanford certainty factor model 181
 7.4.4. Fuzzy set theory 181
 7.4.5. Non-monotonic reasoning 182
7.5. Conclusions and discussion 182
References 183
Prototype development: A software engineering issue

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Introduction</td>
<td>186</td>
</tr>
<tr>
<td>8.2. Prototyping and prototyping cycle</td>
<td>187</td>
</tr>
<tr>
<td>8.3. Phase refinement vs. prototyping</td>
<td>188</td>
</tr>
<tr>
<td>8.4. Stages of expert system evolution</td>
<td>189</td>
</tr>
<tr>
<td>8.5. Prototype 1.0</td>
<td>190</td>
</tr>
<tr>
<td>8.5.1. General description</td>
<td>190</td>
</tr>
<tr>
<td>8.5.2. Knowledge Base</td>
<td>191</td>
</tr>
<tr>
<td>8.5.3. Inference engine</td>
<td>191</td>
</tr>
<tr>
<td>8.5.4. Review management</td>
<td>192</td>
</tr>
<tr>
<td>8.5.5. Implementation</td>
<td>192</td>
</tr>
<tr>
<td>8.5.6. Analysing process</td>
<td>193</td>
</tr>
<tr>
<td>8.5.7. Consulting the system</td>
<td>193</td>
</tr>
<tr>
<td>8.6. Conclusions and discussion</td>
<td>196</td>
</tr>
<tr>
<td>References</td>
<td>197</td>
</tr>
</tbody>
</table>

Fuzzy concepts and paediatrics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td>198</td>
</tr>
<tr>
<td>9.2. Basics of fuzzy logic and fuzzy set theory</td>
<td>199</td>
</tr>
<tr>
<td>9.3. Fuzzy concepts in 'Neonates' problem domain</td>
<td>205</td>
</tr>
<tr>
<td>9.4. Prototype 2.0</td>
<td>207</td>
</tr>
<tr>
<td>9.4.1. A typical consultation session</td>
<td>208</td>
</tr>
<tr>
<td>9.5. Neonatal resuscitation management: an application (Prototype 3.0)</td>
<td>210</td>
</tr>
<tr>
<td>9.5.1. System analysis</td>
<td>210</td>
</tr>
<tr>
<td>9.5.2. Fuzzification of system state input variable</td>
<td>211</td>
</tr>
<tr>
<td>9.5.3. Fuzzification of system state output variable</td>
<td>213</td>
</tr>
<tr>
<td>9.5.4. Inferencing process</td>
<td>214</td>
</tr>
<tr>
<td>9.5.5. Performance evaluation</td>
<td>215</td>
</tr>
<tr>
<td>9.6. Conclusions</td>
<td>216</td>
</tr>
<tr>
<td>References</td>
<td>217</td>
</tr>
</tbody>
</table>
KID : An integrated system (Prototype 4.0)

10.1. Introduction 219
10.2. Analysis and design 219
10.3. Graphical user interface (GUI) 222
10.4. Implementation 224
10.5. A consultation session : an excerpt 225
10.6. Performance evaluation 228
10.7. Conclusions and discussion 229

References 229

A case based approach (Prototype 5.0)

11.1. Introduction 230
11.2. Neonatal resuscitation management : A case study 231
11.3. CBR's validity 232
 11.3.1. AI perspective 232
 11.3.2. Domain perspective 233
11.4. The system 234
11.5. Performance evaluation 239
11.6. Discussions 239

References 239
Child Activities

Typical Classes and Objects

KID

List of Publications