
Chapter 1 
INTRODUCTION 

1.1 General: 

For a machine represented by n number of coils there are n voltage equations and 

a torque equation. If the n applied voltages and the applied torque are known, as well as 

initial conditions, the (n+ 1) equations are sufficient to determine the n currents and the 

speed. Hence theoretically the performance of the machine can completely be 

determined[!],[ 61 ]. 

In general case, the equations containing the product terms in which the speed and 

the currents, i.e., the state variables of the machine are strongly coupled, are nonlinear 

differential equations and have to be solved by the numerical integrations. For particular 

condition of operation, however, considerable simplifications are often made, and the 

types of problems are accordingly classified[4]. 

Under steady state conditions, the speed is constant and the voltage equations are 

dealt independently of the torque equations. The voltage equations reduce under steady 

· conditions to a set of n ordinary linear algebraic equations containing real variables for de 

conditions and complex variables for ac conditions. 

Under transient conditions, when voltages and currents may vary in any manner, 

the problem is greatly simplified by taking a constant value of speed, then the voltage 

equations are treated independently of the torque equations and they are linear differential 

equations with constant co-efficient. 

When the voltages are known the equations can be solved, either by algebraic 

methods for steady state problems, or by operational methods for transient problems, and 
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the current thus obtained can be substituted in the torque equation. If the spee~ is constant 

the externally applied torque is obtained directly because it is equal to the electrical 

torque. 

The net stage in difficulty in study of the dynamics of the electrical machines 

arises if the speed varies but is a known function of time. It is then still possible to solve 

the voltage equations separately, but the coefficients are not constant as before. The 

equations with variable coefficients for which the simple operational method does not 

apply. Usually only numerical solutions are possible. Once the current is determined , 

torque can be calculated. 

The most difficult problems are those for which the speed is an unknown variable. 

Most of the transient problems are of this type. These problems are solved by transfer 

Function Method, Eigen Vector Method, Transition Matrix Method, State Variable 

method etc. In all of those methods of solution, system is linearized and solved. 

Therefore, due to linearization, some nonlinear phenomenon are eliminated[?]. 

Since the 1970s, dynamic characteristics of various motors are widely 

studied, to deal with starting up, speed control, and oscillations of the motors. In the study 

of dynamic characteristics of motors, there are many problems that remain to be further 

addressed, such as their low-speed feature, known as the low-frequency oscillations 

of speed-controlled motors. These problems are closely related to the studies of chaos in 

nonlinear systems. 

Bifurcation analysis and the study of chaos in nonlinear system is gradually 

increasing. However, its application in the field of electrical machine is till now very 

insignificant. Some of those works are reported in next section. 

1.2 Background and Review of the previous works: 

Most of the researchers have studied the nonlinear phenomenon for different 

electrical machines using their classical models. Some of them only identified the 
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phenomenon by simulation, very few of them were experimentally verified. In some 

works, route of chaos, characteristics, different bifurcations are reported. Therefore, 

previous works are categorized for different machines. 

1.2.1 Permanent Magnet Synchronous motor(PMSM): 

A detailed model of Permanent Magnet Synchronous Motor was first presented by 

Consoli et al. in [25]. They developed the model and equivalent circuit using d-q variables 

for steady state analysis and experimental verification of the proposed model was reported. 

The nonlinear dynamic characteristics of variable-speed permanent-magnet 

machines in the presence of reluctance variations was considered in [26]. A compact 

representation of the machines' dynamics was presented and in tum incorporated in 

investigating the steady-state characteristics of the machines, subject to constant input 

voltages and load torques. It was shown that the systems under investigation possess 

multiple equilibria which profoundly affect their global stability and dynamic 

characteristics. Furthermore, conditions leading to chaotic behavior and Hopf Bifurcation 

was pointed out for the first time and briefly discussed. Finally, numerical simulations 

were presented to help verify the results. However, the computed results were inadequate 

and no experimental result presented. Similar information was found in [28]. 

A brief design review of the Permanent Magnet Synchronous Motors was presented in 

[27]. A procedure was described to predict the steady state and dynamic performances of a 

brushless permanent magnet synchronous motor. The proposed techniques have been 

experimentally verified in a laboratory permanent magnet synchronous motor. 

In [28], a complete model was developed to examine the dynamic behaviors of a 

high performance vector controlled permanent magnet synchronous motor (PMSM) drive. 

The d,q axis model of the PMSM was used to simulate and analyze the complete drive 

system. Based on the vector control principle and current feedback control, the nonlinear 

dynamic model of the PMSM drive can be simplified and linearized. The resultant linear 

model was used for studying the dynamic behaviors of the drive system. Moreover, it is 
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used for the design of speed controller. The entire control scheme of the drive system was 

successfully implemented using a high speed DSP. The experimental results was validated 

the theoretical ones. 

G Chen et al. studied the nonlinear phenomenon in Permanent Magnet 

Synchronous Motor [29]. The mathematical model of the PMSM was derived, which was a 

three-dimensional autonomous equation with only two quadratic terms, and this model is 

fit for carrying on bifurcation and chaos analysis. Secondly, the steady state characteristics 

of the motor, when subject to constant input voltage and external torque, were formulated. 

A third-order polynomial equation is also derived whose solutions correspond to the 

steady-state values of the motor angular velocity. Furthermore, based on the Hopf 

bifurcation condition, the parameters· of the PMSM in three different cases, with which the 

system can exhibit such desired dynamic characteristics as limit cycles (LCs) and chaotic 

behaviors were determined. Finally, computer simulations were presented to verify the 

presence of strange attractors in the PMSM. Mathematical model of PMSM as adopted in 

[29] was: 

did . . 
dt = (ud- ~~d + mLq'q)l Ld 

di 
__!!__ = (u - R i - mLdid - m'l' )I Ld dt q -1 q r 

[1.1] 

dm=[n 'l'i +n (Ld-L )idi -TL-f3m]IJ 
dt P rq P q q 

where id, i9 and m are the state variables, which represent currents and motor angular 

frequency, respectively, ud and u9 the direct- and quadrature-axis stator voltage 

components, respectively, J, the polar moment of inertia, TL the external load torque, pthe 

viscous damping coefficient, R1 the stator winding resistance, Ld and L
9 

the direct and 

quadrature-axis stator inductors, respectively, If/ r the permanent magnet flux, and np the 

number ofpole-pairs.Eqn.l.l was normalized as follows: 
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Where b = __!!_ 

Ld 

-1{1 
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kL q 

i d = bk.~, iq = k~, OJ= CJ I z-, t = z-.t. It was also assumed that Ld=Lq=L 

Equilibrium ofthe system was calculated as follows: 

~ _2 TL __ 
z =m +-m+u 
d a d 

- TL i =aJ+­
q a 

_3 TL _2 (- 1)- TL - 0 m +-w + u -r+ m+--u = 
a d a q 

[1.2] 

[1.3] 

It may be noted here that the existence or creation or disappearance of the equilibrium 

point depends on the value of CJ .i.e., the roots of third equation of Eqn. 1.3. It may be 

further noted the equation was a cubic equation whose roots and their nature were not 

readily available. It was also reported that as parameter changes bifurcation occurs. Hopf 

bifurcation occurs when the corresponding Jacobian matrix has a pair of purely imaginary 

eigenvalues, with the remaining eigenvalues having nonzero real parts. For the PMSM 

system, its Hopf bifurcation and chaotic behavior are discussed under different sets of 

parameter values. 

When ud = uq = ~ = 0, the system was identical to the Lorenz equation. This 

case can be thought of as that, after an operating period of the system, the external inputs 

were set to zero. Applying the equilibrium conditions, it was determined that the origin 

was an equilibrium state and that other two nontrivial equilibria exist, if r -< 1, which are 

defined by 
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A little linear analysis shows that the origin is stable if 0 < y < 1 and loses stability 

in a pitchfork bifurcation at y = 1, creating the two nontrivial equilibria which are initially 

stable. when evaluated at the nontrivial equilibria. Note that since the two nontrivial 

equilibria are symmetric, their stability must be the same. For the bifurcation of the two 

nontrivial equilibrium, Hopfbifurcation point was determined explicitely. It was given by 

u(u + 4) 
rh = 2 

(J"-

Similarly, setting uq = ~ = 0, Hopfbifurcation point was determined as 

2 
u - yu + 4u + 2y 

u = 
dh 2- (J" 

Some significant simulation results were reported for the parameters: 

Ld=Lq=L=14.25mH, R1=0.9Q, lf/r = 0.031Nml A, np =1, J=4.7x10-5 Kgm2 

f3 = 0.0162N I rad Is. However no experimental result was presented in its support. 
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Fig.1.1: A limit cycle generated at y = 14.1 
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Fig.1.3: A limit cycle generated at fid = fidh + 2.3432675 
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Fig.l.4: Chaotic Attractor generated at ud = udh -3 

This paper [30] analyzed the effect of permanent magnets (PMs) on the occurrence 

of chaos in PM synchronous machines (PMSMs). Based on the derived nonlinear system 

equation, the bifurcation analysis revealed that the sizing of PMs significantly determines 

the stability of PMSMs. Hopf bifurcation and chaos may even occur in the PMSMs if the 

PMs are not properly sized. Experimental results of two practical PMSMs are provided to 

support the theoretical analysis. It may be noted here that for the first time, the 

experimental verification of occurrence of chaos was done in this paper. 

This paper [31] is basically based on control of chaos. The performance of 

Permanent Magnet Synchronous Motor (PMSM) degrades due to chaos when its 

parameters fall into a certain area. Therefore, chaos should be suppressed or eliminated. 

The drawbacks of the existing control methods was analyzed. The nonlinear feedback 

principle was developed by using the direct-axis and the quadrature-axis stator voltage as 

manipulated variables. The control target attained unique asymptotically stable equilibrium 

under the nonlinear feedback principle. In this manner the control objective 

was implemented. The method investigated in this paper can be physically realized. The 

control forces put into force at any time. The target of the method may be any point in the 

strange attractor. The influences of the model error and measurement noise upon the 
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control performance were studied by simulations. Simulation results established the 

effectiveness of the method in the presence of the model error and the measurement noise. 

A nonlinear chaos controller based on the adaptive back-stepping approach for a 

chaotic PMSM drive was proposed in [32]. The controller was designed to prevent the 

PMSM drive from chaos and make it track the desired speed command. With the proposed 

controller, the PMSM drive could recover from chaotic behavior quickly and possesses 

good transient performance and robustness to parameter uncertainties. Finally, numerical 

simulations was carried out to validate the effectiveness of the proposed approach. 

The drawbacks of existing chaos control methods Permanent magnet synchronous 

motor (PMSM) were analyzed, and a new nonlinear feedback control method was 

suggested to control the chaos in PMSM. The nonlinear feedback principle is developed 

using the direct axis and the quadrature axis stator voltage as manipulated variables. The 

control target will become a unique asymptotically stable equilibrium under the nonlinear 

feedback principle, by this way, the controlled states can reach the target and the control 

objective can be implemented. This method can be physically realized using nonlinear 

state feedback. The control forces can be put into effect at any time. The target of the 

method may be any point in the strange attractor. The influence of the model error and the 

measurement noise upon the control performance is studied via simulations. Simulation 

results show the effectiveness of this method under the presence of the model error and the 

measurement noise. 

1.2.2 Brush/ess DC Motor(BLDCM): 

Modeling of Brushless DC motor was reported in [ 1 OJ . This paper addressed the 

modeling problem associated with brushless de motors with non-uniform air gaps that 

operate in a range where magnetic saturation may exist. The mathematical model included 

the effects of reluctance variations as well as magnetic saturation to guarantee proper 

modeling of the system. An experimental procedure was also described and implemented 

in a laboratory environment to identify the electromagnetic characteristics of a BLDCM in 
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the presence of magnetic saturation. It is demonstrated that the modeling problem 

associated with this class of BLDCM can be formulated in terms of mathematically 

modeling a set of multidimensional surfaces corresponding to the electromagnetic torque 

function and the flux linkages associated with the motor phase windings. The accuracy of 

the mathematical model constructed by the developed method was checked against 

experimental measurements. 

[11] dealt with the open-loop dynamic characteristics of smooth-air-gap brushless 

de motors. The steady-state characteristics of these systems, subject to constant input 

voltages and constant external torques, are formulated, whereby it is shown that the 

presence of viscous damping friction can cause the system to possess multiple physical 

equilibria. Furthermore, using an affine transformation, it was shown that the open-loop 

dynamics of smooth-air-gap brushless de motors and the Lorem system, a system known to 

possess chaotic behavior, are equivalent. Finally, computer simulations were presented that 

verify the existence of strange attractors in the open-loop dynamics ofbrushless de motors. 

It may be noted here that no experimental results was reported to establish the existence of 

the strange attractors. 

1.2.3 Synchronous Reluctance Motor(SRM): 

Nonlinear Phenomenon in Synchronous Reluctance Motor was reported in 

[3 8]. This paper first presented the occurrence of Hopf bifurcation and chaos in a practical 

synchronous reluctance motor drive system. Based on the derived nonlinear system 

equation, the bifurcation analysis shows that the system loses stability via Hopf bifurcation · 

when the -axis component of its three-phase motor voltages loses its control. Moreover, the 

corresponding Lyapunov exponent calculation further proved the existence of chaos. 

Finally, computer simulations and experimental results were presented to support the 

theoretical analysis. 

1.2.4 Switched Reluctance Motor(SwRM): 

Nonlinear phenomenon in Switched Reluctance Motor was first studied in [36]. In 

this paper, the investigation of the nonlinear dynamics of an adjustable-speed switched 
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reluctance motor drive with voltage pulse width modulation (PWM) regulation was 

carried out. Nonlinear iterative mappings based on both nonlinear and approximately linear 

flux linkage models are derived, hence the corresponding sub-harmonic and chaotic 

behaviors are analyzed. Although both flux linkage models can produce similar results, the 

nonlinear one offers the merit of accuracy but with the sacrifice of computational time. 

Moreover, the bifurcation diagrams show that the system generally exhibits a period­

doubling route to chaos. 

In [17],[37], modeling, analysis, and experimentation of chaos in a switched 

reluctance drive system using voltage pulse width modulation were presented. Based on 

the proposed nonlinear flux linkage model of the SR drive system, the computation time to 

evaluate the Poincare map and its Jacobian matrix can be significantly shortened. 

·Moreover, the stability analysis of the fundamental operation was conducted, leading to 

determine the stable parameter ranges and hence to avoid the occurrence of chaos. Both 

computer simulation and experimental measurement were presented to verify the 

theoretical modeling and analysis. 

1.2.5 Induction Motor(IM): 

The reduced order modeling of Induction motor was described in [20].The 

generalized approach for simulation of the Induction Motor Model was presented in [21]. 

Variable frequency induction motor drives are known to become unstable at certain 

operating conditions, which causes unusual vibrations in the Systems. In the paper[22], the 

instability phenomena in power electronic induction motor drive systems were investigated 

from the point of view of bifurcation theory. A method to determine bifurcation values of 

system parameters is discussed. It was shown that some kinds of bifurcations were 

observed in power electronic induction motor drive systems. The proposed method made it 

possible not only determine instability regions of system parameters but also to investigate 

qualitative properties of the instability phenomena. 
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The nonlinear behaviour of Direct Torque Controlled (DTC) Induction Machine 

(IM) is studied in [23]. The nonlinearity was due to the dependence of the switching 

instants on the state variables. The aim of the paper was to derive analytical relations for 

the determination of the time evolution of state variables and on that basis to reveal the 

possible states of the system such as periodic, sub-harmonic and chaotic states. 

In the paper [24], we explore further the occurrence of bifurcations in the indirect 

field oriented control of induction motors. New results reveal the occurrence of 

codimension-two bifurcation phenomena, such as a Bogdanov- Takens bifurcation. 

1.3 Development in the field of theory of Bifurcation and Chaos: 

Electrical Machines are inherently Lorenz like system with higher dimension, in 

general. Dimensions may vary depending on the no. of windings. However, their basic 

nature of nonlinear phenomenon does not vary significantly. Some developments are found 

in the theory of nonlinear dynamics in the systems inherently nonlinear. These are 

summarized categorically in this section. 

In 1963, Lorenz[ 52] discovered chaos in a simple system of three autonomous 

ordinary differential equations that has only two quadratic nonlinearities, in order to 

describe the simplified Rayleigh-Benard problem. It is notable that the Lorenz system has 

seven terms on the right-hand side, two of which are nonlinear (xz and xy). In 1976, 

R"ossler. found a three-dimensional quadratic autonomous chaotic system , which also has 

seven terms on the right-hand side, but with only one quadratic nonlinearity (xz). 

Obviously, the R"ossler system has a simpler algebraic structure as compared to the Lorenz 
. . 

system. It was believed that the R"ossler system[62] might be the simplest possible chaotic 

flow, where the simplicity refers to the algebraic representation rather than the physical 

process described by the equations nor the topological structure of the strange attractor. It 

is therefore interesting to ask whether or not there are three-dimensional autonomous 

chaotic systems with fewer than seven terms including only one or two quadratic 

nonlinearities? The fact is that R"ossler actually had produced another even simpler chaotic 

system in 1979, which has only six terms with a single quadratic nonlinearity()?). Thus, 

the question becomes "How .complicated a three-dimensional autonomous system must be 
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in order to produce chaos?" The well-known Poincar'e-Bendixson theorem shows that 

chaos does not exist in a two-dimensional continuous-time autonomous system (or a 

second-order equation). Therefore, a necessary condition for a continuous-time 

autonomous system to be chaotic is to have three variables with at least one nonlinear 

term. As a side note, it is also known that there is a direct connection between three­

dimensional quadratic chaotic systems and Lagrangian mixing. Lagrangian mixing poses 

some interesting questions about dynamical systems; however, since realistic models are 

mainly experimental and numerical, this subject is still in its early involving phase of 

development. Three-dimensional quadratic autonomous systems are very important for 

studying bifurcations, limit cycles, and chaotic flows. Recently, it is proved that three­

dimensional dissipative quadratic systems of ordinary differential equations, with a total of 

four terms on the right-hand side, cannot exhibit chaos. Very recently, this result was 

extended to three-dimensional conservative quadratic systems. Later, it was known that 

autonomous chaotic flow could be produced by a three-dimensional quadratic autonomous 

system having five terms on the right-hand side, with at least one quadratic nonlinearity, or 

having six terms with a single quadratic nonlinearity. Lately, chaotic flow in an 

algebraically simplest three-dimensional quadratic au~onomous system was found by using 

jerky functions, which has only five terms with a single quadratic nonlinearity(/). In fact, 

this system is simpler than any others previously found, in the sense of both its jerky 

representation and its representation as a dynamical system. However, it is noticed that the 

simplicity of a system can be measured in various ways. Algebraic simplicity of system's 

structure is one way, and topological simplicity of chaotic attractor is another. R""ossler's 

attractor and most of Sprott's examples[65-67] are topologically simpler than the two­

scroll Lorenz attractor. In fact, R .. ossler attractor has a single folded band structure. 

Furthermore, its one-scroll structure is the simplest topological structure for a three 

dimensional quadratic autonomous chaotic system. Thus, it is interesting to ask whether or 

not there are three-dimensional quadratic autonomous chaotic systems that can display 

attractors with more complex topological structures than the two-scroll Lorenz attractor. 

That is, "Is the two-scroll Lorenz attractor the most complex topological structure of this 

class of chaotic systems?" The answer is no. In fact, the recently discovered Chen's 

attractor and its associate transition attractor have more complex topological structures 
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than the original Lorenz attractor. Nevertheless, these newly found attractors also have 

two-scrolls but not more than that. Therefore, in combining these two sides of the view on 

simplicity (or complexity) of a chaotic system, it would be truly interesting to seek for 

lower-dimensional chaotic systems that have a simple algebraic system structure but with 

a complex topological attractor structure. This is not just for theoretical interest; such 

chaotic systems would be useful in some engineering applications such as secure 

communications. In the endeavor of finding three-dimensional quadratic autonomous 

chaotic systems, other than luckily encountering chaos in unexpected simulations or 

experiments, there seems to be two sensible methods: one is Sprott's exhaustive searching 

via computer programming, and the other is Chen's theoretical approach via chaotification. 

For nearly 40 years, one of the classic icons of modem nonlinear dynamics has been the 

Lorenz attractor. In 2000, Smale described eighteen challenging mathematical problems 

for the twenty-first century, in which the fourteenth problem is about the Lorenz attractor. 

In this regard, one concerned problem has been: "Does it really exist?" Only very recently, 

the Lorenz attractor was mathematically confirmed to exist. Another interesting question 

regarding chaotic systems is: "How complex of the topological structure of the chaotic 

attractor, if it exists, of a three-dimensional quadratic autonomous system can be?" Here, it 

is noted that the complexity of the topological structure of a chaotic attractor may be 

measured in two aspects: the number of sub-attractors and the number of parts ("scrolls" or 

"wings") of the attractor. It has been well known that piecewise-linear function can 

generate n-scroll attractors in Chua's circuit, and in a circuit with the absolute value as the 

only nonlinearity, it can also create a complex n-scroll chaotic attractor. Recently, found a 

simple three-dimensional quadratic autonomous chaotic system, which can display a 2-

scroll and also (visually) a 4-scroll attractor. Motivated by these works, this article 

introduces one more simple three-dimensional quadratic autonomous system, which can 

generate two 1-scroll· chaotic attractors simultaneously, or two complex 2-scroll chaotic 

attractors simultaneously. It is believed that a three-dimensional quadratic autonomous 

chaotic system can have at most two chaotic attractors simultaneously, and the system to 

be discussed here is one such simple but interesting chaotic systems. 
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1.4 Motivation. of the present work: 

It has been noticed that nonlinear phenomenon in conventional electrical machines 

have been studied for each machines individually. No attempt so far have been made to 

study the same in generalized manner. On the other hand, the generalized approach of 

studying electrical machine is increasingly popular day by day as all conventional 

machines can be modeled using this approach. So instead, of studying the nonlinear 

phenomenon for each conventional machine as piece meal it can be studied for the 

generalized machine as a whole. Though many books and literature are available on 

Generalized theory of Electrical Machines no literature was found so far toward the study 

of nonlinear phenomenon in Generalized Electrical Machines related to Bifurcation and 

Chaos. 

Secondly, in most cases, it was noticed that the nonlinear phenomenon was 

investigated through numerical simulation. Very few cases were found where the 

numerical results were verified using experimental results. 

Therefore, keeping the above fact in the mind, following attempts can be made 

through some relevant works: 

• an attempt may be made to study the nonlinear phenomenon in Generalized 

Electrical Machines and that approach has to be applied to other machines as 

much as practicable to study the same for them. 

• The results obtained form numerical simulation may be verified usmg 

experimental results. 
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