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PAPER I

NON-LINEAR ANALYSIS OF HEATED RHOMBIC

PLATES *

ABSTRACT

This paper concerns a new approach to the investiga-
tion of non-linear behaviours of heated rhombic plates. A
set of differential equations in oblique co-ordinates have
been derived in this investigation., Numerical results sho-
wing central deflection parameters versus thermal load fun-
ctions have been computed for different skew angles 0 . For
0 = 0° the results obtained in the present study are in excel-
lent agreement with the known results. It is believed that
the results obtained for other different skew angles are

completely new.

ANALYSIS

Let us consider a rhombic plate of skew angle @ 'whose
uniform thickness is‘'h’'and edge-length'2a. The material of
the plate is considered isotropic having mass density'p’,
Young's Modulus ‘E’and Poissn's Ratio'qt. The origin of the

co-ordinates is located at the geometric centre of the plate

* Published in the Int. J. Solids and Structures, 1993.



56

(vide Fig.3 in Paper 1I, Chapter I). The deflections are
considered to be of the same order of magnitude of the plate
thickness, the edge-length being sufficientiy large compared
to the thickness.

Now the uncoupled set of differential equations in
rectangular Cartesian co-ordinates, governing the thermal

behaviours of elastic plates (vide Ref. 167 ) are given by
viw -3 (%‘I'*'V%W‘) S v w &)+ (85)°}
+2{ S () + T (e} +462) (89) )]

+1Z8 T /3 =07y VAW + Q) V2T = (1)
where

A= QP+ (B8 + 05

—(1+V)(xt’(o (2)

It is to be noted that in the derivation of the above
equations (1) and (2) in rectangular Cartesian co-ordinates,

the expression
(-85 +3 %)21“’(%% 5+ 8% %)° Pxer=ry

in the total P.E., of the elastic plate (Ref.167 ) has been

replaced by
A W \2 WA\2T2
21 (&5 +(89)" ]
As a consequence the partial differential equations gover-~

ning the deflection of the plate have become uncoupled and
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the two decoupled differential equations (1) and (2) have
been obtained.
In the present problem, the temperature is assumed

to vary linearly with respect to the thickness direction z.
We also note that (Ref.167)

T(x,y,2) = T{x,y) +z1( x,y)
in which

1= %'(Tl” T,) : 7=% (Ty= T,)
where

T1= T(x,y, +%) and T2= T(XIYI - %’)'

Clearly 7,18 the temperature in the middle plane and -7 varies
along the thickness of the plate and hence 7 # '-(o.

The plan of the skew co-ordinates (X,,y,., g ) is shown
in Fig.3 in the Paper I1I, Chapter 1I.

We now transform the egquation (2) in oblique co-ordi-

ntes., For Simply-Supported plates the boundary conditions are

W=0 at x,=ta and at y,;=ta

?
D2W 22W

= 0 at =x = =
%7 x;=%fa and £ 2 © at y;=ta .

Then let us choose the deflection function for the Simply-Supp-

orted plate as

W = W Cos ﬂgngs IL}Q
o Za 24

(3)
which clearly satisfies the above-mentioned boundary condi-

tions.
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Now putting (3) in the transformed form of egquation
(2) in oblique co-ordinates and then integrating it over the
entire surface of the plate, we obtain the value of A in the

following form

A= L (v 21an®6) — (1+19) %y 7,

(4)
(As normal displacement W is our primary interest, the in-
plane displacements u,v have been eliminated through inte-
gration by the choice of appropriate functions for such dis-
placements).Again transforming the equation (1) in oblique
co-ordinates, introducing (3) and (4) in the transformed
equation and then applying the Galerkin's error minimising
technique we get the following equation determining central
deflection parameter wo/h depending on thermal load func-
tion q'a‘/Eh4

[ @+23an6)5ec%8 — 7 555mz {1+ 1) (1+ v +21an’6)
+20/A Q- v7) - sece} |(B2) +5 [ @+ v+2tante)?

+4 8+ 49tan26+29%an4e)](%9)3—“— 7683(%21)2) qé/%:) ‘

(5)

where

s = 2(a/h)%(1 + )X,

and q‘=q4mél+0ﬂﬂ7
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The equation (S5) is applicable for the immovable edge
eonditions of the Simply-Supported skew plate. For the mova-

ble edge conditions we have A = 0, so that the equation (5)

takes the fomrm

L(1+2tan?e) sec”s — 25z v/ (1= 12 -Sec”6 | (L)

+ 32 (8 + 49Tan®e + 29tante)(e)3 = T6EU-02) qé%f) |

(6)
NUMERICAL RESULTS

Numerical results are presented here in tabular
forms (Tables 1 and 2) for s = 0, 0.1, g = 0°,15°,30°
and q'at/mm? = 2,4,8,10.



TABLE -1

S =20, 1., 7,=0
5
' W ‘s Met *
q. 4 %5 /h by Present Method o/P by Berger's hod
!
4 (Ref.134 )!
Eh" e = o° 6 = 15° 6 = 30° 6 = QO 1e=150 e = 30°
!
| Movable Immovable | Movable Immovable [Movable Immovable| Immovable { Immovable | Immovable
: Edge Edge Edge Edge Edge Edge Edge Edge Edge
2 1.30156 0.%1435 1.08167 0.82069 0.6269 0.£3604 0.S013 0.79972 0.53671
4 2.1809 1.3131 1.85443 1,20857 1,14734 0.,84631 1,29017 1.16888 0.548
8 3.23354 1,78866 2.8581 1.67119 1.,89675 1.22355 1.75406 1.60902 1,2266
10 3.732498 1.5613 3.2243 1,83866 217977 1.3597 1,52254 1.76847 1.56324

* Berger's method has been applied to the present problem by neglecting ez’the second strain
invariant,in the expression for total P.E. of the plate,
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TABLE - 2
S = 0014 i.e. z# 0

W¥,/h by Present Method W_/h by Berger's Method *
q——T'a4 ( ) ! !

- o o (o] ' (Ref.]l34 q = 1e© o
p~ 0 e = 15 e = 30 oL M e=15° { e=30

Movable Immovable Movable Immovable [MOovable Immovable Immovable{ Immovablei Immovable

Edge Edge Edge Edge Edge Edge Edge Edge ‘[ Edge
2 1.32786 0.54985 1.10168 0.83899 0.63597 0.55925 0.954058 0.83518 0.56109
4 2,22082 1.,34324 1.87831 1,20992 1.1604 0.86901 1.32336 1,1995%4 0.87185%
8 3.35106 1.81316 2,88067 1.65221 1.9111 1.24302 1,781 1.,63412 1.24706
10 3.76118 1.98415% 3.24585 1.81269 2.19385 1.37799 1.,54764 1.72188 1.38247

* e, = 0 according to Berger's method.

19
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OBSERVATIONS

From the numerical analysis of the undertaken problem
the following observations are made :

(i) The nature of the central deflection of a skew plate
under thermal loading 1s the same as that of the plate under
mechanical loading, i.e. the central deflection increases con-
tinuously with the increase of loading for any edge condi-
tions of the skew plate, whether movable or immovable.

(ii) Central deflection for movable edge conditions of
the skew plate is always greater than that for immovable edge
conditions of the plate, for the same loading in the two cases.

(i11) Irrespective of the edge conditions, the central
deflection decreases with the increase of the skew angle.

(iv) The results for immovable edge conditions of the
skew plate obtained by the present method, agree well with
the results obtained by Berger's method. It is to be noted
that Berger's method is a purely approximate method based
on the neglect of e,. But present study is based on Baner-
jee's hypothesis which suggests a modified strain-energy
expression, and thus this model embraces less approximation
(Ref,162 ) than that of Berger. Again Berger's method is
meaningful only or immovable edge conditions of the plates.,

and

(v) The deflections increase with Toe




