
CHAPTER II 

LARGE DEFLECTION ANALYSES OP SKEW PLATES OF VERIABLE 

THICKNESS 



PAPER I 

NON-LINEAR ANALYSIS OF RHOMBIC PLATES OF VARIABLE 

THICKNESS 

ABSTRACT 

This paper deals with the non- l inear s t a t i c and 

dynamic behaviours of a simply-supported rhombic p l a t e (skew 

p la te of aspect ra t io 1) of l inear ly varying t h i c k n e s s . Baner-

Jee ' s hypothesis has been followed to form a s e t of decoupled 

d i f f e r e n t i a l equations and then the Galerkin's procedure has 

been u t i l i s e d to s o l v e the equat ions . Various numerical re su l t s 

for a rhombic p la te of i s o t r o p i c m a t e r i a l , under both s t a t i c 

and dynamic loadings have been computed and compared with the 

other r e s u l t s known from l i t e r a t u r e . I t i s seen that the pre­

sent approach offers suff ic ient ly accurate results for both 

movable and immovable edge conditions. 

GOVERNING EQUATIONS 

Let us consider a rhombic plate of e la s t i c isotropic 

material having thickness varying l inear ly , the central thick­

ness being'h' and thickness-variation parameter being'pi Let 

the s ize of each side of the plate be'2a'which i s suff ic ient ly 

large compared to'h' . The plate i s considered to be simply-
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supported along I t s edges and I t s faces respond to the bending 

and membrane a c t i o n s . 

We now p o s i t a rectangular car te s ian co-ordinate s y s ­

tem (x«y ,Z/ ) a t the centre of the p l a t e , (x ,y} being In the 

middle plane and z the thickness d i r e c t i o n p o s i t i v e downwards. 

Also l e t us s e t an obl ique co-ordinate system ( x . , y , , Q ) a t 

the same o r i g i n , ( x . , y - ) being p a r a l l e l to the s i d e s of the 

p l a t e , and 6 the skew angle of the p l a t e (Vide F ig .3 i n paperII 

Chapter I ) . Obviously 

X »= X. cos 0 and y = y, + ^i s i n ^ 

are the co-ordinate transfozmation equat ions . 

NOW following Banerjee's hypothes i s , the d i f f e r e n t i a l 

equations in rectangular cartes ian co-ordinate system govern­

ing the de f l ec t ions and vibrat ions of p l a t e s of l i n e a r l y vary­

ing thickness w i l l be 

(1) 

for non- l inear s t a t i c de f l ec t ions under uniform loading,where 

A. i s a constant given by 

( 2 ) 
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and 

^kmm)]+2{m(m -^w^mr 
for non-linear free e l a s t i c vibrations, where A. i s a time -

dependent constant given by 

i2K 2 ^=MC#7+<^7}+l^+^^ 
( 4 ) 

In bo th the equa t ions (1) and (3) 

^ Eh-̂  
L = ± , D = y -

The t h i c k n e s s v a r i a t i o n i s ejcpressed by 

h = h^Cl + p x / a ) ^ 

where p ^ l . 

ANALYSIS 

(A) Non- l inear s t a t i c behaviours of skew p l a t e s of 

v a r i a b l e t h i c k n e s s -

We c o n s i d e r , h e r e , the bending of s imply-suppor ted 
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rhombic p l a t e of var iab le thickness with constrained in-plane 

displacements a t the boundaries. We now transform equation (1) 

and (2) in oblique co-ordinates by the transformation opera t ­

ors as given in Paper I , Chapter I . 

We choose , as usual^the def lec t ion function W in the 

following form for simply-supported edge conditions 

W = w Cos 20LL Cos 2L22 
° ^a ^a (5) 

Now integrating the transformed equation (2) over the entire 

area of the plate we get 

Ai 

^^^ W « « ^ > ^ a . V 4 W ^ W»%^ 7 ^ ^ 

(6) 

Again introducing (5) and (6) in the transformed form of equa­

t ion (1) and then applying the Galerkin ' s procedure, we arr ive 

a t the following cubic equation determining the non-dimen­

sional cen t r a l def lec t ion jS >= *'o'^o °^ ^̂ ® simply-supported 

rhombic p l a t e of var iable thickness 

V / / ^ ^ y e U - Pcose) "̂  JT̂ 'oc . (7) 
4 

where Q = qa /Dh is the load function parameter, q being the 

load per unit area of the plate . 
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NUMERICAL RESULTS 

Table 1 shows different numerical results of the cen­

tral deflections of a rhombic plate of variable thickness hav­

ing i^ = 0.3, load parameters are taken the same as in Paper I, 

Chapter I. It is to be noted that the results for thickness 

variation parameter p = 0 (i«e. for a plate of constant thick­

ness J, agree exactly with those in Paper I, Chapter I, both for 

movable and icnnovable edge conditions^ which have been experi­

mentally verified by the author. The results for other values 

of p are new. (Note - For movable edge conditions A^ =0), 



TABLE 1 

S t a t i c D e f l e c t i o n s 

of Rhombic P l a t e s . 
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w A 
o o 

Skew ;Load 
Angle ; p a r a -

© Imeter 

Iqa/Dh 

Immovable Edge 

p = 0 . 1 : p C.2 p = 0 . 3 

Movable Edge 

0 .1 p = 0 . 2 / ^ p = 0 . 3 

15^ 

3 0 ° 

111 .72 
335.16 

5 5 8 . 6 0 

111 .72 

335.16 

5 5 8 . 6 0 

0 .34 34 

0.7682 

1.0255 

0 .2009 

0.5094 

0 .7301 

0 .3374 

0 .7618 

1.0204 

0 .1974 

0 . 5 0 8 3 

0 . 7 2 3 9 

0 .3277 

0 .7513 

1.0121 

0.1916 

0 .4991 

0 .7153 

0 .3675 

0 ,9775 

1.4210 

0 .2061 

0 .5840 

0 .92 50 

0 . 3 5 9 5 

0 . 8 9 3 5 

1.4040 

0 .2022 

0 .5824 

0 . 9 1 2 0 

0 .3472 

0 .9370 

1.376 5 

0 ,1958 

0 .5663 

0 .8900 
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(B) Non»linear dynamic behaviours of skew p l a t e s 

of var iab le thickness -

Let us now consider free v ibrat ions of var iab le th i ck ­

ness rhombic p l a t e s . Neglecting in-plane i n e r t i a , transforming 

equation (4) in obl ique co -ord inates , choosing 

W = W P(t)Oos § ^ cos ^^ 
o za 2a (8) 

for fundamental mode of vibration and then integrating the tra­

nsformed equation over the whole domain of the plate we get 

A2- 6hoPcose^I|pE^(i+'P+-ztanWlog,^ +pcose 
•VCOBQ) 

(9) 

Here W is the initial amplitude of vibration and F(t) is some 

unspecified function of time. It is to be noted that,we are 

interested In the normal displacement w only and so the In-

plane displacements u and v are eliminated here also by consi­

dering suitable expressions for them compatible with the boun­

dary conditions of the plate. 

NOW transforming equation (3) in oblique co-ordinates, 

inserting (8) and (9) in the transformed equation and then 

applying the Galerkin's procedure we get the following diffe­

rential equation for time function 

UO) 
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where ^ = *'o'^^o' ^^* non-diraensional amplitude and 

a = (U i^ / f a^ )^ t 

some t ime func t ion . 
3 The equation (10) i s in the form F + AP + BP = O, the 

f a m i l i a r Buffing's Equation. With the i n i t i a l condi t ions 

P(0) = 1 and F(0) = 0 , the s o l u t i o n of equation (10) I s the 

well-known e l l i p t i c Integral F( t ) = ^i^^^** t , k ) . Then the 

r a t i o of the non- l inear frequency oo* to the l i n e a r frequency co 

i s g iven by 

CO 

where 

and 

-^2Ci+^i-ztd-n^e)^.pcose/io^^%±|^ 

NUMERICAL RESULTS 

Numerical results of the ratio 6o* /o) are shown in 

Tables 2 and 3. Table 2 shows the results for a square plate 

( 0 = 0 ) compared with those obtainable from ref .174 / after 

converting the shell equations into plate equations. It is seen 

that the results agree perfectly. Table 3 shows the results for 

rhombic plates with skew angles ̂  = 15*̂ , 22.5° and 30° and thick-

ness variation parameters p » 0,0,1, 0.2 and 0,3, These results 
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are new to the author's sincere be l i e f . Here the results for 

skew angles higher than 30 are not considered^ because for 

greater values of Q , the effect of non-liearity does not play 

important role in design. (Note > For novable edge conditions 

A2 = o ) . 



TABLE 2 

Showing E)ynamic C h a r a c t e r i s t i c s of Squa re 

P l a t e s e = 0° 

C0*/60 

Edge 
c o n d i ­
t i o n \ ^ o 

0 

P r e s e n t 
Method 

S i n h a -
B a n e r j e e 
Method 

p = 0 . 1 

P r e s e n t 
Method 

S i n h a -
Bane r j ee 
Method 

p = 0 . 2 

P r e s e n t 
Method 

S i n h a -
B a n e r j e e 
Method 

p = 0 . 3 

P r e s e n t 
Method 

S i n h a -
B a n e r j e e 
Method 

<D 

> -D 
O W 

e 

C.25 

0 . 5 0 

0 . 7 5 

1 .00 

1.02477 

1.09573 

1.20474 

1.34257 

1 .02477 

1 . 0 9 5 7 3 

1 .20474 

1 .34257 

1 .02450 

1 .09473 

1 .20270 

1 .33932 

1.02447 

1.09520 

1.2025 

1.33890 

1.02 374 

1 .09187 

1 .19683 

1 .32992 

1 .02350 

1 . 0 9 0 9 9 

1 .19600 

1 .32700 

1 .02253 

1.08734 

1.18451 

1 .31500 

1 .0220 

1 .0853 

1 .18330 

1.3082 

X) (-n 
(X) 'C 
> W 

i 

0 . 2 5 

0 . 5 0 

0 . 7 5 

1 .00 

1.00526 

1.02088 

1.04640 

1.08110 

1 .00526 

1 .02088 

1 .04640 

1 .08110 

1 .00522 

1.02C71 

1 .04600 

1 .08040 

1.00526 

1.02088 

1.04640 

1.08110 

1 .00509 

1 .02022 

1 .04495 

1 .07860 

1 .00514 

1 .02040 

1 .04530 

1 .07930 

1 .00490 

1.01946 

1.04327 

1.07572 

1 .00493 

1.C1950 

1 .04340 

1 .07600 

O 
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Showing Dynamic C h a r a c t e r i s t i c s of Rhombic P l a t e s ^ G = 1' 
e = 22 .5 ' and e = 30 

Skew 
A n g l e 

e 

t r-O 
15 

o-> r-O 
2 2 . 5 

-v^O 
30 

w / h -
o o 

1 

0 . 2 5 

0 . 5 0 

0 . 7 5 

1 . 0 0 

0 . 2 5 

0 . 5 0 

0 . 7 5 

1 . 0 0 

0 . 2 5 

0 . 5 0 

0 . 7 5 

1 . 0 0 

p = 0 

1 . 0 2 4 6 3 

1 . 0 9 5 2 0 

1 . 2 0 3 6 6 

1 . 3 4 0 8 4 

1 . 0 2 4 5 4 

1 . 0 9 4 8 6 

1 . 2 0 2 9 7 

1 . 3 3 9 7 4 

1 . 0 2 4 5 2 

1 . 0 9 4 8 1 

1 . 2 0 2 8 6 

1 . 3 3 9 5 7 

Inmiovable 

; p = Ool 

1 . 0 2 4 3 8 

1 . 0 9 4 2 5 

1 . 2 0 1 7 2 

1 . 3 3 7 7 4 

1 . 0 2 4 3 0 

1 . 0 9 3 8 8 

1 . 2 0 1 1 5 

1 . 3 3 6 8 4 

1 . 0 2 4 3 1 

1 . 0 9 4 0 1 

1 . 2 0 1 2 0 

1 . 3 3 6 9 5 

E d g e 

' 

; p = 0 . 2 

1 . 0 2 365 

1 . 0 9 1 5 2 

1 . 1 9 6 1 2 

1 . 3 2 8 8 0 

1 .02 362 

1 . 0 9 1 4 2 

1 . 1 9 5 9 1 

1 . 3 2 8 4 7 

1 . 0 2 3 7 0 

1 . 0 9 7 0 0 

1 . 1 9 6 5 0 

1 . 3 2 9 4 0 

G)*/<a 

p = 0 . 3 

1 . 0 2 2 5 0 

1 . 0 8 7 2 1 

1 . 1 8 7 2 4 

1 . 3 1 4 6 2 

1 . 0 2 2 5 4 

1 . 0 8 7 3 7 

1 . 1 8 7 5 8 

1 . 3 1 5 1 1 

1 . 0 2 2 7 2 

1 . 0 8 8 0 2 

1 . 1 9 1 8 9 

1 . 3 1 7 2 6 

t 

p = 0 

1 . 0 0 5 0 0 

1 . 0 1 9 8 4 

1 . 0 4 4 1 0 

1 . 0 7 7 1 6 

1 . 0 0 4 7 2 

1 . 0 1 8 7 6 

1 . 0 4 1 7 4 

1 . 0 7 3 0 8 

1 . 0 0 4 4 2 

1 . 0 1 7 5 6 

1 . 0 3 9 1 0 

1 . 0 6 8 5 3 

N_.. ,, 

1 

MDvable 

; p = 0 . 1 ; 

1 . 0 0 4 9 6 

1 . 0 1 9 6 8 

1 . 0 4 377 

1 . 0 7 6 58 

1 . 0 0 4 6 

1 . 0 1 8 6 3 

1 . 0 4 1 4 4 

1 . 0 7 2 5 6 

1 . 0 0 4 39 

1 . 0 1 7 4 5 

1 . 0 3 8 8 5 

1 . 0 6 8 1 0 

Edge 

p = 0 . 2 

1 . 0 0 4 8 4 

1 . 0 1 9 2 4 

1 . 0 4 2 7 9 

1 . 0 7 4 8 9 

1 . 0 0 4 3 9 

1 . 0 1 8 2 3 

1 . 0 4 0 5 7 

1 . 0 7 1 0 6 

1 . 0 0 4 3 0 

1 . 0 1 7 1 1 

1 . 0 3 8 1 0 

1 . 0 6 6 8 0 

; p = 0 . 3 

1 . 0 0 4 6 7 

1 . 0 1 8 5 4 

1 . 0 4 1 2 5 

1 .07224 

1 . 0 0 4 3 3 

1 . 0 1 7 6 0 

1 . 0 3 9 2 0 

1 . 0 6 8 6 8 

1 . 0 0 4 1 7 

1 . 0 1 6 5 8 

1 .03692 

1 . 0 6 4 7 6 

U1 
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OBSERVATIONS 

For static behaviour of a rhombic plate of varying 

thickness, it Is observed that 

(1) with the increase of skew angle,central deflection 

decredases for the same loading whether the edge conditions 

of the plate are movable or Inmovable, 

(11) for any assumed skew angle,the central deflection 

is greater for movable edge conditions than that for immo­

vable edge conditions, the load reamlning same in both the 

cases« 

(ill) increasing thickness parameter decreases the cen­

tral delfection. 

All the above observations are quite expected from 

practical point of view. 

As regards dynamic behaviour of a variable thickness 

rhombic plate, the following observations are made: 

(I) The frequency ratio decreases with Increasing thick­

ness variation parameter irrespective of the edge conditions. 

(II) The frequency ratio Increases with the non-dimen­

sional amplitude. 

(Ill) The frequency ratio gradually decreases with the 

Increase of p, the edge conditions being movable or Immovable. 

This is an expected result, because the thickness is minimum 
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at the centre and maximum at the edge of the tapered plate, 

(iv) The frequency ratio decreases with the increase 

of skew angle for lower values of p. For comparatively higher 

values of p, the vibration character tends to change in the 

case of immovable edge conditions. But for movable edge con­

ditions the vibration character does not show such irregula­

rity. This situation demands further investigation. 


