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~: PREFACE :-

Structural members {(commonly known as thin plates}),
whose one dimension is small in comparison with the other two
dimensions, are frequently used in various machine parts and
hence the scope of study of bending properties of such members
is sufficiently broad., Within elastic limit, various plate pro-
blems have been dealt with by numerous eminent scientists and

research workers. All these problems may be classified as

(i) static Problems,

(ii) pynamic Problems, and

(iii) Thermal Problems.,

Any elastic behaviour (whether ‘Static' or ‘Dynamic' or ‘Ther-
mal') of plates is influenced by the following factors -

(1) Material properties defined by Young's Modulus ‘E°*
and poisson's Ratic 'v'. Both of ‘E‘and ‘9’ may be constant or
variable,

(ii) Geometry of the plate, Geometry of the plate may
be simple such &s Triangular, Rectangular, Circular, Elliptic
etc. or may be complicated like cylindrical, Parabolic ,Poly-

gonal or Skewed one,

(1ii) Thickness of the plate 'h' which may be constant

or varying as well,

(iv) Types of loading such as Transverse (or lateral)

loading, In-plane loading, Concentrated Loading, Edge loading
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Combined loading etc.
and
(v) Nature of support i.e. edge conditions of the plate
such, as‘'Simply-Supported' or'Clamped' having 'Movable' or 'Immo-

vable! states.

whenever the deflections 'W' of 3 thin plate are small
in comparison with its thickness ‘'h', a very approximate but satis-
factory theory of bending of the plate by lateral loads can be
developed by making the following assumptions-

(i) there is no deformation in the middle plane of the
plate and hence this plane remains °'Neutral' during bending,

(11) points of the plate lying initially on a normal-to-
the-middle plane of the plate remain on the normal-to-the-middle
surface of the plate after bending,

(iii) the stresses normal-to-the-middle plane of the
plate, arising from the applied loading,can be disregarded.

These assumptions constitute the simplest and widely used
“Classical Small Deflection Theory" or "Linear Theory", developed
by Joseph Louis Lagrange in 1811. According to this theory all the
stress components can be expressed by the deflection 'W' of tne
plate, which is & function of the two co-ordinates in the plane
of the plate. This function has to satisfy & linear partial diffe~
rential equation which together with the boundary conditions, com-
pletely defines °'W'. Thus the solution of this equation gives all
the necessary information for calculating stresses at any point

of the plate.
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Following the above-mentioned linear theory,different
works on the bending of thin plates have been carried out by
numerous research workers and the Bibliography of these works
has been nicely incorporated in the book, "Theory of Plates and

Shells" by S. Timoshenko and S. Woinowski-Krieger (1962).

In most of the cases, bending of a plate is accompa-
nied by strain in the middle plane, but, céreful calculations
show that the corresponding stresses in the middle plane are
negligible if the deflections of the plate are small in compa-
rison with its thickness. If the deflections are not small in
comparison with the plate-thickness, these supplementary stresses
in the middle plane of the plate must be taken into account in
deriving the governing differential equations of the plate, The
differential equations so obtained become non-linear in charac-

ter and their solutions are much more complicated.

With the advent of modern technology and systems exposed
to oppressive operation conditions, the linear hypothesis could
no longer be retained. Whenever Forces, Deformations, Velocities,
Temperatures and other factors become excessive, non-linear effe-
cts come into play and their influences can no longer be ignored.
This situation occurs also in the particular field of applied
mechanics involving plates and shallow shells. These elements,
when used in modern structures, such as ‘High-Speed Aeroplanes’',
'Missiles' and 'Space-Vehicles' are often subject to large trans-

verse deflections and reveal a clearly non-linear response.
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Whenever the plate-thickness is consicerably high, the
prevalent theories for thin plates fail to explain the bending
and vibration characteristics of plates., In actual technological
and engineering design,plate - components become moderately
thick,and consicderable plate~— thickness invites the study of
complicated effects like'Transverse Shear Deformaticn’and ‘Rota-
tory Inertia‘’on large amplitude vibration. Naturally some "Thick-
plaﬁe Theories" have been developed. These theories consider the
problem of plates as a three-dimensional problem of elasticity.
Increase in dimension of plates greatly complicates their elas-
tic behaviours. The stress analysis becomes more involved in
such problems, and till now,very few particuler cases are com-

pletely solved.
METHODS OF ATTACK OF THE NON-LINEAR PROBLEMS OF THIN PLATES:

So far there has been a wide application of the three
types of differential equations for the non-linear analyses of
thin plates &s well as thick plates. They are =~

(i) von-Kaman's Equations,

(ii) Berger's Equations, and

(iii) Banerjee's Equations.

(i) The first formulation of the theory of plates with
a stretching of the middle plane and moderately large deflections
was developed by Gehring (186C) and was improved upon by G. Kirch-

hoff (1883). The potential energy per unit crea of the plates
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was written as a sum of & quadratic function of the quantities
defining the Extension of the middle plane and a quadratic func-
tion of the quantities defining Bending. The equations of motion
with finite displacements were deduced by the Principle of Vir-
tual wWork. The stress function satisfying the in-pléne force
equilibrium equations was introduced by A. FSppl (1907). The
cu;rently popular form of the two governing equations, in the
rectangular cartesian co-ordinates, was given by T. von-Ka'rman
(1910). The equations of Von-Ka‘man are in the coupled form

and involve Transverse Deflection and the Membrane Stress Func-
tion as unknown functions. These are difficult to solve, Several
numerical methods have been employed by different investigators

for solutions of Von-Karmah's equations.

Interesting works on Von-Karman's Egquations

Among the authors who initially treated the non-linear
analysis of plates,the works of S. Timoshenko (1937) and S. Way
(1934, 1938) need special mention. Since then many authors in-
vestigated the different plate problems using Von-Karmah's Equa-
tions. Useful works in this field are due to S. levy (1942),

S. levy and S. Greenman (1942), W.Z. Chien (1947), Chi-Teh Wang
(1948), H.N. Chu and G. Herrmann (1955,19% ), N.A. Weil and

N.M. Newmark (19%6), S.J. Medwadowski (1$58), W.A. Nash (1959),
W.A. Nash and I.D. Cooley (1959), N. Yamaki (1964), J.L. Nowinski
(1962,1963,1964), A.M. Alwan (1964), J.L. Nowinski and I.A. Ismail
(1965), G.2. Harris and E.H. Mansfield (1967), J.B. Kennedy and

Simon Ng. (1967), Robert Schmidt (1968), H.F. Bauer (1968),
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J.M. Whitney and A.W. Leissa(1969), M. Sathyamoorthy and K.A.V.
Pandalai (1972) Richard Bolton (1972), J.L. Nowinski and
H. Ohnabe (1973), K. Kanakaraju and C.R.V.Raoc (1976), M.A.
Sayed and R, Schmidt (1977), B.M. Karmakar (1978,1979),
M. sathyamoorthy (1978,1979), M. Sathyamoorthy and C.Y. Chia
(1979, 1980), B. Banerjee and S. Dutta (1980), J.N. Reddy and
W.C. Chao (1981), J.N. Reddy and C.L. Huang (1581), B. Banerjee
(1982,1983,1984), S.K. Chaudhuri (1982, 1984), S. Das (1984),
K. Kanakaraju and C.R.V. Rao (1986), P.C. Dumir(1988),G.L.
Ostiguy and H. Nguyen (1988), Yeh Kai~-Yuan, Zheng Xiao-Jing
and Zhou You-he (1989), M. Gorji (1989), H. Kobayashi and
K. Sonoda,(1989), K.M. Liew and K.Y. Lam (1590), J.W. Zhang
(1991), B. Singh and S. Chakravorty (1991), H. Kobayashi and
K. Sonoda (1991), U.S. Gupta, R. lLal and S.K. Jain (1991),
M. Ganapathi, T.K. varadan and B.S. Sarma (1991), G.B. Chai
(1991), and D.J. Gorman (1991),

All these workers solved the coupled form of Von-Karmah's
equations by different numerical methods which are elegant but

laborious.,.

(ii) H.M. Berger (1955) offered an approximate method
for non-linear analyses of thin elastic plates by neglecting
the second strain invariant in the expression for the total
potential energy of the system, He investigated the large deflec-
tions of circular and rectangular plates both for clamped immo-

vable and simply-supported immovable edges, Although no physical
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justification of his assumption was given in the paper, the
results obtained in both the cases are in very good agreement
with other known results. The speciality of Berger's equations
is that the equations have been decoupled so that the solutions
of the differential equations have been simplified and obtained
in the closed form. Actually Berger's equations are linear in
character. The essential non-linearity derends on the coupling
parameter ' o', These specialities have made Berger's equations
very popular and many useful works on plates of immovable edges

have been done following Berger's equations.

Useful works on Berger's Equations

The comprehensive works on Berger's equations which
need special mention are due to T. Iwinski and J; L. Nowinski
(1957), M.L.Williams (1958), W.A. Nash and J.R..Modeer (1959,
1960), S. Basuli (1961), J.E. Hassert and J.L. Nowinski (1962),
T. Wah (1963), S.N. Sinha (1963), J.L. Nowinski and I.A. Ismail
(1965), M.C. Pal (1967), B. Banerjee (1967,1968-1969), Cheng-Ih
Wu and J.R. Vinson (1968,1969), M.C. Pal (1969-197C,1973),

M. Sathyamocrthy and K.A.V. Pandalai (1970,1973, 1974),

J. Mazumdar and R. Jones (1974), P. Biswas (197%5), S. Dutta
(1975,1976 ), M.M. Banerjee (1976), N. Kamiya (1976), B.M. Kar-
makar (1577), J. Mazumdar and R. Jones (1977), M. Sathyamoorthy
(1977, 1978), N. Kamiya (1978), B. Banerjee and S. Dutta (1979),
B. Banerjee (1982), S. Das (1984) and T. Das (1986).

It is to be noted that Berger's equations are meaningful
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only for immovable edge conditions of the plate structure. It
leads to meaningless results for movable edge conditions. This
has been pointed out by J.L. Nowinski and H. Ohnabe (1972), in

an exellent research work.

(iii) In 1981, B. Banerjee ana S. Dutta offered a modified
strain energy expression to investigate non-linear problems on
thin elastic plates. A set of decoupled differential equations
are obtained under this modified strain energy expression. The
authors have tested the accuracy of their equations by solving
different non-linear plate problems. They have obtained sufficie
ently accurate results both for movable and immovable edge condi-~
tions. The equivalent hypothesis of Banerjee's equation is that
the radial stretching of the plate is proportional to(dw/dr)z.
This' is reasonable because under any type of loading and under
any boundary condition the extra strain imposed by bending is
represented by the temm (dw/dr)z. It is believed that Banerjee's
equations are more welcome from the practical point ¢of view be-
cause unlike Von-Karmah's equations, they are uncoupled and un-
like Berger's egquations they give reasonable results both for mo-

vable and immovable edge conditions of the plates.

Important works on Banerjee's Equations

So far, many important works have been carried out on
Banerjee's equations. B. Banerjee and S. Dutta (1981), B. Banerjee

{1924), G. Sinharay and B. Banerjee (1985,1986), R. Bhattacharjee
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and B. Banerjee (1988), S.K. Ghosh (1991), and,S. Dutta and
B. Banerjee (1991), have utilised Banerjee's equations in diffe~
rent non-linear plate problems and have achieved satisfactory

results in thelr respective cases.

From the survey of literature on non-linear elastic
plate problems it is observed that most of the investigations,
except a few, are confined to plates of simple geometry. In
contrast to non-linear analyses of elastic plates of other geo-
metries like triangular, rectangular, circular and elliptic,
skew plates have not received as much attention. This may be

due to their relatively difficult mathematical models.

For the rapid advancement of Science and technology
today, elastic plates of different shapes and sizes are required
to use in various instruments and appliances. Particularly
skew plates (or oblique panels) find wide application in the
Adlrcraft Industry and Spaceship Technology. Hence the study of
the non-linear behaviours of skew plates is of paramount impor-
tance now-a-days. The most attractive work in this field is due
to J.L. Nowinski (1964), who gquite elegantly analysed the large
amplitude oscillations of oblique panels with an initial curva-
ture utlising Von-Kaman's field equaticns. The following par-
ticular cases are discussed in detail in this paper:

(i) Buckling of an oblique plate under uniaxial compre-
ssive load,

(11) Free linear vibrations of a square plate,
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(iii) Large deflections of a uniformly loaded square
rlate,

(iv) Snap~through phenomena of a curved oblique plate
under uniform transverse load

and

(v) Free non-linear vibrations.,

Also a numerical example concerning a rhombic plate is discussed
in more detail. The author's observations are very important from
the practical point of view.

Other interesting works on non-linear vibration pro-
blems of skew plates are due to M. Sathyamoorthy and K.A.v.
Pandalai (1972,1973,1974). The authors have worked out nicely
the investigations on non-linear flexural vibrations of simply-
supported and clamped skew plates of isotropic, orthotropic as
well as anisotropic materials. They have used Berger's uncoupled
defferential equations in some cases and Von-Karmah's coupled
differential equations in other cases. In each case they have
got satisfactory results.

In analysing the large amplitude vibrations of clamped
isotropic skew plates including Shear and Rotatory Inertia
Effects M. Sathyamoorthy (1977,1978) has employed Berger's appro=-
ximation as well as Von-Karman-type equations to obtain satis-
factory results for thick plate problems.

In 1980, using Von-Katmah's equations along with the
aid of Hamilton's Principle, M. Sathyamoorthy and C.Y. Chia

studied the laryge amplitude vibrations of anisotropic thick
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skew plates. They found excellent agreement between their results
and those available from open literature.

In contrast to works on non-linear vibration problems
of skew plates, the literature on non-linear deflection problems
of skew plates is scanty. J.B. Kennedy and Simon Ng. (1965,1967)
have analysed small and large deflection problems of clamped
skewed plates under uniform pressure by the method based on
the small parameter perturbation technique. The results are im-
proved by successive approximations to the three displacement
components of a point on the middle plane of the plate. Both
numerical and graphical results are presented. Comparisons are
made with existing results for skewed plates with small deflec-
tions as well as with results for rectangular plates with small
and large deflection behaviours. Good agreement has been shown
in these cases. The authors have also obtained some experimental
results for clamped skewed plates governed by the small deflec-
tion theory. But they could not compare their large deflection
results for clamped skew plates (immovable edges only) directly
neither with any existing theoretical results nor with any expe-~
rimental results. However their observations are noteworthy from
practical point of view.

Re S. Srinivasan and S.V. Ramachandran (1975) have
analysed quite elegantly the large deflections of skew plates
of variable thickness by using the Newton-Raphson Procedure.

This is probably the first attempt of its kind.
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It is interesting to note that most of the above inves-
tigations are carried out on skew plates of clamped edges only
and the cases of simply-supported edge conditions have not recei-
ved proper attention. It is noteworthy that an interesting work
on a simply-supported skew plate could be located where D.J.
Gorman (1991) quite elegantly carried out accurate analytical
type solution for the free vibrations of simply-supported para-
llelogram plates.

Again, as far as it is known, no work has been apparently
devoted to the investigations of non-linear behaviours of heated
elastic skew plates having various applications in modern design,
especially in Air-craft Industry, Spaceship Technology and Astro-
nautical Engineering. Also no attempt on the non-linear behaviours
of skewed sandwich plates has been reported in the literature as
yet.

It is seen that in solving §arious elastic problems,
different methods have been employed. Based on the geometry of the
elastic structure and the nature of the problem concerning it
(e.g. static, dynamic or thermally induced) one method has got
beauty and advantage over the other. Most of the earlier workers
have utilised either Von-Katmdn's classical equations or Berger's
differential equations in their investigations on skew plates.

But as already mentioned Von-Katman's classical equations are in
the coupled form and the transformations of these coupled equa-
tions in oblique co~ordinates involQe much mathematical complexity.

So this entails difficulty in solution as well. On the other hand
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Berger's differential eguations, although decoupled, are questio-
nable mainly because it fails miseravly for movable edge condi-

tions.

The object of modern research work is to find solutions
of natural pfoblems in such a way thaet the method employed and
the level of presentation ére lucid, computational labour is mini.
mum and the results predicted are sufficiently accurate for the

practical purpose.

The purpose of the present thesis is to present a simpli-
fied approach to the non-linear analyses of isotropic elastic
rhombic plates (skew plates having aspect ratio 1) under different
types of loadings and edge conditions. Banerjee's well-known hypo-
thesis has been utilised in these investigations. A set of uncou-
pled ditferential equations has been obtained in obligue co-ordi-
nates and solved by the Galerkin's Error Minimising Technique.
Accuracy of the method has been tested in some static cases by
comparison with experimental results and with other known results
from the open literature. It has been observed that the results
of the present study are in very good agreement with those obtainec
in open literature., The main advantages of the present study are
that

(1) unlike the Von-Karman's differential equations, the
present differential eguaticns are in the uncoupled form and thus
easy to solve,

(ii) unlike Berger's uncoupled differential equations,

the present uncoupled differential equations give results both for
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immovable as well as movable edge conaitions with sufficient
amount of accuracy,
and
(1i1) from the same cubic equation, results both for
immovable as well as movable edge conditions can be obtained
with minimum computational labour, offering an additional ad-

vantage.

The present thesis has been divided into five chapters.
In the first chapter (containing two papers), the non-linear
static behaviours of thin isotropic elastic plates of uniform
thi¢kness, have been studied. The first paper of this chapter
deals with large deflections of rhombic plates with simply~-suppo-
rted edge conditions, Non-linear static behaviours of rhombic
plates have been analysed following Banerjee's hypothesis. Calcu-
lations have been done for different skew angles. To test the
accuracy of the theoretical results‘thus obtained, experiments
are carried out on copper-made and steel-made plates. The theore-~
tical results are found to be in excellent agreement with those
obtained from the experimental data.

The second paper in the first chapter,is devoted to the
investigations of the non-linear static behaviours of clamped thin
rhombic plates under uniform lateral pressure. Numerical results
for different skew angles are presented. Here also accuracy of
Banerjee's hypothesis has been tested by comparison with the ex-
perimental results and with other theoretical results.

The second chapter of the thesis contains only one paper
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on large deflection analyses of rhombic plates of vabiable thick-
ness. In this paper both the non-linear static und dynamic beha-
viours of simply-supported rhombic plates of linearly varying
thickness have been presented following Banerjee's hypothesise.
various numerical results showing the combined effects of skew
angle and thickness variation parameter on the deflections and
vibrations of the rhombic plates are given., Proper comparison
has also been done,

The third chapter of the thesis contains one paper devo-
ted to non~linear analysis of heated rhombic plates. This paper
seems to predict some new information on thermal behaviours of
rhombig plates. For 0°-skew angle, the results obtained in the
present study have been compared with the other results found in
open literature, It is believed that the results obtained for
other skew angles are completely new.

The fourth chapter also contains one paper on non-linear
static and dynamic behaviours of the freely supported skewed
sandwich plates. Banerjee‘'s hypothesis has been employed in these
in&estigations. Numerical results have been obtained for diffe —
rent skew angles. For o~ skew angle, results obtained are come
pared with other known results. Here also the results for other
skew angles are believed to be new,

The last chapter of the thesis concerns with the non-
linear analysis of moderately thick plates. This chapter also
cohtains one paper. In this paper, the large amplitude free fle-

xurdal vibrations of clamped as well as simply-supported isotropic
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elastic rhombic plates are investigated showing the effects of
Shear Deformation and Rotatory Inertia, vVarious numerical results
have been presented in tabular forms and in few cases they are

compared with existing results,

From the numerical results obtained in the present study
for different rhombic plates with different edge conditions and
under Static, Dynamic and Thermal loadings, it is observed that
the present study yields sufficiently accurate results from the
practical point of view. Also for uncoupled form of differential
equations Baner jee's equations transformed in oblique co-ordi-
nates are simple and yield fesults both for immovable as well as
movable edge conditions with minimum computational labour. Thus
the present project seems to be more acceptable for practical

purposes.
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NCTATICNS
Rectangular Cartesian Co-ordinates,
Oblicque Co-ordinates on the xy-plane,
Skew aAngle,
Deflection normal~to-the-middle-plane of the plate,
Maximum Central Deflection,
Inplane Displacements,
Thickness of the plate ,
Thickness-variation Farameter,
Ioad Function,
Intensity of a Continuocusly Distributed Ioad,
Modulus of Elasticity in Tension and Compression,
Modulus of Elasticity in Shear,
Poisson's Ratio,

Flexural Rigidity of the Plate = Eh3/12(1—t?2),

Speed of Wwave Fropagation along the Surfzce of the Plate,

Co-efficient of Linear Expansion,

Density of the Flate Material,

Time Perameter,

Linear Period of Vibration of the Plate,
Non-linear Period of Vibration of the Plate,

Vibration Frequency of the Plate,

Initial Amplitude of Vvibration of the Plate,
Non-~dimensional amplitude,

Coupling Parameters,

Temperature in the Middle Plane of the Plate,

laplacian Operdtor,
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p= Wo/h Central Deflection Parameter,
)\::1)2 for Simply-Supported Edge Condition of the
elastic plate,

A= 21)2 for Clamped Edge Condition of the elastic plate.
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CHAPTER 1

NON-LINEAR STATIC ANALYSES OF THIN

RHOMBIC PLATES



PAPER 1

LARGE DEFLECTIONS OF RHOMBIC PLATES-

A NEW APPROACH*

ABSTRACT

In this paper non-linear static behaviour of Simply-
Supported rhombic plates has been analysed following Baner-
jee’s hypothesis., A set of uncoupled differential equations
is obtained in oblique co-ordinates and solved by applying
the Galerkin techinque, The case of a Simply-Supported rhome-
bic plate is discussed in detail. Calculations have been car-
ried out for different skew angles., To test the accuracy of
the theoretical results so obtained, experiments are carried
out on copper and steel rhombic plates. The theoretical re-
sults are found to be in excellent agreement with those obta-

ined from the experimental data,

ANALYSIS

Let us consider a rhombic plate of an elastic,iso-

tropic material, having uniform thickness'h'. Let the size

* Published in Int.J.Non-linear Mech., Vol-27,No.6,



of each side of the skew plate be'a'which is sufficiently
large compared to'h’, The origin of the rectangular Carte-
sian co-ordinate (x,y) is located at one of the corners of
the skew plate (vide Fig.l). The plate is considered to be

Simply-Supported along its edges and loaded uniformly all

over,

162

Following Banerjee's hypothesis . the differen-

tial equations, referred to the system of rectangular Carte-

sian co-ordinates governing the deflections of the plate are

U B8 (33 v 338) - A v () + (55T )

D2H /DWN\Z . 22W /W
T2\ 5 \x) T 5= av)]

+4(559)(50) (= £
where

A=A (B3 0S|

is a constant depending on the surface and edge conditions of

(1)

the plate, and <72 is the Laplacian operator.

For a skew plate, let us adopt a system ot oblique
co-ordinates (xl,yl,e) 4s shown in Fig.1,8 being the skew angle,
Clearly, x = x, CosB,and y =y, + x; Sin8 (3)
are the co-oOrdinate transformation equations. Hence the par-

tial differential operators become

— O D%+ __ 0%
;Ox sQC@(B‘ Sm9w> 29 = oY > DY — DYZ
2 2 ; 622. Na O2 ]



FIG.I. PLAN FORM OF SKEW PLATE.




o2 — 52 . . o Xa
=89 = Sec B >3, 3 Sinf bi‘!:l?)

and V4 = 36646[ dx2 - 481'“9( 61?6 1+ 61'6146’54!)
D4
+2(1+2 S5in 9)6‘3?3’5@?'"' o%f] : “

Using these operators, transforming the differential equations
(1) and (2) in obligue co-ordinates, we arrive at the follow-

ing set of transformed differential equations :
Secte[ 335 — 45ino(5234g + 5L 5g) +2(1+281ne) ST
+—gﬁ,§§4] 20| see? e( 2517195%)*"1:@'”28%?5
v W] o2 {secs (L -25im0 521 + M)[@
) -25n0( g5 ) Oyi>]+2[su49<%7§—25m6
+ 8in%Q a%) (%i sine S )+ %2“3}2 %)2]

+4 Saa29<6% Smebzw X -8 3 ><391>}

- 4
D

(5)

and A — ;_ {Sec 6[(—2%%) ZSLHG(—H—>(D%>+SM 6 V;Ij—]

+v<ay) }+5ece<ax1 -5 ) +1r S¥- L .

Now to solve the problem, let us assume

W = W_Sin ‘%’5 sin 3-%14 (7)

W, being the maximum central deflection. Clearly W satisfies

the following Simply-Supported edge conditions



W=0 a x3=*d andaa Yy =x4

2 2
‘5)3;_0 a Xy=*a and %—,DT;:O a Yy =xa.

1

For the value of A, let us integrate equation (6)

over the whole area of the plate. Then we have

ffAcosedmdm" 1_[ f {5“ o[ (8% >+sze<©%>

—25n6 () (85 ]+ (L8, feosp dxydy,

After integration, we get

A= LY e (44 15 42 tan® 5) (8)

For movable edge conditions the value of A will be zero.
Here, it is to be noted that, since the normal displacements
are our primary interest, the in-plane displacements in equ-
ation (2) have been eliminated through integration by choo-
sing suitable expressions for them, compatible with their
boundary conditions.

Now, applying Galerkin's method of approximation to
tﬁe transformed differential equation (5) and keeping in mind

the value of A from equation (8), we get the following cubic

equation determining B ( = W, / h)e
(1+sn®6) g +3{[(1+ ) +(1-v)sine |?

+02(5 + e)) 7 = () cos

(9a)

ror the sake of comparison we adopt, now,the well-known



equation of Berger36, where e, has been neglected. The

corresponding cubic equation determining the central def-
lection parameter (for immovable edges only) takes the follo-

wing form (after applying Galerkin's technique)

(1+sin*e)B +1.5 B3 = ;—f’;-‘ >Cos4e _ (9b)

NUMERICAL CALCULATIONS

12

For a steel plate we have E = 2 X 10 dyne/bm%

and ¢ = 0.3, for which equation (9a) becomes
+5in8) B +3 [ (1.3 +0.781%8)2+0.09(5+sin*6) | g°
= 22.66%X107% q’a )cos‘*e

(1ca)

12

whereas for a copper plate we have E = 1,25 X 10 dyne/cm%

and 7 = 0.333, so that equation (9a) becomes
(1+8n26)p +3[(1.333 + 0.6 675126)>+0.1u (5+5in%6) | ¢
= 35,46 %1071 %‘ 18- ) cos4e

(10b)

Also, for a steel plate equation (9b) becomes
(L+Sn?6)p +1.5 B3

_ —15 ga4
22-66X10 (ﬁ)cos‘le
(10c)



and for a copper plate it becomes
(L+sin?0)p + 1.5p°

— 35.46 XiO‘”(%%i)C,os‘le . (104)

METHOD OF EXPERIMENT

A sketch of the apparatus used for the experimental
purpose is shown in Fig.2. Two skew boxes with upper side open
are constructed, each of whose four side walls are made of steel.
Each vertical wall of one box is 16 cm. and of the other is
14 cm. The upper side of each wall is made sharp (knife edge),
care being taken to see that all the knife edges lie on the
same horizontal plane. The walls of the box with sides 16 cm.
long are welded in such a manner that the two opposite angles
are each 75° and the other two opposite angles are each 105°.
Two opposite angles of the second box with sides 14 cm. long
are each 60° and the other two opposite angles are each 120°.
Two holes are drilled on two opposite sides of each box and
fitted with short metal pipes, one of which acts as an air
inlet and the other as an air outlet,

For the experiment with the first skew box, the
centre of the box is first found and then a plumb-line is set

as an indicator along the vertical line on which the centre
of the box lies. For the free movable boundary conditions one

Test plate (which is approximately mirror surfaced) is symme-
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trically placed on the knife edges of the box and a pointer
is fixed on the upper surface of the Test plate with some adhe-~
sive along the plumb-line. The outlet pipe is then joined to
an exhaust pump by rubber tubing and the inlet pipe is joined
to a standard vacuum meter and an air pressure regulator (as
shown in the sketch). Along the contact line beneath the Test
plate some thick grease is used to make the box perfectly
airtight, (Grease does not apply any appreciable tension on
the plate). When the exhaust pump operates, the box becomes
evacuated, thereby causing the depression of the Test plate
by the excess outside air pressure, which is uniform 211 over
the effective skew part of the Test plate. The central deflec-
tion of the Test plate is easily measured with the help of a
precision cathetometer set at a distance of approximately
1,5m. from the pointer.

To make the free boundaries of a skew plate immova-
ble, four pieces of steel collars are taken whose lengths
are equal to the length of outer boundary line of the skew
plate. The collars are kept outside the box in contact with
the lower surface of the plate and with the side walls of
the box and then the collars are tightly clamped with the
Test plate using nuts and bolts in sufficient number well

outside the boundary of skew section.

Tables 1 and 2 present a comparative view of the
various theoretical and experimental values of the central

deflection parameter B (= wo / h) for different values of
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the load function Q (= qa4/nh), for the case of steel plate

and copper plate respectively.



Comparison tables (showing theoretical vs experimental results as well as showing

changes for immovable edge conditions from movable edge conditions).

TABLE 1

(For Steel Plate)

a = 16cm., when 6 = 15°; a = l4cm., when 6 = 30°; h = 0.1343cm.
(o]
,B:wo/h,wnene=1s

' Movable Edges | ' Immovable Edges

v .

) i

i v T T [ 1
Q = . From . From ; Percen- | From i From ; From i Percentage of error

4 Banerjee |, Experi- | tage of | Berger { Banerjee ; Experi- \

ga hypo- | ment ! error ! Method ! hypo-~ | ment r From , From
h thesis ! ! ' thesis : . Berger 1 Banerjee

.‘ ‘ i ! ': ! Method . hypothesis

1 L i : H : ‘

111.72  0.3716 0.3872 4-0 % 0.3285 0.34%4 0.36485 9.96 % 5.33 %
223.44 C.7C38 0.7372 4.5 % 0.5378 0.5914 0.6329 15 % 6456 %
335.16 0.98592 1.0201 3.3 % 0.6843 0.7703 0.8414 18.67 % 8.45 %
446 .88 1.,22484 1.2882 4.5 % C.7282 0.9107 0.9903 19.40 % 8 %
558.6 1.43C3 1.5115 5.4 % 0.8924 1.027 1.1244 20.60 % 8.66 %

Contd.ceeeeeee

¢l



TABLE 1 (Continued)

B=9/0 " hene = 3¢°
' Movable Edges ; Immovable Edges
¢ L
) i ! [] t €
Qo= ' From \ From . Percen- ¢ From From . From Expe_ | Percentage of error
4 ! Banerjee , Experi- , tage of i\ Berger . Banerjee | riment '
ga X hypc- | ment | error ! Method !  hypo- | ' T
o i theslis . ! ! , thesis { " From . From .
: \ i ! , i ! Berger ! Banerjee
| ! ! E 5 ﬁ ‘ Method ! hypothesis
N L L -+ ! . i i -—
65.5 C.12208 C.134 8.0 % 0.1202 0.1209 0.12658 5.00 % 4.49 %
1 31 £.2427 C.25316 4,13 % C.2301 0.2346 C.25316 S9.11 % 7.33 %
196 .2 0.35604 0.3797% 5.10 % 0.32%4 G.3369 0.36485 10.80 % 7.66 %
262 0.4742 0.4989 .00 % 0.4C782 Ced276 G.46165 11.65 % 740 %
327.5 05835 0.61802 559 % C.4795 0.5081 0.55845 14,20 % 9.00 %

Averdage percentage of error

around 6% for skew angles ©

by utilising

= 150, angd 6

Berger method it is around 17% for & = 15

Banerjee's hypothesis is only

= 30° whereas by utilising

© and 10% for & = 30°

£l



a =

lécm., when 6 = 1%7;

(For Copper Plate).

a = l4cm., when ©

TABLE 2

367; h = (.078%cm.

B = w_/h, when 8

15

o]

Movable Edges

Immovable Edges

2 = vFrom . From f Percen~ | From i From f From , Percentage of error

at 3anerjee | Experi- | tage of | Berger | Banerjee, Experi- |

B ‘hypo- i ment , error * Method ! hypo- ' ment " From . From

' ‘thesis ' ' !  thesis | , Berger { Banerjee
: ! ' ! ' : ' Method ! hypothesis
! L i 4 i ~1 A !

1467.53 2.3727 2.4208 2 % 1.36820 1.57802 1.6735 18.22 % 5.68 %

293%.C6 3.2506 3.308 1.70 % 1.7958¢ 2.08783 2.23067 15.50 % 6.40 %

4402 .59 3.8437 3.9924 372 % 2.0891 2.43578 2.6109 19.98 % 6.70 %

587G.12 4.307 4.4867 4 % 2.32003 2.7095 2.90241 20.07 % 6.65 %

7337.65 4.6935 4.90494 4+30 % 2.5138 2.93883 3.15%9 20.35% % 6.90 %

Contd . ¢ ® & & ® 0 & 00

T



1.

b (‘,; .

LY

TABLE 2 (Continued)

B=w /n, when 8 = 30°
J Movable Edges ; Immovable Edges
' 1 [} ' Ll 0
L= y JFrom ' From , Percen- ! From 1 From , From ! Percentage of error
qa4 . Banerjee, Experi~ | tage of | Berger | Banerjee| Experi-~ |
™ ‘ hypo- | ment { error i Method ! hypo- ! ment ! From ,  From
N , thesis : ! ' thesis ' ' Berger i Banerjee
f ' : : ' ! Method ' hypothesis
4 L] i 1 g L ! ol
860.2 1.2602 1.2801 1.55 % 0.85%3 0.9283 0.9886 13.5C % 6.10 %

172C.4 1.9429 2.0279 4.20 % 1.1901 1.3095% 1.40684 15.50 % 6.92 %

258C.6 2.4064 2.5095 4.10 % 1.415¢ 1.5657 1.6857 16.00 % 7.12 %

3440 .83 2.765 2.9404 6.00 % 1.5913 1.7649 1.90114 16.30 % 717 %

4301 3.0616 3.2319 5.30 % 1.7376 1.93C7 2.09125 16.91 % 7.70 %
Average percentage of error by utilising Banerjee's hypothesis is only around S5 % for
skew angles 8 = 15°and 8 = 30° whereas by utilising Berger method it is around 20 % for
@ = 15° and around 15 % for 8 = 3¢°

N.B. - Errors are calculated considering experimental results as standard (sacrificing

instrumental and personal errors ).

ST
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OBSERVATIONS

It is observed from the two tables that the results
of the present study are in excellent agreement with those
obtained from the experimental analysis. It is well-known that

Berger's method failsll4

miserably under movable edge condi-
tions. The results for simply-supported immovable edges, Ob-
tained by Berger's method (as shown in the Tables 1 and 2)
show that this method is not even acceptable from the prac-
tical point of view. It is worth noting that Bgrger's method
always gives less deflections for a given load. The errors of
Berger's method (as shown in Tables 1 and 2) are certainly
questionable from the view point of safety design.

It is observed that deflections for movable edges are
always greater than those for immovable edges. This is quite
expected from the practical point of view, because movable
edge conditions give stress-free boundary and, hence, there
are large energy changes in the boundary.

Here the results for skew angles § = 15o and 30o only
have been considered, because, for greater values of the skew
angles the effect of non-linearity does not play important role
in design, and the study of linear analysis serves the prac-

tical purpose.
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PAPER 1II

NON-LINEAR BEHAVIOURS OF CLAMPED RHOMBIC
PLATES-

A NEW APPROACH

ABSTRACT

In this paper non-linear static behaviours of clam-
ped (along all edges) thin rhombic plates under uniform normal
pressure have been analysed following Banerjee's hypothesis.
Numerical results for different skew angles are presented. Com~
parisons (both numerically and graphically) are made with avai-
lable existing results for skewed plates. The effects of skew
angle on large deflections are carefully investigated. To test
the accuracy of the theoretical results, so obtained, experi-
ments have also been carried out on copper-made and steel-made
plates. Both the cases of movable and immovable edge conditions
have been delt with. It is observed that the present theore-

tical results are to the close proximity of the results obtained

from the experimental analysis.

ANALYSIS

Let us consider a rhombic plate as shown in Fig.3. It

is of an isotropic, elastic material, whose uniform thickness
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FIG.8: PLAN FORM OF SKEW PLATE AND CO-ORDINATE SYSTEM
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is'h’' . Also let the sides of the rhombic plate be each of '2a’,
sufficiently great compared to'h'. The origin of the rectan-
gular cartesian co-ordinates (x,y) is located at the geome-
tric centre of the skewed plate. The plate is considered to
be clamped along its four edges and loaded uniformly all over.
Following Banerjee's hypothesis, the differential

equations, referred to the system of rectangular cartesian
co-ordinates are transformed in oblique co-~ordinates as in

paper I.
Now to solve the differential equations (5) and (6)
in paper I, we assume
W=mW COSz-JzT—a—iCOSZIZ—r% .
(11)
W, being the maximum central deflection. Clearly the deflec~

tion function W satisfies all the boundary conditions for a

skew plate clamped along its four edges, viz,.
W =0 at X4 =t a and at y, =ta.

a.l‘_q oW
- =0 at x, =ra a = =
2X1 1 nd TYI © at Yl ta.

TO determine the value Oof A, we are to integrate
equation (6),as usual, over the whole area of the skew plate,

Thus we have

f+af+a Acos6dx,dy, = -— +af+a[se¢29{<axi
+ sin?e(F ) —281n6(F%)( 35} + (8] Jcosedndy,
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After integration we get
— BJ*N2Z 2
A=3Te(L+v +2tan’s)

(12)
Now applying Galerkin's method of approximation to
the transformed differential equation (5) and keeping in mind
the value of A from (12) we get the following cubic equation

determining the deflection parameter g = wo/h

(2+5n%8) B+{EL(L+ v +2tan*6)” Cos46

+208 (13 + 5 51n%6)18% = £ cos48 Q

(13)
where Q = qa4/Dh is the load function.
NUMERICAL CALCULATIONS
12 2
For a copper plate we have, E = 1,25 X 10°° dyne /cm",

and ¢ = 0.333, so that for such a plate, the egquation (13)

becomes

(2+sin®6)p +{-E5(1-333 +21an®p)*Cos46

+ 55521 (13+5 8in*6)} B° = 0.041Cos %6 Q |

(14)

12

whereas for a steel plate we have E = 2 X 10 dyne/cm% and

Y = 0.3, s0 that for such a plate, the equation (13) becomes
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(2+~’>‘m 6)p +{é (1.3 + 2+an” 9\2( 556

%(ﬁ +5 Sﬂ’lze)} B2 = 0.0441C0s46 Q

(15)
METHOD OF EXPERIMENT

The sketch of the apparatus used for the experimental
purpose is shown in Fig.4. Three skew boxes with upper side
open are constructed each of whose four side-~-walls are made
of steel of 6mm. thickness. Each vertical wall of two boxes
is 1l6cm. long and of the other is ld4cm. long. The upper side
of each wall is made sharp (knife edge), care being taken so
that all the knife-edges lie on the same horizontal plane.

The walls of the boxes with sides l6cm.long are arc-welded

in such a manner that the two opposite angles are each 75%and
other two opposite angles are each 105°. The two opposite
angles of the 3rd box with sides l4cm. long are each 60°%and
the other two oppogite angles are each 120°, Two holes are
drilled on two opposite side-~walls of each box and then fitted
with short metal pipes, one of which acts as an air inlet and
the other as an air outlet.

For the experiment with one skew box, the centre ot
the box is first found and then a plumb-line is set as indi-
cator along the same vertical line on which the centre of the
box lies. For the clamped movable boundary conditions the expe~

rimental plate (which is approximately mirror surfaced) is
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symmetrically placed on the knife-edged side of the box and

a pointer (made of very thin plastic rod) is fixed on the upp-
er surface of the experimental plate with some adhesive, along
the plumb~line. The contact lines of the plate with the knife-
edges are unifomly arc-welded from outside. The outlet pipe
of the box is connected to & vacuum pump and the inlet pipe

is connected to a standard vacuum meter and an air inlet regue
lator (using & T-section as shown in the sketch). When the
vacuum pump operates, the box is evacuated, thereby causing
the depression of the experimental plate by the excess out-
side air pressure, which is uniform all over the effective skew
part of the plate and the pressure is noted from the pressure
gauge. The central cdeflection of the plate is easily measured
with the help of a precesion cathetometer set at a distance

of approximately 1.5 metres from the pointer.

To make the boundaries of the skew plate ‘'clamped
immovable ', the elongated portions of the plate beyond the
knife~edge of the box are cut and then the whole boundary of
the experimental plate 1s are-welded with the supporting knife
edges covering the full thickness (h) of the experimental plate

at its boundary. The experimental procedure is now, as usual.

The following tables and graphs show a comparative
study of the central deflection parameter B Vs. load func-
tion Q obtained by the theoretical and experimental methods,

For movable edge conditions A = O,as usual,



TABLE 1
Showing comparison of results obtained from different theories and experiment
for copper-made skew-plate (4= C,333,E = 1.25 X 1012dyne/cm2, e = 150,

@ = 8cm., and h = 0.G789%m. )

Movable Edges

value |
of ;FUniform pressure .:Value of W,  value of B | value of 8 byTPercentage of
Q . applied in the .from the Expt. by the Expt. . Banerjee's , error w.r. to
E Expt.(inch of Hg)& (cm) : E hypothesis ; Expt.
L] [ 3 A
20 - - - - -
50 - - - - -
61.0C8 2" 0.073 0.92522 0.52284 0.257 %
100 - - - - -
122.16 4" 0.121 1.5336 1.5202 0.874 %
150 - - - - -
183.24 6" 0,158 2.00253 1.93987 3.13 %
200 - - - - -
244,32 g" 0.182 2.30672 2.26643 1.75 %
250 - - - - -
300 - - - - -
305.4 10" 0.205 2.59823 2.5366 2.372 %

contdo:..v.o.o...

L&A
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TABLE 1 (Continued)

Value : Immovable Edges
i + T ¥ 4 s
of " Uniform . Value ofy, Value of B, value of ﬂ y value of ,9 . Percentage ;| Percentage
O pressure . from the by the i from ' from ‘ of error ; of error by
applied . Expt.{(cm.) | Expt. | Banerjee's |, Kennedy and | by Baner- | Kennedy and
in the ' ' hypothesis ' Simon's ‘ jee's hypo-! Simon's
.(Expt- ): : curve { thesis w.r.: theory w.r.
'(inch of Hg) | , , . | to Expt. . to Expt.
' : : [ [ (Ref.85) ’ P ‘
— ' ; : : N 3

20 - - - 003321 0028 - -

<C - - - 0.7254 .62 - -

61.08 2" 0.068 C.36185 0.84025 .71 2.5 % 17.62 %
122.16 4" 0.105% 1.3308 1.30%4 l.11 1.21 % 16 .6 %
150 - - - 1.4616 1.25 - -

183.24 6" 0.131 1.66033 1.622 1.4 2.43 % 15.68 %
2 00 - - ~ 1.6946 1.475 - -
244,32 8" G.181 1.91382 1.866655% 1.63 2.45% % 14.83 %
2 <0 - - - 1.8873 1.65 - -
3060 - - - 2.053 1.8 - -
305.4 10" 0.168 2.12928 2.0696 1.815 2.8 % 14.76 %

9z
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TABLE 2
Showing comparison of results obtained from different theories and
experiment for copper-made skew plate ( 4 = 0.333, E = 1.25 X 1012

dyne/bm?, e = 300, a = 7cm., and h = 0.6789cm.)

value ; Movable Edges

of : : HE T i

Q , Uniform pressure , Value of W, ' value of B ! value of A . Percentage of
; applied in the i from the Expt.;,by the Expt.: from Banerjee's, error w.r.to
; Expt.(inch of Hg)a (cm.) E i hypothesis E Expte.
: : : ; H

20 — — — — —

50 —_ _ —_ — -

53.7 3" 0.042 0.53232 0.52642 1,11 %

100 — —_ — — —_

107.4 6" 0.078 ¢.98859 0.89567 3.22 %

150 — — — - -

l61.1 9n 0.107 1.35615 1.29435 4.55 %

200 — _— —_ — —

214.8 12" 0.129 1.63498 1.5676 4.12 %

250 — — — — —

268.5 15 0.148 1.8758 1.797 4.2 %

300 — —_ —_ _ —

Contd e » 0o o080 b o
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TABLE 2 ( Continued)

Immovable Edges

L]

‘
: 1 ) ot [
value . Uniform . Value of wo: Vvalue of ,5 i Value of ,B i Value of ﬁ . Percentage , Percentage
of ' pressure ! from the \ by the ' from ! from ! of error ¢ of error
. applied . Expt.(cm.) | Expt. ! Banerjee‘s | Kennedy and | by Baner- , by Kennedy
Q ' in the / ; ! hypothesis , Simon's : jee's hypo-: and Simon's
. Expt. ‘ / ! | curve ! thesis w.r., theory w.r.
y(inch of Hg) ' ; ! ' to Expt. . to Expte
H | ' ' + (Ref.85) : :
' ] [} [ ] r ]
[} i 2 R 3 (N 5
20 - - - 0.2019 0.22 - -
50 - - - 0047282 0045 — had
53.7 3~ 0.C4 0.50697 C.5028 Cad75 0.822 % 6.3 %
100 - - - 008117 0078 - -
1C7.4 e" 0.07 0.6872 0.8611 0.83 2.54 % 6.45 %
150 - - - 1.06733 1.063 - -
161.1 gn 0.CS 1.14068 1.12156 1.08 1.676 % Se32 %
214.8 12" 0.106 1.34347 1.3261 1.275 1.29 % 5.1 %
250 - - - 1.4404 1.39 - -
268.5 15*% 0.12 1.5209 1.49573 1.445 1.65 % 5 %
300 - - - 1.5837 1.525 - -

o€
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theory and experiment for steel-made skew plate ( 99 = 0.3, E =2 X 10
dyne/cm? , © = 15°, a = 8cm. and h = C.1343cm.)

TABLE 3
Showing comparison of results obtained from the present non-linear

12

value X Movable Edges
ot ' ' t ; )
Q . Uniform normal , Value of W,. Value of B ¢ value of B from , Percentage of
. pressure applied ! from the ' by the Expt. , Banerjee's |, error w.r. to
. in the Expt. '+ Expte{(cm.) | .  hypothesis ; the Expt.
: (inch of Hg) ; N :
: 3 : ’
] s ' ‘ -
9.31 4" 0.023 0.17126 C.16019 6.46 %
18.62 g 0.044 0.32762 C.3172 3.18 %
27.93 12" 0.065 0.48399 0.46827 3.248 %
37.24 lg™ 0.084 0.625465 0.61182 2.182 %
46 .55 20" C.104 0.7744 C.747 3.54 %
contd o 5 6 0 5 8 6 s e

¢t
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TABLE 3 ( Continued )

value ﬁ Immovable Edges
of H
L. v
Q ! Uniform normal © value of W . Value of B8 | value of B Percentage
1 pressure applied | from the . by the Expt. . from Banerjee's . of error
» in the Expt. ., Expt.{(cm.) | . hypothesis . W.T.tO the
' (inch of Hg) ., : ! v Expt.
' i ! H H
9.31 4" 0.022 0.16381 C.15944 2.67 %
18.62 8" 0.043 0.32018 C.31176 2.63 %
27.93 12" 0.063 C.4691 0.45248 3.543 %
37.24 le" 0.08 0.59568 0.58024 2.592 %
46 .55 20" 6.086 G.71482 C.59562 2.686 %

N.B :- All the errors are calculated considering our experimental
results as standard, sacrificing instrumental (if any) and

personal errors

bE
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TABLE ¢4

Showing the variation of results obtained
by the present theory due to change of

edge conditions for steel-made skew plate
(1= 0.3, E =2 x 10 %dyne/cn? & = 3¢°)

-
Movable adges 'Immovable Difference of S

b
value of . Edges | due to change of
Q . M , Edge conditions
1 Value of , Value of B |
, from Banerjee's,; from Baner-,
' hypothsis. » jee's hypo-,
: \ thesis :
] L ]
] i kl
20 0.2039 0.20221 0.00169
60 0.5879 0.5568 0.0311
100 0.9207 0.8312 0.0895
160 1.3334 1.14 0.1934
200 1.551% 1.3031 0.2484
260 1.83692 1.5078 C.32912

300 2.0C24 1.6254 0.377
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OBSERVATIONS

From the numerical tables and graphs we find that the
present non-linear theory gives better results than kennedy
and Simon's non-linear approach 85 . Because almost in all
the cases our percentage of error with respect to the expe-
rimental results remain within S percent,whereas, the errors
in the results according to Kennedy and Simon's theory vary
from the lowest 5 percent to the highest 17.62 percent with
regspect to the experimental results. It appears that deviations
in the results of Kennedy and Simon's theory are due to applie-
cation of perturbation technique which embraces more approxie
mation. Moreover the perturbation technique requires much
computational labour. It is interesting to note that Kennedy
and Simon did not compare their large deflection results for
skewed plates with other results available in open literatures
or with any experimental results. They only compared their
results for a rectangular/ square plate where § = o°.

It is obsgerved, from the present results, that the
maximum central deflection of a rhombic plate decreases with
the increase in skew angle. This may be due to the increased
rigidity of the obtuse corners of the plate with the incre-
ase in skew angles. Thus we may conclude that the effect of
the non-linear terms on the deflection diminishes with the
increase in skew angle and hence the large deflection curves

tend to become increasingly linear for large skew angles.,



39

It i8 also observed that, the deflections for movable
edges are always greater than those for the immovable edges
(Ref. table 4 ). This is quite expected from the practical
point of view, because movable edge conditions give stress-
free boundary and hence there is large energy changes in the

boundarye.

NOTE :

Like simply~supported skew plate here also results
for skew angles § = 15%and § = 30° have only been considered,
because, for greater values of the skew angle the 1nfluehce
of non-linearity does not play much of significant role in
design and the study of linear analysis serves the practical

purpose.
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PAPER I

NON-LINEAR ANALYSIS OF RHOMBIC PLATES OF VARIABLE

THICKNESS

ABSTRACT

This paper deals with the non-linear static and
dynamic behaviours of a simply-supported rhombic plate (skew
plate of aspect ratioc 1) of linearly varying thickness. Baner-
jee's hypothesis has been followed to form a set of decoupled
differential equations and then the Galerkin's procedure has
been utilised to solve the equations. varicus numerical results
for a rhombic plate of isotropic material, under both static
and dynamic loadings have been computed and compared with the
other results known from literature. It is seen that the pre-
sent approach offers sufficiently accurate results for both

movable and immovable edge conditions.

GOVERNING EQUATIONS

Let us consider a rhombic plate of elastic isotropic
material having thickness varying linearly, the central thicke
ness being‘hé and thickness-variation parameter being'p. lLet
the size of each side of the plate be '2a’which is sufficiently

large compared to‘h;. The plate is considered to be simply-
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supported along its edges and its faces respond to the bending
and membréne actions,

We now posit a rectangular cartesian co-ordinate sys-
tem (x,y,2,) at the centre of the plate, (x,Y) being in the
middle plane and z the thickness direction positive downwards.
Also let us set an oblique co-ordinate system (x,,y;., 8 ) at
the same origin, (xl‘yl) being parallel to the sides of the
plate, and & the skew angle of the plate (Vide Fig.3 in paper II
Chapter I). OCbviously

x =x, cosf and y =y, +x, sin§
are the co-ordinate transformation equations,

Now following Banerjee's hypothesis,the differential
equations in rectangular cartesian co-ordinate system govern-
ing the deflections and vibrations of plates of linearly vary-
ing thickness will be

h> v + 6 n?(40) v2(ZY) + 6n @R )85 +v 353
— A (B +v ) - @h[{(%%)%(%w}{w

+ R E)(EN} 2 (B (R
+2(8%)(35) 525 )] =t

(1)
for non-linear static deflections under uniform loading,where
Al is a constant given by

=4 { @)+ v (3P} +3% +v 85

(2)
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h3 VAW +6h2 (GR) v2 (L) + 6n @R)* (325 + v T
o (B + v B - [P P o
TREDRD} +2{F5 & + (357

2 E@PEE - =0 | o

for non-linear free elastic vibrations, where Az is a time -

dependent constant given by

£ =3{ (@) +v (B85 )+ 8% +v&y

(4)
In both the equations (1) and (3)

3
e EhJ
L = 2 D= "—"-""""'7 - .
12(1-v2) 12(1-p°)

The thickness variation is expressed by

h = h (1 + px/a),

where p<gcl

ANALYSIS

(A) Non-linear static behaviours of skew plates of

variable thickness -

We consider, here, the bending of simply-supported
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rhombic plate of variable thickness with constrained in-plane
displacements at the boundaries. We now transform equation (1)
and (2) in oblique co-ordinates by the transformation operat-
ors as given in Paper I, Chapter I.

We choose , as usual,the deflection function W in the
following form for simply-supported edge conditions

W =W Cos d¥1 cos I
° 2a 24 (5)

Now integrating the transformed equation (2) over the entire

area of the plate we get

Aq= 6hoPCOSB{ 232 <1+1ﬁ+ 2tan 6)}/109 %‘“22‘;283 ]

(6)
Again introducing (5) and (6) in the transformed form of equa-
tion (1) and then applying the Galerkin's procedure, we arrive
at the following cubic eguation determining the non-dimen-
sional central deflection B = wo/ho of the simply-supported

rhombic plate of variable thickness
[1+21an?6){sec® +(1-%)P*} + S (1-19 + 23am?8) | B
+3 [ A (5+11tan’6 + 61tan?e)

+2PCOS e(1+ 1)+2°cam7'6>710ge%f§gjggg)) = %‘3 Q. @

where Q = qa4/Dho is the load function parameter, q being the

load per unit area of the plate .
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NUMERICAL RESULTS

Table 1 shows different numerical results of the cen-
tral deflections of a rhombic plate of variable thickness hav-
ing p = 0.3, load parameters are taken the same as in Paper I,
Chabter I. It is to be noted that the results for thickness
variation parameter p = O (i.e. for a plate of constant thick-
ness), agree exactly with those in Paper I, Chapter I, both for
movable and immovable edge conditions, which have been experi-
mentally verified by the author. The results for other values

of p are new. (Note ~ For movable edge conditions Ay = O)e.



TABLE 1

Static Deflections
of Rhombic Plates.

46

wO/hO
ew !Load : '
Skew !loa ' X
Angle 'Para- : Immovable Edge : Movable Edge
6 ‘meter ' ' ' ' ‘ '
] 1 1] 1 ] 1] ¢
;qa}Dho 2p=0.15p= C.2 ,:p=0.3 ;p=0.1 §p=o.21':p=0-3
. 3 L h " ) ;
111.72 Ue3434 C.3374 (e3277 Ue3675 G.3598% C.3472
15O 335.16 0.7682 0.7618 U.7513 C.9775% 0.893% 09370
558,60 1.0285 1.0204 1.0121 1.421C 1.4040 1.3765%
111.72 C.2009 (.1974 C.1916 0.2061 (.2022 C.1958
3¢° 335.16 0.5094  0.5¢83 0.4991 C.5840 C.5824 0.5663
558.60 C.7301 0e7239 €.7153 Ua925C C.912¢ .2900
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(B) Non-linear dynamic behaviours of skew plates

of variable thickness -

- Let us now consider free vibrations of variable thick-
ness rhombic plates. Neglecting in-plane inertia, transforming
equation (4) in oblique co-ordinates, choosing

= +Yoos T cos A3
w Wo‘?( ) 2a 248 (8)
for fundamental mode of vibration and then integrating the tra-

nsformed equation over the whole domain of the plate we get

_ T2W2F2 2 (14+PCOSH)
AL,= 6h.pCcosh -——8—5%—-—{1-&- U +2tan 9)/109'e (1=PC036) .

(9)
Here W, is the initial amplitude of vibration and F(t) is some
unspecified function of time. It is to be noted that,we are
interested in the normal displacement W only and so the in-
plane displacements U and v are eliminated here also by consi-

dering suitable expressions for them compatible with the boun-
dary conditions of the plate.

Now transforming equation (3) in oblique co-ordinates,
inserting (8) and (9) in the transformed egquation and then
applying the Galerkin's procedure we get the following diffe-

rential equation for time function
2
428 +[(1+2ran?0) {sec?o +(1—£2) P} + TP P> (-1

+2tan0)|F+32 [A(5 +111an?e + 6tante)

+2(1+ v +2ran®e) P cos%o_qe%jgg’;%ﬂ FPE=0
(10)
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where g = wo/ho, the non-dimensional amplitude and

1= (nd/pat e
some time function.

The equation (10) is in the form F + AF + BF°

= Q, the
familiar Duffing's Bguation. With the initial conditions

F(O) = 1 and F(O) = O, the solution of equation (10) is the
well-known elliptic integral F(t) = Cn(av, t,k). Then the
ratio of the non-linear frequency w* to the linear frequency w
is given by

~§%= 1+ B/A
mere A={(t+2tan2e) {gec’o+(1-£&)p?

| + 22 p? -V +2rane) |
and
B= 3 (5 +11tan?e+61an4p)

+2 (1+19+2%an29>2%ocose/ log FEhessy

NUMERICAL RESULTS

Numerical results of the ratiow* /g are shown in
Tables 2 and 3. Table 2 shows the results for a square plate
(6 = 0°) compared with those obtainable from ref.174 , after
converting the shell equations into plate equations. It is seen
that.the results agree perfectly. Table 3 shows the results for
rhombic plates with skew angles @ = 15°, 22.5° and 30° and thick-

ness variation parameters p = 0,0.1, 0.2 and 0.3. These results
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are new to the author's sincere belief. Here the results for
skew angles higher than 30° are not considered, because for
greater values of §, the effect of non-liearity does not play

important role in design. (Note - For movable edge conditions

A2 = 0).



TSBLE 2
Showing Dynamic Characteristics

of Sdguare

Plates © = 0°
w*w
; ] 1 [ [] O ] [}
@ ] ] 1 ]
Edge | ' p=20 ' p = C.l ' p = 0.2 H P = 0.3
condi-. wo/ho : - ' - : . : -
tion E . Present | Sinha- | Present | Sinha- | Present ! Sinha- ! Present ! Sinha-
¢ . Method { Banerjee | Method | Banerjee . Method | Banerjee, Method , Banerjee
: E } Method | { Method ! Method | 1 Method
! A ' H A A : : :
o C.25 1.02477 1.02477 1.02450 1.02447 1.02374 1.,02350 1.02253 1.0220
,:é g 0650 1.08573 1.09573 1.09473 1.09520 1.09187 1.09099 1.08734 1.0853
SB C.75 1.20474 1.20474 1.20270 1.2025 1.19683 1.19600 1.18451 1.18330C
E . 1.00 1.34257 1.34257 1.335932 1.33890 1.32992 1.32700 1.31500 1.3082
rg) o ; 0.25 1.00526 1.00526 1.00522 1.00526 1.00509 1.00514 1.00490 1.00463
S, 1 ¢.50 1.02088 1.02088 1.02C¢71 1.02088  1.02022 1.0204C 1.01946  1.C1950
S@oo
g { .75 1.04640 1.04640 1.04600  1.04640 1,04495 1.04530 1.04327 1.04340
E 1.00 1.08110 1.08110 1.08040 1.08110 1.07860 1.07930 1.07572 1.07600




Showing Dynamic Charicteristics of

TABLE 3

Rhombic Plates, € = 1504

6 = 22.5°, and & = 30°
o*/®
Skew : : Immovable Edge : Movable Edge
““gle W,/hg = : : ; 5 : : _:
I p P=0 § p=0Cel, P=0Ce2,p=0e3 1, p=0 !'p=0.1 |p=2UC.2 | p==C€a3
| 1 ' v [ [) 3 ) {
Gel25 1.02463 1.02438 1.0236¢ 1.02250 1.005CC 1.00496 1.00484 1.00467
o Je 50 1.08520 1.08425 1.09182 1.08721 1.01584 1.C1968 1.01924 1.01854
o
15 Ce75 1.20366  1.20172 1.19612  1.,18724  1.0441C 1.04377 1.04279 1.04125
1.GC 1.34084 1.33774 1.32880 1.31462 1.07716 1.07658  1.07489  1.07224
Ce25 1.02454 1.02430C 1.02362 1.022%4 1.C0472 1.0046 1.0G439  1.00433
o C.50 1.09486 1.09388 1.09142 1.068737 1.01876 1.01863 1.01823 1.0176C
2 [
22+5 Ce78 1.20297 1.20115 1.19591 1.18758 1.04174 1.04144 1.04C57 1.0392¢
1.C0 1.33974 1.33684 1.32847 1.31511 1.073C8 1.07256 1.07106 1.06868
C.25 1.02452 1.02431 1.02370 1.02272 1.00442 1.00439 1.00430C 1.00417
° C.50 1.09481 1.69401 1.09700 1.08802 1.0175%6 1.01745 1.01711 1.01658
36 Ue75 1.20286 1.20120 1.19650 1.19189 1.03910 1.03885 1.0381C 1.03692
1.00 1.33957 1.33695% 1.32940 1.31726 1.06853 1.0681C 1.06680 1.06476

AN

TG
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OBSERVATIONS

For static behaviour of a rhombic plate of varying
thickness, it is observed that

(1) with the increase of skew angle,céntral deflection
decredases for the same loading whether the edge conditions
of the plate are movable or immovable,

(11) for any assumed Skew angle,the central deflection
is greater for movable edge conditions than that for immo-
vable edge conditions, the load reamining same in both the
casges,

(11i) increasing thickness parameter decreases the cen-

tral delfection.

All the above observations are quite expected from

practical point of view.

As regards dynamic behaviour of a variable thickness

rhombic plate, the following observations are made:

(1) The frequency ratio decreases with increasing thicke
ness variation parameter irrespective of the edge conditions.

(11) The frequency ratio increases with the non-dimen-
sional amplitude.

(111) The frequency ratio gradually decreases with the

increase of p, the edge conditions being movable or immovable.

This is an expected result, because the thickness is minimum



53

at the centre and maximum at the edge of the tapered plate,
(iv) The frequency ratio decreaées with the increase

of skew angle for lower values of p. For comparatively higher

values of P, the vibration character tends to change in the

case of immovable edge conditions. But for movable edge con-

ditions the vibration character does not show such irregula-

rity. This situation demands further investigation.




CHAPTER 1II1I
PAPER I

NON-LINEAR ANALYSIS OF HEATED RHOMBIC

PLATES
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PAPER I

NON-LINEAR ANALYSIS OF HEATED RHOMBIC

PLATES *

ABSTRACT

This paper concerns a new approach to the investiga-
tion of non-linear behaviours of heated rhombic plates. A
set of differential equations in oblique co-ordinates have
been derived in this investigation., Numerical results sho-
wing central deflection parameters versus thermal load fun-
ctions have been computed for different skew angles 0 . For
0 = 0° the results obtained in the present study are in excel-
lent agreement with the known results. It is believed that
the results obtained for other different skew angles are

completely new.

ANALYSIS

Let us consider a rhombic plate of skew angle @ 'whose
uniform thickness is‘'h’'and edge-length'2a. The material of
the plate is considered isotropic having mass density'p’,
Young's Modulus ‘E’and Poissn's Ratio'qt. The origin of the

co-ordinates is located at the geometric centre of the plate

* Published in the Int. J. Solids and Structures, 1993.
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(vide Fig.3 in Paper 1I, Chapter I). The deflections are
considered to be of the same order of magnitude of the plate
thickness, the edge-length being sufficientiy large compared
to the thickness.

Now the uncoupled set of differential equations in
rectangular Cartesian co-ordinates, governing the thermal

behaviours of elastic plates (vide Ref. 167 ) are given by
viw -3 (%‘I'*'V%W‘) S v w &)+ (85)°}
+2{ S () + T (e} +462) (89) )]

+1Z8 T /3 =07y VAW + Q) V2T = (1)
where

A= QP+ (B8 + 05

—(1+V)(xt’(o (2)

It is to be noted that in the derivation of the above
equations (1) and (2) in rectangular Cartesian co-ordinates,

the expression
(-85 +3 %)21“’(%% 5+ 8% %)° Pxer=ry

in the total P.E., of the elastic plate (Ref.167 ) has been

replaced by
A W \2 WA\2T2
21 (&5 +(89)" ]
As a consequence the partial differential equations gover-~

ning the deflection of the plate have become uncoupled and
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the two decoupled differential equations (1) and (2) have
been obtained.
In the present problem, the temperature is assumed

to vary linearly with respect to the thickness direction z.
We also note that (Ref.167)

T(x,y,2) = T{x,y) +z1( x,y)
in which

1= %'(Tl” T,) : 7=% (Ty= T,)
where

T1= T(x,y, +%) and T2= T(XIYI - %’)'

Clearly 7,18 the temperature in the middle plane and -7 varies
along the thickness of the plate and hence 7 # '-(o.

The plan of the skew co-ordinates (X,,y,., g ) is shown
in Fig.3 in the Paper I1I, Chapter 1I.

We now transform the egquation (2) in oblique co-ordi-

ntes., For Simply-Supported plates the boundary conditions are

W=0 at x,=ta and at y,;=ta

?
D2W 22W

= 0 at =x = =
%7 x;=%fa and £ 2 © at y;=ta .

Then let us choose the deflection function for the Simply-Supp-

orted plate as

W = W Cos ﬂgngs IL}Q
o Za 24

(3)
which clearly satisfies the above-mentioned boundary condi-

tions.
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Now putting (3) in the transformed form of egquation
(2) in oblique co-ordinates and then integrating it over the
entire surface of the plate, we obtain the value of A in the

following form

A= L (v 21an®6) — (1+19) %y 7,

(4)
(As normal displacement W is our primary interest, the in-
plane displacements u,v have been eliminated through inte-
gration by the choice of appropriate functions for such dis-
placements).Again transforming the equation (1) in oblique
co-ordinates, introducing (3) and (4) in the transformed
equation and then applying the Galerkin's error minimising
technique we get the following equation determining central
deflection parameter wo/h depending on thermal load func-
tion q'a‘/Eh4

[ @+23an6)5ec%8 — 7 555mz {1+ 1) (1+ v +21an’6)
+20/A Q- v7) - sece} |(B2) +5 [ @+ v+2tante)?

+4 8+ 49tan26+29%an4e)](%9)3—“— 7683(%21)2) qé/%:) ‘

(5)

where

s = 2(a/h)%(1 + )X,

and q‘=q4mél+0ﬂﬂ7
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The equation (S5) is applicable for the immovable edge
eonditions of the Simply-Supported skew plate. For the mova-

ble edge conditions we have A = 0, so that the equation (5)

takes the fomrm

L(1+2tan?e) sec”s — 25z v/ (1= 12 -Sec”6 | (L)

+ 32 (8 + 49Tan®e + 29tante)(e)3 = T6EU-02) qé%f) |

(6)
NUMERICAL RESULTS

Numerical results are presented here in tabular
forms (Tables 1 and 2) for s = 0, 0.1, g = 0°,15°,30°
and q'at/mm? = 2,4,8,10.



TABLE -1

S =20, 1., 7,=0
5
' W ‘s Met *
q. 4 %5 /h by Present Method o/P by Berger's hod
!
4 (Ref.134 )!
Eh" e = o° 6 = 15° 6 = 30° 6 = QO 1e=150 e = 30°
!
| Movable Immovable | Movable Immovable [Movable Immovable| Immovable { Immovable | Immovable
: Edge Edge Edge Edge Edge Edge Edge Edge Edge
2 1.30156 0.%1435 1.08167 0.82069 0.6269 0.£3604 0.S013 0.79972 0.53671
4 2.1809 1.3131 1.85443 1,20857 1,14734 0.,84631 1,29017 1.16888 0.548
8 3.23354 1,78866 2.8581 1.67119 1.,89675 1.22355 1.75406 1.60902 1,2266
10 3.732498 1.5613 3.2243 1,83866 217977 1.3597 1,52254 1.76847 1.56324

* Berger's method has been applied to the present problem by neglecting ez’the second strain
invariant,in the expression for total P.E. of the plate,

09



TABLE - 2
S = 0014 i.e. z# 0

W¥,/h by Present Method W_/h by Berger's Method *
q——T'a4 ( ) ! !

- o o (o] ' (Ref.]l34 q = 1e© o
p~ 0 e = 15 e = 30 oL M e=15° { e=30

Movable Immovable Movable Immovable [MOovable Immovable Immovable{ Immovablei Immovable

Edge Edge Edge Edge Edge Edge Edge Edge ‘[ Edge
2 1.32786 0.54985 1.10168 0.83899 0.63597 0.55925 0.954058 0.83518 0.56109
4 2,22082 1.,34324 1.87831 1,20992 1.1604 0.86901 1.32336 1,1995%4 0.87185%
8 3.35106 1.81316 2,88067 1.65221 1.9111 1.24302 1,781 1.,63412 1.24706
10 3.76118 1.98415% 3.24585 1.81269 2.19385 1.37799 1.,54764 1.72188 1.38247

* e, = 0 according to Berger's method.

19
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OBSERVATIONS

From the numerical analysis of the undertaken problem
the following observations are made :

(i) The nature of the central deflection of a skew plate
under thermal loading 1s the same as that of the plate under
mechanical loading, i.e. the central deflection increases con-
tinuously with the increase of loading for any edge condi-
tions of the skew plate, whether movable or immovable.

(ii) Central deflection for movable edge conditions of
the skew plate is always greater than that for immovable edge
conditions of the plate, for the same loading in the two cases.

(i11) Irrespective of the edge conditions, the central
deflection decreases with the increase of the skew angle.

(iv) The results for immovable edge conditions of the
skew plate obtained by the present method, agree well with
the results obtained by Berger's method. It is to be noted
that Berger's method is a purely approximate method based
on the neglect of e,. But present study is based on Baner-
jee's hypothesis which suggests a modified strain-energy
expression, and thus this model embraces less approximation
(Ref,162 ) than that of Berger. Again Berger's method is
meaningful only or immovable edge conditions of the plates.,

and

(v) The deflections increase with Toe




CHAPTER 1V

LARGE DEFLECTION ANALYSES OF SKEWED

SANDWICH PLATES
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PAPER I

NON-LINEAR ANALYSES OF

SKEWED SANDWICH PLATES*

ABSTRACT

Investigations on finite deformation of sandwich plates
are gaining importance day by day due to its wide applications
in modern design. Outstanding research workers who carried out
interesting investigations in this field are E.Reissner, A.M.
Alwan and J.L.Mowinski and H.Ohnabe 19/67/122  y xapiyal40
has offered @ new set of governing equations by using Berger's
approximation to study the non-linear static behaviours of sand-
wich plates. The author has analysed in detail the case of rec-
tangular sanawich plates., The accuracy of this method depends
on & correction factor F(b/a).

In this paper an attempt has been made to analyse the
non~linear behaviours of Simply-—Supported skewed sandwich plates
having an isotropic core within isotropic upper and lower faces
and under both static and dynamic loadings. For the sake of sim-
plicity, skewed plate in the form of rhombus has been considered.
Following the modified strain energy expression proposed by

162

B. Banerjee . @ new set of decoupled differential equations

for sandwich plates, in rectangular cartesian co-ordinate system

* Published in MECCANICA, Int.J.Italian Association of

Theoretical and Applied Mechanics, 1993.
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has been derived (Ref.196 ). Then this set of differential
equations has been transformed in cblique co-ordinates to

suit them for skewed plates and solved by the Galerkin's tech~
nique. Numerical results for rhombic sandwich plates under
mechanical as well as dynamical loadings are presented and

the results of the special case,where the skew angle 6 = 0°,
are compared with the other known results. The results for

other skew angles are believed to be completely new.

GOVERNING EQUATIONS

Let us consider a rhombic sandwich plate of sides'a’,
having an isotropic core as well as isotropic upper and lower~

faces of identical thickness‘ta

pond to the bending and membrane actions of the plate; the

(vice Fig.1). The faces res-

core 18 assumed to transfer only shear deformations. Moxeover
compared with the core thickness'h, the face thickness‘ti is
supposed to be thin ehough to ignore a variation of stress
in the thickness direction of the faces,

Now let us set a rectangular cartesian co-ordinate
system (x,y.,z); x,y being in the middle plane of the core
and z the thickness direction, positive downwards. Also let
us‘set an oblique co-ordinate system (xl.yl.e) at the same
origin (one of the corners of the skew plate), X30Yq being
parallel to the sides of the plate, and &, the skew angle

of the plate (vide Fig.l in Paper I, Chapter I).
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Now following the Banerjee's hypothesis, the differen-
tial equations in rectangular cartesian co-ordinate system

governing the deflections and vibrations of sandwich plates,

(Ref,196 ) are
[?-CEVE vZ - %][”{%%%‘@ 17 (%7%- 4 19%2%)-\41 72w
B B (B v w2 R SR

2GR EEl| tR]re’ v =0 (
1)

where, € :q/G'for non-linear static deflections,

2
=—('f¢"‘é—f:&l%% for non-linear elastic vibrations,

and

T =3 o) 3o

(2a)

= constant, for non-linear static deflections,

= Cf(t) for non-linear elastic vibrations, C being a constant

depending on €. (2b)

In the above equations

W 1s the transverse deflection function,

q, the lateral load distribution function,

E, the Young's Modulus of elasticity of the material
of the upper and lower faces,

G', the shear Modulus of the core material,

D , the Poisson's Ratio of the Face material,
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ﬁ ’ g_ are the surface density and core density res-
pectively, and £(t), F(t) are the functions of time such that
£(£) = F2(t).

It is to be noted that the strain-energy expression
in Ref.196 , has bsen modified by using Banerjee‘s hypo-
thesis, which states that the stretching of the plate is pro-

portional to
L& +&)1 T

As a consequence of this assumption, a set of uncoupled diffe-

rential equations has been obtained as given above.

ANALYSIS

(A) Non-linear static behaviours of Simply-Supported

skewed sandwich plates —

To f£ind the normal displacement W, the in-plane dis-
placements u,and v of the upper and lower faces of the sand-
wich plate are eliminated here, for obvious reasons. Now with
the help of the co-ordinate transformation equations

x = X4 Cos6 and y = Yy + X Sine
we transform the equations (1) and (2a) in oblique co-ordinates,

as usual,
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- JTX,y Y
Let us choose W = W_ Sin-<*Z Sin a (3a)

Substituting(3a)in the transformed form of equation (2a)
in oblique co-ordinates and integrating over the whole area

of the plate we get

I = LH (1+ v +21an?e)

(3b)
Again choosing q = q 81n1%i Sinjlaﬂi (3c)

we introduce (3a), (3b) and (3c) in the transformed form of
equation (1) with E = q/G'. Now applying Galerkin procedure,
we arrive at the following cubic equation determining wo’ the

central deflection of a Simply-Supported rhombic sandwich plate

4 A 2
s [ FEELLSeca {14 v+ 2an®e) (1 +v +4taTT o)

+ A (5+17tan?e +12tan?e)}+£{(1+19+2tar’e)*
+2 (5 +113an"e+etante)} | () +| At gecte ()

o) B0 RN o

NUMERICAL RESULTS

Table 1 shows different numerical results of the central

deflections of a (0.254m. X 0.254m.) rhombic plate having

t, = 6.35 X 1607%, h = 1.7135 X 10 4n.
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TABLE 1

Showing wo/h Vs 6 .

E = 16.2 X 10°psm, G' = 9.3 X 10°psm, p = 0.3, qa’/en? = 10

Value of Wo/h

)
N
| ]
value ! '
of 6 IMMOVABLE EDGE ; MOVABLE EDGE
i §
) k] [] 1)
E Calculated ! Other knownf Calculatedi Other known
: value ! aly ! value ! value
. i1196] id0] i \ [196)
o° 1.4988 1.53 1.30 2.3223 2.588
15° 1.3644 - - 2.1563 -
30° 1.0328 - - 1.6360 -
45° 0.6651 - - 1.0414 -
60° 0.3450 - - 0.5051 -

Note - For movable edge conditions of the Simply-Supported

plate f? =0 .
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(B) Non-linear dynamic behaviours of Simply-Supported

skewed sandwich plates -

let us now consider free vibrations of skewed sand-
wich plates. In this case also,we eliminate in-plane inertia.
Then transforming equation (2b) in oblique co-ordinates, choo-

= X4 Fil-I
sing W = W_ Sin a Sin o F(t) (5a)

for fundamental mode of vibration and then integrating the
transformed equation over the whole domain of the plate we
get

T} = R0 +v r2tan’g) FAQx)
(5b)

Now transforming equation (1) with Ez_i fit4+ P2h) D2W

G’ 12
in oblique co~ordinates, inserting (S5a) and (S5b) in the trans-
formed equation and then applying the Galerkin's procedure,

we get the following equation for the time function.

712 +P2h 2o (frtes BahyTat
[. 1-p2 ’é;- Eti5et6 L_éiéTT;g_J{]f?

+HEERD (14 3tarle+2tante) P + [ LHEMEE (1) (1

+2tan?e) 2+ (5 + 11 tan’e+6tante) |+ A BN 1y

+2%ar’e) 1+ + 41an?0)+A(5+17tan*s + 12xan*g) |} |F>

=0 . (6)
The above equation can be put in the form

¥+ AF + BF° = 0,

the familiar Duffing's Egquation.
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with the initial conditions F(0) = 1 and F(0),= O,
the solution of equation (6) is the well-known elliptic inte-
*
gral F(t) = C (@,t,k). The ratio of the non-linear frequ-

*
ency ()4 to the linear frequency(,is given by

&= e (e (o B (T (e v

+21818)(L+ 19+ 41an?6) + A (5 +17tarPe+12 tane)|

+4 | (1 v +2tan?8) >+ A (5 + 11tan?8+ exant 9)\}]%.

h
where h, =4t 3 ., =/A and (‘31* =/A T+ B

(7)

NUMERICAL RESULTS

Numerical results of the ratio (o:/b%are shown in
Table 2. For calculations, the same data which are used in
the study of static behaviours of sandwich plates, are used

here also.
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e = - - - o

Valuee value value of cg;/cgl
of | of
® | %o/2h°  1wMovABLE EDGE '  MOVABLE EDGE
! Calculated ;Other known, ,Calculated ;Other known
1 value value . value | value
; [196] [1491} | 11961
o® 1.15028 1.12 1.14 1.03342 1.024
15° 1.16621 - - 1.03365 -
30° 0.5 1.22803 - - 1.04313 -
45° 1.36556 - - 1.06261 -
60° 1.7076 4 - - 1.11940 -
0° 1.51413 1.42 1.48 1.12774 1.094
15° 1.56211 - - 1.12860 -
30° 1.0 1.74133 - - 1.16300 -
as® 2.11166 - - 1.23150 -
60° 2.9435 - - 1.41850 -

Note - For movable edge conditions of the Simply-Supported plate

'y

1

= 0, as usual.,
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OBSERVAT IONS

From the calculated results, the following observa-
tions are made :

(1) The results of both static and dynamic behaviours
of a sandwich plate having skew angle 6 = 0° and aspect ratio 1
are in excellent agreement with those obhtained by Dutta, S.
aﬁd Baner jee, B.196 |

(i1} It is seen that the central deflection gradually
decreases with the increase in skew angle for both movable
as well as immovable edge conditions.

(1ii) For any assumed skew angle the central deflec~
tion is greater for movable edge conditions than that for
immovable edge conditions. This is quite expected from the
practical point of view.

(iv) In the dynamic case, the frequency ratio “i/hh
increases continuously with the skew angle ©, for both
movable as well as immovable edge conditions of a skewed
plate, the ratio for immovable edge conditions being always

greater than that for movable edge conditions,

Greater deflections, obtained in the present study
in comparison to the deflections obtained from the other
theories in open literature, indicate acceptibility of the
present method for practical purposes.

The great advantage of the present method lies in the
fact that the accuracy of this method does not depend on any

140

correction factor and thus holds good for sandwich plates

of different geometry.




CHAPTER V

LARGE AMPLITUDE FREE VIBRATIONS OF SKEW PLATES INCLUDING
TRANSVERSE SHEAR DEFORMATION AND ROTATORY INERTIA =

A NEW APPROACH
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PAPER I

LARGE AMPLITUDE FREE VIBRATIONS OF SKEW PLATES INCLUDING
TRANSVERSE SHEAR DEFORMATION AND ROTATORY INERTIA -

A NEW APPROACH ¥

ABSTRACT

In the present paper, an attempt has been made to
study the large amplitude flexural vibrations of clampéd and
Simply-Supported homogeneous, transversely isotropic elastic
rhombic plates including the effects of transverse shear de-
formation and rotatory inertia. BEmploying Banerjee‘'s hypo-
thesisl62'l79, a new set of decoupled differential equa-
tions have been formed in obligue co-ordinates and the final
equation for the time function has been obtained for a rhom-
bic plate by the use of well-known Galerkin technigue. Compu-
tations are, however, restricted to the fundamental mode of
flexural vibrations, which are usually considered sufficient
for practical and engineering purposes. The>governing equa-
tions derived here, agree with those given in reference 179 .,
when the skew angle tends to zero. A good number of numerical
results for clamped and Simply-Supported rhombic plates hav-
ing immovable as well as movable edge conditions are care-

fully computed. Some results for clamped rhombic plates are

* Accepted fer publication in the Journal ef Sound and Vibratien.
To be appeared in the issue of Nevember 1994,
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compared with those available in the references 146 and 151
To the author's opinion the agreement is good. The results

for Simply-Supported rhombic plates could not be compared

due to the absence of similar results in open literature.

It has been found that the influences of skew angle, tran-
sverse shear deformation and rotatory inertia on the large
amplitude vibrations of elastic plates are so dominant as

not to be set aside during analyses of their non-linear vibra-

tion characters,
ANALYSIS

let us consider a rhombic plate of skew angle 6 whose
uniform thickness is h and edge-length 2a. The material of the
plate is homogeneous, transversely isotropic having mass den-
sity P Young's Modulus E and Poisson's Ratio 19 . The origin
of the co-ordinates is located at the geometric centre of the

plate (vide Fig.3, Paper II, Chapter 1I). The deflections are
considered to be of the same order of magnitude of the plate

thickness,

We now consider the uncoupled set of differential equa-
tions proposed by R.Bhattacharjee and B.Banerjee179 « These
equations in rectangular cartesian co-ordinates governing the

vibrations of an elastic plate take the following forms

VAW saenk(Ey) T POV (3E o)




+5eo5n K&) VLV w{(BEf + (857 2 {8 (B8)°
+ (YR +4 P30 LT 6 (£ 22 (y2y)
~F7) ($H + v 3a) - Q—[VZWK J+(39))
+2{$B ) + SHRY) T4 335 S5+ rocg B
T2 =L@+ v ()} + B 33

oc being the coupling parameter of the systenm,

<1>°

)

and Cp = E:/ (1- 1)2 )p]% the speea or wave propagation along
the surface of the plate.

We are hereby interested in the fundamental mode of
transverse vibrations of elastic plates only, for obvious
reasons.

With the help of the co-~ordinate transformation
equations, x = X4 Cos@ , Y =Y, + X4 Sine, the equa-~
tions (1) and (2) are transformed in oblique co-ordinates.

The transformed equations are respectively

Sl:ax,i —43ing ‘bxi'ﬁ‘o‘y - ‘o_abcf'quyia““z@ 42 8iNn e)ﬁ
+% ]+ 50- v")K@P) Z k2 72 S%ZGQW-—zsme%%;gi
+5%T>[S e(bxn 2SLT\6_O)C 'b’ﬂ>+(17+:tdﬂ29)ﬁw—f
+ 5( 1;2) K(E Sec 6(%—7 28in 0 =05 ‘on:oyi'F 3%%}[@046@"”

2810 558 + SUD(E -2 smed 35+ G4}
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+2{Sec49(%3—w———zsme -O—gi’ggﬁsm%gg%)(g%-sme%%—i B
+ 3L EH) 2800 (3558, — Sin 6 BT )BE, —5im 688 B4t |
—£- (&)’ 52[%5@—2&719 o, + 5—5&]——"2’(2&) X
X[Bec?0 (33 —25im 8 w2 in) + (v +ran?0) i |- Fx[gec’e>
x(—%ﬁcﬂf-—zsme 2+ 52“){(%&) —28inH -g%;gg)l}
+2{secto(BHE —25in65E 5y +5in*0391)( 3%, ~5M6 Sy,

W@g) + 28070 (221 ~ 5in6 o8 (S5 -sine 3555, }]

A2
h2c?’- otz — =0
(3)

and

ShL 121y =L [se0{ (B —20ime 3L 34}
+(p+ian’e) (%‘%DZ]-FS 28 (3%~ sino Y+ Y .

“)

Now choosing the deflection function for the fun~

damental mode of vibrations as

=1 Y
W =2
4}‘00 () (1 + Cos g}a‘.‘) (1 + Cos —i-éi) (5)
for a clamped rhombic plate, and as
W = J1Xy a5 (6)
A, T(t) Cos 257 Cos I

for a Simply~-Supported rhombic plate, and then integrating
the transformed equation (4) over the whole area of the pla.
tes, we respectively get

—_—2 _ 22
%” = gllfee 1+ p+21an’e) (7)
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for the clamped rhombic plate, and

&% = 3I0A (1 v+21an6)

for'the Simply-Supported rhombic plate.

(8)

Here it is to be noted that for transverse vibration
the normal displacement w(xl'yl't) is our primary interest
and hence the in-plane displacements u,v in equation (4) have
been eliminated through integration by choosing suitable ex-

pressions for them in the forms

o o
u = E%R(Hi)smﬁg& ’(z(t) and v = th('%) COS‘-Q'%(:L'1 72&)
R=4 R=0

Also it is to be noted that the deflection function in the
form (5) satisfies the boundary conditions

W =0 along x; =%a and vy, =ta;

&:%% = 0 along x; = a and Y,

for a skew plate clamped along all the four edges and the

+a

deflection function in the form (6) satisfies the boundary

conditions

a

W = 0 along x, =%ta and Y,

1 i

%—%: %%%E::o along x, =%a and y, =%2
for a Simply-Supported skew plate, '
Again introducing equations (5) and (7) or (6) and
(8), (as the case may be),in the transformed equation (3)
and then applying the Galerkin's error minimising tech-

nique we get the following differential egquations for the
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time function (t)

[+ 302558 18] + $ 52 () [ +sire) sees |7

+3- I3 () [Be {0+ v +2ran?e)* + 5a (3 + 31 tan"e+1star’e))
2L 1+ v+ 21an0)(1+ 1 +3 tan*6) + 22 (1+3tan’e
+2tane)} IEBLe 182 B21% =0

for the clamped rhombic plate, and

[ B85 571 7+ Lk (B[ sire)see] 7

+;1ﬂé‘§r<—,%-) [3-{(t+v+2tan’e)>+A (5+11tan’+6 %aﬁ”fe)}

(9)

+2g{ (1+v+21an*e)(1+ v+ 4¥an?e) + A (5 +17 tan%e

+12°cdﬂ46)}ﬁE2—£%§ﬂ/"82]3273 = . (10)

for the Simply-Supported rhombic plate, where (D/ph) = h c2/12

when D = Eh3/12(1-v%) the Bending Rigidity of the plates,

8 = h/2a the thickness-~to-span ratio, 4 = K(E/Cc), (K being

1 for isotropic elastic plates”9 ). the quantity signifying
transverse shear deformation and rotatory inertia and B = Aoo/h
the non-dimensional amplitude, The equations (9) and (10) are
the familiar Duffing's equations. The solutions of these equa-
tions subject to the initial conditions 7 (0) = 1 and ;((0) =0
are well-known and are obtained in terms of Jacobic elliptic

functions.
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NUMERICAL RESULTS

Numerical results are presented here in the tabular
forms, both for immovable as well as movable edge conditions
of moderately thick isotropic skew plates . It is to be borne
in mind that for movable edge conditions & = O. This is be-
cause movable edge implies stress-free boundarye.

The ratios of the non-linear period T* of vibrations
including the effects of transverse shear deformation and rota-
tory ineritia to the corresponding linear period T ot vibra-
tions not incluaing those effects are computed for skew angles
e = 0°, 15°, 30° and 45°; thickness parameters § = 0.1, 0.0S5,
0.03 and 0.025; Poisson's Ratio ¢ = 0.3; M = 2.5, 20 and 30
and at non-dimensional amplitudes of vibration E =0, 0.2,
0.4, 0.6, 0.8 and1 (Tables 1 - 7). In the Table 8, the
results of the present study are compared with those obtained

from the references 146 and 151.
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TABLE 1

Clamped Square Plate ( & = 0°)

T*/T for Immovable Edge T*/T for Movable Edge

- — -~ ——

™

;
)
S ! f ; : !
5 M= 2.53 M= 20 Efts 30 ' Ji= 2.5 i/ta 20 i M= 30
) 1.03%6 1.2565 1.3669 1.0356 1.2565 1.3669
0.2 1.,0300 1.2438 1,3494 1,0331 1.2509 1.3591
1/10 0.4 1.0138 1.2079 1.3007 1.0259 1.2344 1.3365
0.6 0.9886 1,1546 1.2304 1.0142 1.2084 1.3012
0.8 0.9562 1.0907 1.1490 0.9985 1.1746 1.2564
1.0 0.9191 1.,0224 1.0648 0.9795 1.1352 1,2052
0 1.0090 1.0699 1.,1032 1.0090 1.0699 1.0132
0.2 1.0041 1.0634 1.0958 1,0069 1.0671 1.0999
1/20 0.4 0.9898 1.0447 11,0744 1.0005 1.0587 1.0903
0.6 0.9673 1.0156 1.0414 0.9902 1.0451 1.0748
0.8 0.9384 0.9788 1.0001 0.9763 1.0270 1.0542
1.0 0.9048 0.9370 0.9536 0.9593 1.0051 1.0294
0 1.0040 1.0317 1.0471 1.0040 1.0317 1.0471
0.2 0.9992 1.0262 1.0413 1.0019 1.0293 1.0446
0.4 0.9853 1.0103 1.0243 0.9957 1.0222 1.0370
1/30 0.6 0.2633 0.985% 0.9977 0.9857 1.0107 1.0247
0.8 0.9350 0.9536 0.9639 0.9721 0.9953 1.0082
1.0 049020 049170 0.9252 0.9555 0.9765 1,.9882
) 1,0023 11,0179 1.0268 1.,0023 1.0179 1.0268
0.2 0.9975 1.0128 1,0214 1.0002 1.0157 1.0244
/40 0.4 0.9837 0.9979 1.0059 0.9940 1.0090 1.0175

0.6 0.9619 0.9745 0.9817 0.9841 0.9983 1.0063
0.8 0.9338 0.9444 0.9504 0.93706 0.9838 0.9912
1.0 0.9011 0.9096 0.9144 0.9541 0.9661 0.9728




Clamped Rhombic Plate with Skew Angle

TABLE 2

6 = 15°

84

T*/T for Immovable Edge

ET*/T for Movable Edge
]

- -

2
5 i B — . . : .
: .,U~= 2.5 ;,u—=2o ‘W M= 30 M= 2.5 ;ﬂ:zo iM= 30
K : : : . :

0 1.0381  1.2730  1.3895  1,0381  1.,2730  1.3895

0.2  1.0323  1.,2590  1,3700  1.0356  1.2670  1.3810

0.4  1.0156  1.2198  1,3163  1.0283  1.2493  1.3566

1710 46 ©.9994  1.1621  1.2395  1.0165  1.2217  1.3418
0.8  0.9567  1.0937  1.1518  1.0007  1.1859  1.2708

1.0  0.9186  1.0213  1.0624  0.9814  1.1444  1,2163

0 1.0097  1.0748  1.1103  1,0097  1,0748 -1.1103

0.2  1.0046  1.0680  1.1024  1.0075  1.0718  1.1C69

C.4  0.9900  1.0483  1.0797  1.0011  1.0632  1.0969

1720 46 0.9674  1.0179  1.0449  0.9909  1.0494  1.0809
0.8  0.9375  0.9796  1.0015  0.9770  1.0309  1.059

1.0  0.9033  0.932  C.9530  C.9601  1.0085  1.0341

0 1.0043  1.0339  1.0504  1.0043  1,0339  1.0504

Ce2  0.9999  1.0282  1.0443  1.0022  1.G6315  1.0478

0.4  0.9857  1.0118  1.0266  0.9961  1.0243  1.0401

1730 46 G.9638  0.9862  0.9991  ©.9860  1.0128  1.0276
0.8  0.9340  0.9535  0.9641  0.9725  0.9973  1.0109

1.0 0.9065  0.9159  ©.9242  0.9560  0.9783  0.9906

0 1.0029  1.0192  0.0287  1.0029  1.0192  1.0287

0.2  0.9979  1.0139  1.0232  1.0004  1.0170  1.0263

G.4  0.9838  0.9986  1.0071  0.9943  1.0103  1.0194

1740 46 0.9613  G.9746 0.9821  0.9843  0.9995  1.0081
0.8  0.9327  0.9438  0.9501  0.9710  C.9850  0.9929

1.0  0.8995  0.9083  0.9132  0.9546  0.9673  0.9744




TABLE 3

Clamped Rhombic Plate with Skew

Angle ©

= 30°

T*/T for Immovable Edge

T*/T for Movable Edge

N 4
] : :
8 s B ; } J ; ' '
i =2.5 | =20 | =30 iM=2.5) M=20} M= 30
: ; : i : : i
0 1.0471  1.3311  1.4690 1.0471 1.3311  1.4690
0.2  1.0407  1.3126  1.4421 1.0446 1.3236  1.5481
G.4  1.0221  1.2614  1.3698 1.0370 1.3020  1.4269
1710 46 (.9933  1.1883  1.2706 1.0247 1.2682  1.3792
0.8  0.9568  1.1046  1.1622 1.0083 1.2252  1.3200
1.0 0.9175  1.0192  1.0567 0.9883 1.1759  1.2541
0 1.0120  1.0922  1.1355 1.0120 1.0922  1.1355
0.2  1.0066  1.0843  1.1260 1.0115 1.0891  1.1317
0.4  0.9911  1.0615  1.0989 1.0035 1.0797  1.1205
1720 56 (.9677  1.0266  1.0586 0.9933 1.0647  1.1131
0.8  0.9365  0.9832  1.0074 0.9794 1.0447  1.0789
1.0 0.8995  0.9348  0.9523 0.9625 1.0206  1.0507
0 1.0054  1.0420  1.0624 1.0054 1.0420  1.0624
0.2  1.0002  1.0357  1.0555 1.0033 1.0395  1.059
6.4  0.9849  1.0176  1.0355 0.9972 1.0321  1.0515
/30 (6 0.916 0.9903 1.0046 0.9873 1.0201 1.0383
0.8  0.9313  0.9537  0.9659 0.9739 1.0041  1.0207
1.0  0.8964  0.9132  0.9221 0.9575 0.9846  0.9993
0 1.0039  1.0238  1.0356 1.0039 1.0238  1.0356
0.2  0.9985  1.0181  1.0295 1.0010 1.0216  1.0331
.4  0.9839  1.0015  1.0119 0.9950 1.0148  1.0260
1740 46 (.9598  0.9757  0.9925 0.9888 1.0038  1.0144
C.8  G.9299  0.9427  ©.9499 0.9720 0.9892  0.9988
1.0  0.8953  0,9050  0.9103 0.9558 0.9712  0.9798




Clamped

Rhombic Plate with Skew Angle

TABLE 4

6 = 45°

86

T*/T for Immovable Edge

T*/T for Angle Edge

e e wow e o - -

§ i P : : : :
; E Eﬂamyﬂmzo 3#=w N¢2siﬂm20§#=w
o i . 1 ! :
0 1.0699  1.4690 1.6543  1.0699  1,4690  1.6543
0e2  1.0621  1.4381 1.6070  1.0670  1.4575  1.6366
0.4  1.0395  1.3563 1,4870  1.0585  1.4247  1.5870
1710 6.6 1.0049  1.2468 1.3%60  1.0448  1.3749  1.5136
0.8  0.9620  1.1308 1.1856  1.0266  1.3133  1.4264
1.0  0.9147  1.0196 1.0596  1.0045  1,2452  1.3838
0 1.0180  1.1355 1.1976  1.0180  1.1355 - 1.1976
0e2  1.0140  1.1250 1,1840  1.0158  1.1316  1.1926
0.4  0.9947  1.0949 1.1622  1.0093  1.1202  1.1780
1720 46 0.9679  1.0498 1.0903  0.9988  1.1020  1.1550
0.8  0,9338  0.9954 1.0246  0.9847  1.0779  1.1249
1.0  0.8949  0.9364 0.9554  0.9695  1.0492  1.0895
0 1.0080  1.0624 1.0922  1.0080  1.0624  1.0922
0.2  1.0024  1.0548 1.0835  1.0060  1.0596  1.0890
0.4  0.9899  1.0354 1.0584  0.9999  1.0514  1.079
1/30 6,6 0.9666  0.9997 1.0204  0.9900  1.0382  1.0644
0.8  0.9292  0.9580 0.9736  0.9766  1.0206  1.0442
1.0  0.8910  0.9120 0.9221  0.9603  0.,9992  1.0199
0 1.0045  1.0356 1.0529  1.0045  1.0356  1.0529
0.2  0.9990  1.0290 1.0457  1.0025  1.0331  1.0502
0.4  0.9843  1.0100 1.0249  0.9965  1.0260  1.0424
1740 46 0.9591  0.9806 0.9939  0.9869  1.0111  1.0298
0.8  0.9262  0.9436 0.9520  0.9788  0.9990  1.013C
1.0 0.8897  0.9027 0.9081  0.9599  C.9802  0.9925




TABLE 5

Simply=-Supported Rhombic Plate with Skew Angle 6 =

15

o

87

T*/T for Immovable Edge

T*/T for Movable Edge

1 5
8 i E s ' ' H H '
| M= 2.5 =20 M=30 IM=2.5 !M=20 |M=30
1 i K] \ (] i ]
c 1.0287 1.2104  1.3031  1.0287  1.2104 1.3031
Ge2  1.0158  1.1892  1.2765  1.0261  1.2062 1.2976
Ced  ©.9801 1.1318  1.2057  1.0183  1.1934  1.2817
/10 46 0.9284  1.0525  1.1104  1.0058  1.1731  1.2564
0.8  0.8681  G.9652  1.0086  C.9891  1.1463 1.22735
1.0 0.8056 0.8795  0.9112  ©.9689  1.1145 1.1848
0 1.0072 1.0566  1.0838  1.0072  1.0566 1.0838
Ge2  0.9952 1.0426  1,0686  1.0048  1.0537 140807
0.4  G.9617 1.0039  1.0270  0.9976  1.0453  1.0716
1720 4.6 ©.9128  0.9483  0.9674  C.9858  1.0318  1.0570
0.8  0.8556  0.8841  0.8993  ©.9702  1.0137 1.0375
1.0 G.7957 C.818C  0.8298  0.9511  0.9919 1.0140
o 1,0033 1,0255  1.0381  1.0033  1.0255 1.0318
Ge2  G.9914  1.0128  1.0249  1.0008  1.0229 1.0354
0.4  ©.9582  0.9774  0.9882  0.9937  1.0153 1.0274
1730 o6 0.9099 0.9261  0.9351  0.9821  1.0029  1.0146
0.8  0.8532 ©.8663  0.8735  0.9666  0.9864 0.9974
1.0 0.7939  (.8041  0.8098  0.9477  0.9663 0.9766
, 1.0018 1,0144  1.0216  1.0018  1.0144 1.0216
Ue2  0.9900 1.0021  1.009C  0.9994  1.0120 1.G190
04 0.9570  0.9679  (.9741  ©.9923  1.0045 1.0115
1740 (6 0.9089 0.9181  ©.9232  0.9808  0.9926  0.9992
C.8  0.8523 G.B598  (0.8640  (.9653  0.9765  0.9829
1.0 0.7932  ©.7991 047763  0.9465 049571 09630




TABLE 6
Simply-Supported Rhombic Plate with Skew Angle 6 = 30°

88

T*/T for Immovable Edge ' T*/T for Movable Edge
1

5 A M= 2.5 ip=20 M= 30 7ﬂ= 2.5 if= 20 é,u= 30
. . H | ! ! :

0 1.0356  1.2565  1.3669  1.0356  1.2565  1.366¢

0.2 1.0223  1.2309  1.3332  1.0331 1.2519  1.3604

Ged  0.9855  1.1627  1.2456  1.0261 1.2383  1.3417

/10 e 0.9323  1.0710  1.1319  1.0146 1.2167  1.312:

G.8  G.8707  1.9728  1.0151  ©.9992 1.1883  1.2741

1.6 048069  0.BBUC  ©.9207  (.9804 1.1546  1.229¢

G 1.069C 1.0699  1.1032  1.0G09C 1.0699  1.1032

0e2  ©.9969  1.0551  1.0867  1.0068 1.0672, 1.1002

0.4  0.9632  1.014C  1.0413  1.0003 1.0593  1.0914

1/20 Ge6  0.9141  0.9554  0.9772  0.9898 1.0465  1.0777

0.8  C.8566  0.8883  (.9047  0.9757 1.0293  1.058:

1.0 0.7966  G.B1ST  C.8315  €.9584  1.0085  1.035:

0 1.604C  1.0317  1.0471  1.0040 1.0317  1.0471

0.2 0.9922  1.0186  1.0333  1.0019  1.0293  1.044€

Ged  0.959C  C.9823  C.9952  (.9955  1.0223  1.G37:

1730 46 0.9107  C.9153  (.9402  0.9852 1.011C  1.0253

0.8  0.8539  0.8686  0.8767  0.9713  0.9957  1.0094

1.0 0.7946  CoB054  C.8113  0.9542  C.9772  (.989¢

0 1.0023  1.0180  1.0268  1.G023 1.C180  1.026€

G.2  G.9905  1.0055  1.0139  1.C601 1.0157  1.024¢

Cod Ge9575  C.9707  G.9782  0.9938  1.0090  1.0176

1740 (6 (.9094  ©.9203  G.9264  0.5835 0.9982  1.0064

CeB  0.8530  (.S614  0.8661  0.9697 C.9836  0.9914

1.0 G.7939  0.8001  G.8035  G.9528 0.9658  G.9731




TABLE 7

Simply-Supported Rhombic Plate with Skew Angle 6 45°
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:’ : T*/T for Immovable Edge ‘{ T*/T for Movable Edge
8 B | T : ? " :

; f M= 2.5 3/£3 20 ifL=,?° 3/L= 2.55/4= 20 i/4==3o
0 1.0529 1.3669  1.5174 1.0529 1.3669 1.5174
0.2  1.0390 1.3363 1.4757 1.0506 1.3610 1.5090
0.4  1,0006 1.2561 1.3692 1.0439 1.3437 1.4846
1710 4,6 0.9453 1.1497 1.234C  1.0330 1.3165 1.4466
0.8  0.8814¢ 1,0381 1,0982 1.0182 1.2810 1.3980
1.0  0.8157 0,9332  0.9755 1.0003 1.2395 1.3424
0 1.0135 1.1032 1.1514 1.0135 1.1032 1.%514
0.2  1.,0012 1.0872 1.1332 1.0115 1.1005 1.1482
C.d  0.9668 1.0433  1.0835 1.0057  1.0925 1.1387
/20 ;6 0.9168 0.9808 1.0137 0.9963 1.0794 1.1235
0.8  0.8584 0.9097 0.9356 0.9836 1.0620 1.1033
1.0 0.7975 0.8376  C.8574 0.9679 1.0408 1.0789
o 1.0060 1.0476  1.0699 1.0060 1.0476 1.0699
0.2  0.9940 1.0335 1.0554  1.0041  1.C449 1.0675
0. 0.+9603 009957 1.0151 C.9985 1.0383 1.0603
1/30 . 0.9113  0.9412 0.9574 (0.9893 1.0276 1.0487
.8  0.8539 0.8781 0.8911 (.9769 0.01132  1.0331
1.0 C.7950 ©.8131 0.8233 0.9617 0.9956 1.0141
0 1.0034 1.0268  1.0399 1.0034 1.0268 1.6399
0.2  ©0.9914 1.0140  1.0266 1.0015 1.0247 1.0377
0.4  0.9580 0.9782  0.9895 (0.9959 1.0186 1.0313
1740 (6 0.9100 0.9265 .9360 0.9859  1.0087 1.0209
0.8  0.8542  0.8663  0.8739  0.9746 09953 1.0069
1.0 0.7942 0.8038 (.B098 0.9575 0.9789 049897




It is to be noted that for 6 = OO

in the case of Simply-Supported isotropic
plate, the results of the present study are in exact agreement with those

obtained in reference 179 .

TABLE 8
Some clamped plate results compiared with those obtained from refe~
rences 146 and 151; M= 2.5, 1 = (.25, 8§ = C.1.

T*/T
Immovable Edge f Movable Edge

a o} N o ' o ' _ o
B . e = 15 . @ = 30 ! e = 15 . 6 = 30

] 7 | S T L Al T T 14

‘Present | i Present | ! Present | ! Present |

\Approach ! Ref.146: Approach ! Ref,146: Approach | Ref.151: Approach Ref.151
O 1.036890C 1.03C¢0 1.04578 1.6330 1.G369 1.0300 1.04578 1.G330

0.2 1.03217 1.025C 1.04036 1.0233 1.0352 1.0260 1.0440 1.0293
Ge6 0e9963 Ge9744 G.9998C 0.,9800 1.0220 0.9938 1.03015 1.C066
1.0 0.93466 (C.8925 0.935154 G.92056 C.9968 G.9470 1.00410 C.9678

06
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OBSERVATIONS

The non-linear behaviours of isotropic elastic thick
skew plates at large amplitude transverse vibrations are evi-
dent form the numerical results presented here. The combined
effects of transverse shear deformation and rotatory inertia
on the large amplitude vibrations of skew plates are shown
by a constant increase in the non-linear period T* with A4 , b
remaining constant. The increase in non-linear period is less
for vibrations at moderately large amplitudes, but throughout
the range of amplitude ‘ﬁ . the effect of His very sighifi-
.cant, For the same value of M4 , as the thickness of the plate
decreases, T*/T decreases due to the decreasing influences
of transverse shear deformation and rotatory inerita. Those
effects are insignificant for § £ 1/30.

The period-amplitude relationship is of the hardening
type i.e. the period of non-linear vibration decreases with
increasing amplitude irrespective of the boundary conditions
whether movable or immovable. This is a well-known pheno-

menon 146,151

. Again for a given value of M , the period
ratio for a skew plate (whether clamped or Simply=-Supported)
with movable edge conditions is greater than that for a co=-
rresponding plate with immovable edge conditions.This trend
is in agreement with that reported in open literature for
isotropic rectangular and skew plates.

The period ratio varies significantly with skew angle

6. Square plates seem to be more responding to the influences
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of transverse shear deformation and rotatory inertia at small
amplitudes than at relatively large amplitudes, but, reverse is

151 . For the same values of ,/L,E and

the case with skew plates
8 . T*/T generally increases with 8 whether the plate is clamped
or Simply-Supported. As & tends to zero, the present results

179 in the

agree exactly with those of Bhattacharjee and Banerjee
case of Simply-Supported thick plate. It is found also that for
the same values of 6,M, and § , T*/T is greater for clamped

plate than for Simply-Supported plate.

A comparative study of the results:presented in Table 8
speaks for itself. The larger values of T*/T by the presené
approach indicate the influences of transverse shear deformation
and rotatory inertia more prominently than by other approaches

in open literature.
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CONCLUSION OF THE THESIS

The present project is an humble attempt to offer a new
set of uncoupled differential equations in oblique co-Ordinates
to study the non-linear behaviours of different rhombic plates
(skew plates having aspect ratio 1), under’Static’, 'Dynamic’
and‘Thermal' loadings. It is observed from the numerical results
of the present study, [ﬁs shown in the different tables for diffe-
rent rhombic plates (viz. thin rhombic plates of uniform thicke
ness, rhombic plates ot variable thickness, rhombic sandwich
plates and thick rhombic plates of uniform thicknessi} . that,
the non-linear behaviours of skew plates can be predicted with
ease and accuracy by applying the present set of differential
equations. Moreover results for Clamped and Simply-Supported
plates with immovable as well as movable edge conditions can be
obtained from the same sef of differential equations. This is an
additional advantage over Berger'’s equation used by different
authors in analysing non-linear behaviours of elastic skew plates.
Furthermore, unlike vVon-Kdrmah's coupled differential equations
in oblique co-ordinates, the proposed differential equations
offer reasonably good results from the practical point of view,
with minimum computational labour, because of its uncoupled form.

Thus considering the simplicity, versatility and practi-

cability, it may be concluded that the proposed differential



equations presented in tne thesis are qQuite efficient to f£1l1l

up void in the non-linear theory of skew plates.
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Abstract—Non-linear static behaviour of rhombic plates has been analysed following Banerjee’s
hypothesis (B. Banerjee, Large deflections of polygonal plates under non-stationary temperature.
J. Thermal Stresses 7, 285-292 (1984)). Calculations have been carried out for different skew angles.
To test the accuracy of the theoretical results so obtained, experiments were carried out on copper
and steet rhombic plates. The theoretical results were found to be in excellent agreement with those
obtained from an analysis of the experimental data.

INTRODUCTION

Skew or oblique panels find wide applications in the aircraft and spaceship industry; hence,
a study of the non-linear behaviour of skew plates is of great importance. In contrast to the
non-linear behaviour analysis of elastic plates of geometries like circular, rectangular,
triangular and elliptic, skew plates have not received much attention. This may be due to
their relatively difficult mathematical models.

The most important work in this field is due to Nowinski [2], who analysed the large-
amplitude oscillations of oblique panels having initial curvature. Two more interesting
papers on non-linear vibration problems of skew plates are by Sathyamoorthy and Pandalai
[3, 4]. They have analysed the non-linear flexural vibrations of simply supported skew
plates of isotropic as well as anisotropic materials, using Berger’s equation. In contrast to
works on non-linear vibration problems of skew plates, the literature on non-linear
deflection problems of skew plates is scanty. In this field three interesting papers could be
located. Kennedy and Simon [5] carried out non-linear analysis of skew plates by the
perturbation method. Srinivasan and Ramachandran [6] analysed the large deflections of
skew plates of variable thickness using the Newton-Raphson procedure. Ashton’s [7] work
is on the linear static analysis of anisotropic skew plates. It is interesting to note that most of
these investigations are carried out on skew plates of clamped edges only and the case of
simply supported edges has not received proper attention.

In this paper large deflections of simply supported rhombic plates are studied following
Banerjee’s approach. A set of uncoupled differential equations has been obtained in oblique
coordinates and solved by applying the Galerkin technique. The case of a simply supported
rhombic plate is discussed in detail. To test the accuracy of the method, experiments were
carried out on copper and steel rhombic plates. The details of the experiments are given in
the Appendix. The numerical results obtained from the theoretical and the experimental

analysis are compared. The present method appears to be more acceptable from the
practical point of view.

* Formerly at: Department of Mathematics, Government Engineering College, Jalpaiguri and Hooghly Mohsin
College, Serampore, Hooghly, West Bengal, India.
Contributed by J. N. Reddy.
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ANALYSIS

Consider a thombic plate of an elastic, isotropic material, having uniform thickness of h.
Let the size of each side of the skew plate be a which is sufficiently large compared to h. The
origin of the rectangular Cartesian coordinate (x, y) is located at one of the corners of the
skew plate (see Fig. 1). The plate is considered to be simply supported along its edges and

loaded uniformly all over.
Following Banerjee’s hypothesis [ 1], the differential equations, referred to the system of

rectangular Cartesian coordinates are:

124 ( 0*w o 6/ ow \? fw \?
4 kg S RS 2 bt et
Ve g (3x2 +v@y2> hz{v w[(f?’X) +(€‘y) ]
*w (dw\* *w[dw\? w0 \[éw\ /[ étw q
s &) S G G E - o
where

@ = the deflection normal to the middle plane of the plate
v = Poisson’s ratio of the material of the plate

A=v?

g = load per unit area acting on the plate

D = the flexural rigidity of the plate = Eh%/12(1 — v?)

E = the modulus of elasticity of the material of the plate

1{/0w)\? dw \? du  Ov
(&) (5 as @

which is a constant depending on the surface and edge conditions of the plate, and V2 is the

Laplacian operator.
For a skew plate, let us adopt a system of oblique coordinates (x,, y;, ), as shown in

Fig. 1, 0 being the skew angle.

Clearly,
x=x,0080, y=y +xsinf (3)
are the coordinate transformation equations. Hence the partial differential operators
become
0 d ¢ ¢ é
—=sech| — —sinf— }, — =
ax = (ax, e ayl) & = o,
62 , 62 62 62
— = —3 — 2si tan? 60—
352 = sec e(axf 251n96x15y1>+ an P
3 .
C B
2]
a

Fig. 1. Plan form of skew plate.
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4 64
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Using these operators, transforming the differential equations (1) and (2) in oblique
coordinates, we arrive at the following set of transformed differential equations:

4 o4 4 o4 o4
sec 0[6 — 4sin 0( ® 0“’3>+2(1+2sm 022 +_“’]

oxt 0x30y, t .0 oxioy? = oyt
124 *w 0? 5 070 62w:|
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Now to solve the problem, let us assume
® = wosin L sin 2L (6)
a a

o being the maximum central deflection.
For the value of 4, let us integrate equation (5) over the whole area of the plate. Then we

have
a fa 1 a (fa aw 2 a(l) 2
Acosfdx,dy, == sec? 8 —) +sin20<—>
fofo B 2fofo{ ':(5"1 0y,
ow 6«)):] <8w>2}
— 2siné — |+ V| — cosfdx,dy, .
<5x1>(5y1 0y, i

nwo

After integration, we get

A=

s—(1 + v + 2tan? ). (7

Here, it is to be noted that, since the normal displacements are our primary interest, the in-
plane displacements have been eliminated through integration by choosing suitable ex-
pressions for them, compatible with their boundary conditions.

Now, applying Galerkin’s method of approximation to the transformed differential
equation (4) and keeping in mind the value of 4 from equation (7), we get the following


file:///dxidyi
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cubic equation determining f ( = wy/h).

(1+ sin’ﬂ)(%) 2{[(1 + ) + (1 — v)sin2 §]2

. 3 4 ga*
+ v3(5 2q Yo \" _ 4
vi(5 + sin )}< . i ) cos 6. (8a)

Adopting the well known equation [8], of Berger with e,[1] neglected, the corresponding
cubic equation determining the central deflection parameter (for immovable edges only)
takes the following form (after applying Galerkin’s technique):

(1 + sin 9)( - >+15< - ) 4 (‘g’h)cos 0. (8b)

NUMERICAL CALCULATIONS

For a steel plate we have E = 2x 10'? dyne/cm? and v = 0.3, for which equation (8a)
becomes

(1 +sm20)< . >+ [(1.3 + 0.7sin? §)?

- 2 Wy 3 ~15 qa4
+ 0.09(5 + sin6)] " =22.66x 10 " cos* 9 (9a)

whereas for a copper plate we have E = 1.25x 102 dyne/cm? and v = 0.333, so that
equation (8a) becomes

3
(1 + sin? 9)(%) + 301333 + 067sin? )

e @0\ _sfqa*
+ 0.11(5 + sin’ 6)] 5 ) = 3546 x 107 1% Ty cos*6. (9b)
Also, for a steel plate equation (8b) becomes
3 qa4
1+ sm20)< > + 1. 5( ; ) = 22.66 x 10“5<h—4>cos49 (9¢c)
and for a copper plate it becomes
3 4
(1 + sin? 9)(%) + 1.5(%) = 35.46 x 10_15(‘%>cos"'0. 9d)

Tables 1 and 2 present a comparative view of the various theoretical and experimental
values of the central deflection parameter f ( = w,/h) for different values of the load
function Q ( = qa*/Dh), for the case of steel plate and copper plate, respectively. For
movabie edge conditions the value of A4 will be zero. (The experimental method is explained
in the Appendix.)

OBSERVATIONS

It is observed from the two tables that the results of the present study are in excellent
agreement with those obtained from the experimental analysis. It is well known that
Berger’s method fails [9] miserably under movable-edge conditions. The results for simply
supported immovable edges, obtained by Berger's method (as shown in the Tables 1 and 2)
show that this method is not even acceptable from the practical point of view. It is worth
noting that Berger’s method always gives less deflections for a given load. The errors of
Berger’s method (as shown in Tables 1 and 2) are certainly questionable from the view point
of safety design.



Table 1. The central deflection parameter (8 = wo/h) vs the load function (Q = ga*/Dh) for steel plate (a = 16 cm for skew angle § = 15° and a = 14 cm for 6 = 30° h = 0.1343 cm)

B (for 8 = 15°)

Movable edges Immovable edges Percentage error -

o~

Banerjee’s S

qa*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee’s hypothesis Experimental Berger’s method  Banerjee’s hypothesis a

o

111.72 0.3716 0.3872 4% 0.3285 0.3454 0.36485 9.96% 533% g‘.

223.44 0.7038 0.7372 4.5% 0.5378 0.5914 0.6329 15% 6.56% =1

335.16 0.98592. 1.0201 3.3% 0.6843 0.7703 0.8414 18.67% 8.45% 2,

446.88 1.22484 1.2882 49% 0.7982 09107 0.9903 19.4% 8% %

558.6 1.4303 1.5115 54% 0.8924 1.027 1.1244 20.6% 8.66% 8

=5

B (for 0 = 30°) o

08

Movable edges Immovable edges Percentage error %

®

Banerjee’s g

ga*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee’s hypothesis Experimental Berger’s method  Banerjee’s hypothesis £

»

e

65.5 0.12208 0.134 8.9% 0.1202 0.1209 0.12658 5% 4.49% =

131 0.2427 0.25316 4.13% 0.2301 0.2346 0.25316 9.11% 7.33% g

196.5 0.3604 0.37975 5.1% 0.3254 0.3369 0.36485 10.8 % 7.66% =
262 04742 0.4989 5% 0.40782 0.4276 0.46165 11.66% 7.4%

3275 0.5835 0.61802 5.59% 0.4795 0.5081 0.55845 14.2% 9%

The average percentage error from Banerjee’s hypothesis is only around 6% for skew angles of 8 = 15°, 30° whereas from Berger’s method it is around 17% for 8 = 15° and 10% for § = 30°.
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Table 2. The central deflection parameter (8 = wq/h) vs the load function (Q = qa*/Dh) for copper plate (a = 16 cm for skew angle # = 15° and a = 14 cm for 6 = 30°% k = 0.0789 c¢m)

f (for 6 = 15°)

Movable edges Immovable edges Percentage error
Banerjee’s
qa*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee's hypothesis Experimental Berger’s method  Banerjee’s hypothesis
1467.53 2.3727 2.4208 2% 1.36820 1.57802 1.673 18.22% 5.68%
2935.06 3.2506 3.308 1.7% 1.79580 208753 2.23067 19.5% 6.4%
4402.59 3.8437 3.9924 3.72% 2.0891 243578 2.6109 19.98% 6.7%
5870.12 4.307 4.4867 4% 2.32003 2.7095 2.90241 20.07% 6.65%
7337.65 4.6935 4.90494 4.3% 2.5138 2.93893 3.1559 20.35% 6.9%
B (for 0 = 30°)
Movable edges Immovable edges Percentage error
Banerjee’s
qa*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee’s hypothesis Experimental Berger’s method  Banerjee’s hypothesis
860.2 1.2602 1.2801 1.55% 0.8553 0.9283 0.9886 13.5% 6.1%
17204 1.9429 2.0279 4.2% 1.1901 1.3095 1.40684 15.5% 6.92%
2580.6 2.4064 2.5095 4.1% 1.4156 1.5657 1.6857 16% 7.12%
3440.8 2.765 2.9404 6% 1.5913 1.7649 1.90114 16.3% 7.17%
4301 3.0617 3.2319 5.3% 1.73760 1.9307 209125 16.91% 1.7%

The average percentage error from Banerjee’s hypothesis is only around 5% for skew angles 0 = 15°, 30° whereas from Berger’s method it is around 20% for 0 = 15° and around 15% for
0 = 30°. The errors are calculated considering the experimental results as standard (sacrificing instrumental and personal errors).

[410)1
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It is observed that deflections for movable edges are always greater than those for
immovable edges. This is quite expected from the practical point of view, because movable
edge conditions give stress-free boundary and, hence, there are large energy changes in the
boundary.

Here the results for skew angles 8 = 15° and 30° only have been considered, because for
greater values of the skew angles the effect of non-linearity does not play important role in
design, and the study of linear analysis serves the practical purpose.

CONCLUSIONS

Von Karman’s classical equations are in the coupled form and the transformations of
these coupled equations in oblique coordinates will involve much mathematical complexity.
So this entails difficulty in solution. Berger’s equations, although decoupled are question-
able. Thus, the present method seems to be more advantageous. The main advantages are:

(1) the differential equations are uncoupled and easy to solve;

(2) it gives accurate results both for movable and immovable edge conditions; and

(3) from a single cubic equation determining f§ ( = w,/h) the results could be obtained for
movable as well as immovable edge conditions.

Thus, to study non-linear behaviour of skew plates, the present method seems to be more
acceptable.
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APPENDIX

Experimental arrangement

A sketch of the apparatus used for the experimental purpose is shown in Fig. 2. Two skew boxes with upper side
open are constructed and each of the four side walls are made of steel. Each vertical wall of one box is 16 cm and of
the other is 14 cm. The upper side of each wall is made sharp (knife edge), care being taken to see that all the knife
edges lie on the same horizontal plane. The walls of the box with sides 16 cm long are welded in a manner that the
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Fig. 2. The experimental arrangement.

two opposite angles are each 75° and the other two opposite angles are each 105°. Two opposite angles of the
second box with sides 14 cm long are each 60° and the other two opposite angles are each 120°. Two holes are
drilled on two opposite sides of each box and fitted with short metal pipes, one of which acts as an air inlet and the
other as an air outlet.

For the experiment with the first skew box, the centre of the box is first found and then a plumb line is set as an
indicator along the vertical line on which the centre of the box lies. For the free movable boundary conditions one
test plate (which is approximately mirror surfaced) is symmetrically placed on the knife edges of the box and a
pointer is fixed on the upper surface of the test plate with some adhesive along the plumb line. The outlet pipe is
then joined to an exhaust pump by rubber tubing and the inlet pipe is joined to a standard vacuum meter and an
air pressure regulator (as shown in the sketch). Along the contact line beneath the test plate some thick grease is
used to make the box perfectly airtight. (Grease does not apply any appreciable tension on the plate.) When the
exhaust pump operates, the box becomes evacuated, thereby causing the depression of the test plate by the excess
outside air pressure, which is uniform all over the effective skew part of the test plate. The central deflection of the
test plate is easily measured with the help of a precision cathetometer set at a distance of approximately 1.5 m from
the pointer.

To make the free boundaries of a skew plate immovable, four pieces of steel collars are taken whose lengths are
equal to the length of outer boundary line of the skew plate. The collars are kept outside the box in contact with the
lower surface of the plate and with the side walls of the box and then the collars are tightly clamped with the test
plate using nuts and bolts in sufficient number well outside the boundary of skew section.
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Abstract—This paper concerns a new approach to the investigation of non-linear behaviours of
heated rhombic plates. A new set of differential equations in oblique co-ordinates have been derived
in this investigation. Numerical results showing central deflection parameters versus thermal load
functions have been computed for different skew angles 6. For 6 = 0° the results obtained in the
present study are in excellent agreement with the known results. It is believed that the results
obtained for other different skew angles are completely new.

INTRODUCTION

Determination of thermal deflections in thin elastic plates, is of vital importance in cases
where the thermal stresses play a significant role. Although thermal deflections of thin elastic
plates have been investigated by many authors (Aleck, 1949 ; Zizicas, 1952 ; Schneider, 1955;
Boley and Weiner, 1960 ; Forray and Newmann, 1960 ; Nowacki, 1962 ; Katayama et al.,
1967 ; Sarkar, 1968 ; Kaiuk and Pavlenko, 1971, 1972 ; Roychowdhury, 1972 ; Prabhu and
Durvasula, 1974 ; Matumoto and Sekiya, 1975), the literature on the large thermal deflec-
tions is somewhat sparse. The most interesting papers in this field are;Williams (1955, 1958)
who quite elegantly carried out large deflection analysis for a plate strip subjected to normal
pressure and heating. Biswas investigated the large deflection of heated circular plates under
non-constant temperature (Biswas, 1974) and large deflections of heated elastic plates under
uniform load (Biswas, 1975). The author followed Berger’s equation in his investigations.

Another interesting paper in this field is,Banerjee and Dutta (1979)¥investigation of non-

linear behaviours of heated elastic plates under non-constant temperatures,The authors

utilized a conformal mapping technique along with Berger’s hypothesis. Later on Banerjee
proposed a new approach to the Large Deflection analysis of thin elastic plates (Banerjee
and Dutt, 1981) and afterwards carried out quite elegantly the non-linear behaviours of
polygonal plates under non-constant temperatures (Banerjee, 1984). Following Banerjee’s
approach, another interesting paper is by Sinharay and Banerjee (1985) on non-linear
behaviours of heated spherical and cylindri-ca shells, where the authors have achieved
satisfactory results from the practical point of view. Also, the works of Kamiya (1978) on
the large thermal bending of sandwich plates are very attractive and useful too.

All the investigations mentioned above deal with plate geometry either circular or
rectangular or in the shape of regular polygons. Only five papers (Katayama et al., 1967 ;
Kaiuk and Pavlenko, 1971, 1972; Prabhu and Durvasula, 1974 ; Matumoto and Sekiya,
1975) concerned with the study of thermal behaviours of skew plates are found in the
literature. But these papers do not consider the large deflections of plates. To the authors’
knowledge, no paper has been devoted to the investigations of non-linear behaviours of

t Formerly head of the Department of Mathematics, Government Engineering College, Jalpaiguri, West
Bengal, India.

—
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heated elastic skew plates having various applications in modern design, especially in the
space industry.

In this paper non-linear behaviours of simply-supported heated skew plates (taken in
rhombic form for simplicity of calculation) are investigated. Various numerical results
have been calculated showing central deflection parameters versus thermal load functions.
Whereas the results for skew angles other than 0° are believed to be new, the results for a
0°-skew angle are found to be in remarkable agreement with the already known results [see
Biswas (1975)].

ANALYSIS

Let us consider a rhombic plate of skew angle 8 whose uniform thickness is 4 and
edge-length 2a. The material of the plate is considered isotropic having mass density p,
Young’s modulus E and Poisson’s ratio v. The origin of the co-ordinates is located at the
geometric centre of the plate. The deflections are consideed to be of the same order of
magnitude as the plate thickness, the edge—length being sufficiently large compared to the
thickness.

Now the uncoupled set of differential equations in rectangular Cartesian co-ordinates,
governing the thermal behaviours of elastic plates [see Banerjee (1984)] is given by

e 22 5 R (2 ()

h? &) K ox
+2{€-2-‘§ <‘?—W>2+ o (6“)}4»4.-6?»‘21-6:"'-@] f* £
éx? \ox ey’ éxéy éx Oy Y v
I ok
+?@—\//(l—\ )-v°e w+(1+v)alV2't-lq) (€))] L
d:t

where
ou dv 1 {/owy ow ¥
A “$+‘5§+5{(5§> Y (F>} (Hmao, @

4 = v* for simply-supported elastic plates, and D = Eh*/12(1 —v?), the flexural rigidity of
the material of the elastic plate.

It is to be noted that in the derivation of eqns (1) and (2) in rectangular Cartesian co-
ordinates, the expression

(a ,)[av + 1 (6u')2:|+ <6u N ér + ow 6w)2 1
— "- — - — — R — L ———
oy 2\ 0y ox &y éx &y) 2(1+w)

in the total P.E. of the elastic plate (Banerjee, 1984) has been replaced by

L&)+

As a consequence the partial differential equations governing the deflection of the plate
have become uncoupled and the two decoupled differential equations (1) and (2) have been
obtained.

In the present problem, the temperature is assumed to vary linearly w.r.t. the thickness
direction z. We also note that
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Fig. 1. Plan form of skew plate and co-ordinate system.

T(-",}’, .'.') = TO(x) }") +ZT(X,y),

in which
| 1
1o = (T + 1), T=71(T1"‘T2),

h h
T, = T(x,y, 5) and T, = T(x,_v, - 7) (Banerjee, 1984).

Clearly 74 is the temperature in the middle plane and t varies along the thickness of the

plate and hence t # 14.
The plan of the skew co-ordinates (x,, y;, 8) is shown in Fig. 1. Clearly
x=Xx,cosf
and y=y +x;sind 3)
are the co-ordinate transformation equations. Hence we have the following partial differ-

ential operators in oblique co-ordinates:

2 wswo( o). 222
ax Ny, T ) T Eny
&, (62 @ - 2)
5{3=S°c 9 6x§—-2sm66xlay-l-+sm 05;? s
R : e ¢
5= . —=secl i 5 ],
oy-  Cyi O0x Oy > (63(, v, S 06 ‘)
, , ( -7 2 a:)
V:=sec’ 8 = —2sin @ e
\Ox} Ox, 0y,  dyi
and
a* o* o a* o*
v = m-——4'( ) c2sintg) . 0 O
sec {6):? sin @ T ap, + &, o +2(1+2sin* 0) axTayt + & 4

We now transform eqn (2) in oblique co-ordinates. For simply-supported plates the

boundary conditions are
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Then let us choose the deflection function for the simply-supported plate as

Xy my{
W = We COS —— COS —,
2a 2a

which clearly satisfies the above-mentioned boundary conditions.

)

Now putting (5) in eqn (2) transformed in oblique co-ordinates and then integrating
the relation thus obtained, over the entire surface of the plate, we obtain the value of 4 in

the following form:

)
niwi

A=52

(1 +v+2tan’ 0) — (1 +v)a,1,.

(6)

(As the normal displacement w is our primary interest, the in-plane displacements u, ¢

have been eliminated through integration by the choice of appropriate functions for

such

isplacements.) Again transforming eqn (1) in oblique co-ordinates, introducing eqns (5)

- Jisplacements)

and (6) in the transformed equation and then applying Galerkin’s error minimizing tech-

nique we get the following equation determining the central deflection parameter
depending on the thermal load function ¢"a*/ER*:

65 TR L
[(l +2tan? @) sec’ 0 — o {ZV//'.(I —v)-sec' §

+(1+v)(1 +v+2 tan? 0)}](1,;9)+ i[(1+v+2tan’6)?

; 3 2 s 4
4 , . wo) 768(1-v7) (qa
+4(8+49tan 6+29 tan 0)](h) =——\g )
where

a 2
S = 2(1—) (I +v)a1,

and

g =q—Dx(1+v)V1.

\1'0//7

(N

Equation (7) is applicable for the immovable edge condition of the simply-supported skew

plate. For the movable edge condition we have A = 0, so that eqn (7) takes the form :

128 W
1+21an? 0) sec? - ~—o /71 —v7)-sec? @ |( %
[(+ tan” 8) sec*d TEne (1 \)scce:](h)

34 wo) _ 768(1—v*) (¢'a*
34 2 4 __9 =\ "7
+35B+491an’§+29 tan 62]_(,,) 7 Er*)

®
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Table I.S=0,ie.1,=0

wo/h by present method wo/h by Berger's methodt
(Biswas,
1975)
=0 0=15 0 = 30° 0=0° 8#=15 86=30
51'_"_1 Movable Immov- Movable Immov- Movable Immov- Immov- Immov- Immov-

En* edge  able edge edge ableedge edge ableedge able edge able edge able edge

2 1.30156  0.91435 1.08167 0.82069 0.6269  0.53604 0.9013 0.79972 0.5367t
4 21909 1313t 1.85443  1.20857 1.14734  0.84631 1.29017 1.16888 0.848

8 3.23354  1.78866 28581  1.67119 1.89675 1.22355 1.75406 1.60902 1.2266
(U 3.73498 19613 3.2243  1.83866 2.17977  1.3597 1.92254 1.76847 1.36324

+Berger’s method has been applied to the present problem by neglecting e, the second strain invariant in
the expression for total P.E. of the plate.

NUMERICAL RESULTS

Numerical results are presented here (Tables 1 and 2) in the tabular forms for $ = 0,
0.1;8 =0° 15°,30°and ¢'a*/Eh* = 2, 4, 8, 10.

—

OBSERVATIONS AND CONCLUSIONS

From the numerical analysis of the undertaken problem the following observations
are made

(i) The nature of the central deflection of a skew plate under thermal loading is the
same as that of the plate under mechanical loading, i.e. the central deflection increases
continuously with the increase of loading for any edge condition of the skew plate, whether
movable or immovable.

(ii) The central deflection for the movable edge condition of the skew plate is always
greater than that for the immovable edge condition of the plate, for the same loading.

(i) Irrespective of the edge condition, the central deflection decreases with the increase
in the skew angle.

(iv) The results for immovable edge conditions of the skew plate obtained by the
present method, agree well with the results obtained by Berger’s method. It is to be noted
that Berger’s method is a purely approximate method based on the neglect of e,. But the
present study is based on Banerjee’s hypothesis which suggests a modified strain—energy
expression, and thus this model embraces less approximation (Banerjee and Dutt, 1981) than

that of Berger. Again Berger's method is meaningful only for immovable edge conditions of
the plates.

(v) The deflections increase with 1,.

The present method seems to be more advantageous than any other method found in
open literature. The main advantages are:

Table2. §=0.1,ie. 1,20

Wo/h by present method wo/h by Berger’s method (e,=0)
(Biswas,
1975)
=0 =15 0 = 30° =0 6=15 6=230
‘L”‘ Movable Immov- Movable Immov- Movable Immov- Immov- Immov- Immov-

Ent edge  able edge edge  able edge edge ableedge able edge able edge able edge

2 1.32786  0.94985 1.10168  0.83899 0.63597 0.55925 0.94058 0.83515 0.56109
4 222082 1.34324 1.87831 1.20992 1.1604  0.86901 1.32336¢ 1.19954 0.87185
8 335106 181316 2.88067 1.65221 Lottt 1.24302 1.781 1.63412  1.24706
0 3.76118  1.98415 3.24585 1.81269 2.19385  1.37799 1.94764 1.79188 1.38247

- —
= I
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(1) The differential equations are decoupled and easy to solve;

(2) from a single cubic equation determining w/h, the results could be obtained for
movable as well as immovable edge conditions; and

(3) unlike Berger's method it gives accurate results both for movable and immovable
edge conditions. Based on Banerjee’s hypothesis a good number of works have
been carried out and in each case sufficiently accurate resuits have been obtained
[e.g. Banerjee and Dutt (1981), Banerjee (1984), Sinharay and Banerjee (1985) and
Ray et al. (1992, 1993)]. So in the present case also, the same degree of accuracy

was expected. //
44

REFERENCES | / /l %
/ AL pwy 58 ]

Alec, B. J. (1949). Thermal stresses in a rectangular plate clamped along an edge. J. Appl. Mech., Trans ASME
71, @-@. s
Banerjee, B. (1984). Large deflections of polygonal plates under nonstationary temperature. J. Thermal Stresses "L’( rliced
(U.5.4.) 7, 285-292.
Banerjee, B. and Dutt, S. (1979). Large deflections of elastic plates under non-stationary temperature. J. ASCE
4, 705.
Banerjee, B. and Dutt, S. (1981). A new approach to an analysis of large deflections of thin elastic plates. Inr. J.
Non-Lin. Mech. 16, 47-52,
Biswas, P. (1974). Large deflection of heated circular plate under non-stationary u:mperalure Bull. Cal. Math.
Soc. 66, 247-252.
Biswas, P. (1975). Large deflections of heated elastic plates under uniform load. Mechanique Applique 20(4).
Boley, B. A. and Weiner, J. H. (1960}. Theory of Thermal Stresses (2nd Edn). Wiley, New York.
Forray, M. and Newmann, M. (1960). Axisymmetric bendmg stresses in solid circular plates with thermal gradient.
J. Aerospace Sci. 21(9), @-@.
Kaiuk, ia. F. and Pavlenko, V. 1. (1971). Thermai buckling of parallelogram shaped plates (in Russian). Teplorye
Napriazheniia v Elementakh Konstrukisii 11, 173,
Kaiuk, la. F. and Pavlenko. V. 1. (1972). Thermal stability of skewed plates (in Russian). Voprosy Dinamiki i
Prochnosti 22, 159.
Kamiya, N. (1978). Analysis of the large thermal bending of sandwich plates by a modified Berger method. J.
Strain Anal. 13(1). 17-22.
Katayama. T.. Matumoto, E. and Sekiya, T. (1967). Fundamental equations for thermoelastic deformation of
skew plates. Bulletin of the University of OSAKA Prefecture, Series A 16, 8~@.
Matumoto, E. and Sekiya, T. (1975). Elastic stability of thermally stressed paralielogram panels. Trans. JSME
41(343). 736-745.
Nowacki, W. (1962). Thermoelasucm Pergamon Press, Oxford.
Prabhu, M. S. S. and Durvasula, S. (1974) Elastic stability of thermally stressed clamped—clamped skew plates.
J. Appl. Mech., Trans ASME 41(3). 820-821.
Ray, A. K., Banerjee, B. and Bhattacharjee. B. (1992). Large deflections of rhombic plates—a new approach. o
Int. J. Non-Lin. Mech. 27(6), 1007-1014. éﬁ d/f’r/*-‘f’
Ray, A. K., Banerjee, B. and Bhattacharjee, B. (1993). Meccanica. (accepted T). =
Roychowdhury, S. K. (1972). Some problems on thermoelasticity. Ph.D). Thesis presented to the Jadavp
University, India.
Sarkar, S. R. (1968). Quasi-static thermal deflections in a solid circular plate in the axisymmetric case. Aplikace
Mathematiky, Czechosiorakia 13, @-@.
Schneider. P. J. (1955). Variation of maximum thermal stress in free plates. J. Aderospace Sci. 22, @~@.
Sinharay. G. C. and Banerjee, B. (1985). A new approach to large deflection analysis of spherical and cylindrical
shells under thermal loading. Mech. Res. Comm. (U.S.A.) 12(2), 53-64.
Williams, M. L. (1955). Large deflection analysis for a plate strip subjected to normal pressure and heat. J. Appl.
Mech., Trans ASME 22(4), @-©.
Williams, M. L. (1958). Further large deflection analysis for a plate strip subjected to normal pressure and heating.
J. Appl. Mech., Trans ASME 25(2). @~@.
Zizicas. G. A. (1952). Transient thermal stresses in thin isotropic plates. JCLA Engng Report 52(7), @-@.

brewt~ (e e Y Ak—d"\w-ym\g'a/

—

Ry Ak, Bomarier, 6. oned Lok, 3. L?q'

Nrelvnan th}w 0—# Akewed  AarnAdwtel blakes |
Meccarrce . (wm Fw/y;)



P

Meccanica 00: 1-6, 1994,

© 1994 Kiuwer Academic Publishers. Prinied in the Netherlands. Pai
DEAE T vt

Nonlinear Analysis of Skewed Sandwich Plates

AJIT KUMAR RAY and BARUN BANERJEE

Alipurduar College, Alipurduar Court, Jalpaiguri, Pin 736122, West Bengul, India

A.D.PL, Jalpaiguri Division, GovL. of West Bengal, Minakshi Bhawan, Jalpaiguri, Pin 736105, Wesi Beny ..
India

and

BISWANATH BHATTACHARIJEE
North Bengal University, Science Faculty, Darjeeling, Pin 734430, Wesi Bengal, India

(Received: 5 June 1992; accepted in revised form: 5 July 1993)

Abstract. Nonlinear static and dynamic behaviours of freely supported Rhombic sandwich plates have becn
studied following Banerjee’s hypothesis. Numerical tesults for 0° skew angle are compared with other known
results. Results for other skew angles are believed 10 be new.

Somumario. Si studia, scguenda I ipwacyl di Banerjee, I compratatnenio nondineare statico ¢ dinasnico <
rombiche semplicemente sppoynate. Si presentano risullati numerici realivi a piastre sombiche ¢ zetia: 4
quest ultimi vengono parsgodi a nisultau gid noti, meotie | pami s sigagono auovi,

Key words: Skew plalesysandwick plates; nonlincar analysis.

1. Introduction

Sandwich plates find wide applications in technology and modem design. Outstanding invecs-
tigations [1-8] on large deflections as well as large amplitude vibrations of such plates ure
limited to the rectangular form only. No attempt on the nonlinear bel.. viours of skewed
sandwich plates has been reported as yet.

In this paper an attempt has been made to analyse the nonlinear behav., .. ~! “elv
supported skewed sandwich plates having an isotropic core within isotropic uppc . = wer
faces and under both static and dynamic loadings. For the sake of simplicity, a skewed
plate in the form of a rhombus has been ¢ nsidered. Foliowing the modified stramn energy
expression proposed by B. Banerjee, [8] a new set of decoupled differential equations for
skewed sandwich plates has been derived. The final equations have been solved by Galerkin’s
method. Numerical results are computed and those for the 0° skew angle are compared with
the other known results. The results for other skew angles are completely new.

2, Governing Eyuutine

Let cach side of w shabyc s ich plte be e s sog ue w0 s cote o8 shickies- 4 -
iSOtropiv upper aind baa - taces of Wentical thp ks so ty e 1y g A,

Now let un set one welgaguli cartesion cunamte = v ca, y, 2} aod wae o,
coordinate systemn (<4, yy, #) ul the same colper of the e, 1, g being in the nidole ...
of the core; Z the thicknesy direction; 2y, ¥y are paratlel t the sides of the plate and ¢ Lo
skew angle (see Figure 1). Clearly, asethe coordinate transtormation equations, aye

=zjcos fandy = y; + z; sin 0 (i)
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meccili.tex ~ Date: February 11, 1994 Time: 1u. 23



2 Ajit Kumar Ray et al.

¥ .

; ~ 4 .
‘ @ f ,J,

"\\{l kY

] ]

/ i S

- a AI’\< oy

P~

Fig. 1. Plan form of skew plate.

Following Banerjee’s hypothesis, [8] the differential equations in ... .cc angular coordinate
system governing the deflections and vibrations of sandwich plates are

-

Ety _, g] 2E;, . [*W +U(92W
[2(1 —v) A=)\ 0a2 oy?

Et) | aw>2 (0W)2 2
2 —
+hV W+(1-u2)6"’{(6w (% viw

S (y? ooyl e o aw ]
* | da? X oy * dyr \ oy /) Tiiy e Oy { 5
VY L
whete { = y/07 v gawfinear static deilb s o,
A Y
__(pm(;; 2 00:2, for taidiesat clisu 3 Wnadbiuns, 1)
1 aW)l (8W>2 gp oy
mo.. — — —— -
and [j —2{(6:3 tv Jy +é):c+u(')y
= constant, for nonlinear static deflections )
= C f(t) for nonlinear elastic vibrations,
C being a constant dependingon 0 . )
In the above equations W is the transverse deflection function; ¢, the lateral Joad dis. 1. 1ion
function; P, Q are the in-plane displacements along = and y axes respectively; &, the Y g’
Modulus of elasticity of the material of the upper and lower faces; G, the shear modul ¢ ¢ the

core material; v/, the poisson’s ratio of the face material, A = v2; p;, py are the surface we iy
and core density respectively, and f(t), F(t) are the functions of time such that f(¢) - & (¢}
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It is to be noted that the strain-energy expression in ref. [8] has been modificd by .
Banerjee's hypothesis, which states that the stretching of the plate is propoitional tu

(3W)2+ (aW)2 :

Oz dy ' '

As a consequence of this assumption, a set of uncoupled differential equauom has .
obtained as given above.

3. Analysis
3.1. NON-LINEAR STATIC BEHAVIOUR OF FREELY SUPPORTED SKEWED SANDWICH PLATL:

To find normal displacement W, the inplane displacements of the upper and lower faces ar:
being eliminated through integration by choosing suitable expressions for them in the (orm
of trigonometric functions compatible with the boundary conditions of the plate [8]. Thex
transforming equation (3u) in oblique coordinates, choosing

T XY
W = Wsm-——-—sm LA VL
a
and
P & 2 TR ('}
g = § sin —— sin el b
a u

and then integrating the transtorined equation over the whole domain of the plate we g

21472
W
I{n = 8a2 (1+U+2 ulnz H), 4y

Again transforming equation (2) with £ = ¢/(”, in oblique coordinates, introducing equations
(4a), (4b) and (4¢) in the transforimed equation und then applying Galerkin procedure, we arrive
at the following cubic equation determining W, the central deflection of a freely supported
rhombic sandwich plate

4 2EuS
il [7{ 1Secd {(1+v+2uwn® (14 v+4 o)

4(1-2) [(1-v?)G'a?
+A(5+ 17 tan? 6 + 12 tan* 0)} + %{(1 + v+ 2 tan? §)?

h

27r4t1$ec20 1774 qa* 2 Eht)Sec?d
142 tan 6 — ] = 1 - . -
+ [ (1- ( * )] ( h e | T (1- UZ)G’az} )

4. Numerical Results

L\ 3
+A(5+ 11 tan® 6 + 6 tan* 0)}} (Z‘i)

Table 1 shows differeat numerical results of the central detlections of a (0.254 m « 0.7 § 1)
rhombic plate having t; = ©.35 x 107 m,h = 1.7135 x 102 m. |5, 8].
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Tuble 1. Showng Wihvs§. E =162 x 10°psm, G’ = 9.3 x 10°psm, v

=03, &5 = 10[5,8)

v Valueof W/h

lmmovable edge Movable edge

Value Cukulgted  Othier known  Caleulated  Other knowny

of ¢ value vislue valie vilue!"
{4) lﬁl
0 1.49%4 1.53 l JU 2 322.9 2 558
15° 1.3644 — —_— 215603 e
30° 1.0328 — — 1.6360 -—
45° 0.6051 —_— e 1.0414 —_

Note: For movable edge condnlun of llu frecly supponed plate [{" = 0.

4.1. NONLINEAR DYNAMIC BEHAVIOURS OF FREELY SUIPORTLD SKEWED SANDWICH . A 1S

Let us now consider free vibrations of skewed sandwich plates. Neglecting in-plass.

(IS Y]
for obvious reasons, transforming equation (3b) in oblique coordinates, choosing
W =W sin ke sin —ty—l (t) it
a
for fundamental mode of vibration and then integrating the transformed equation  © the
whole domain of the plate we get
21772
W
It = (14 v +2 tan? 6)F3(1). ob
Now transforming equation (2) with £ = et ;,.Ji‘} Q W in oblique coordinates, : - ting

equations (6a) and (6b) i the transformed equistion md lhux applying Galerkan's 1 -2vjure
we get the following equation for time function

*(pity v‘zi'f*fli)“’. Sect ¢ — (1t t mh) F
(l —_ ‘/ f“; h
21!‘41311‘:

+[(1“If2) it 7 2’ 0) e "}1
T ELGW? [ 121 Sec?
4(1 - v%)a* | (1 - v?)G'a?

(1 + v+ 2 an? 0)(1+ v +4 tan® 8)

+A(5+ 17 tan® 6 + 12 tan* 0),+-

(1+ v+ 2 tan® §)?
+A(5+ 11 tan® 6 + 6 tan® 0)|}] #3 =0, (7)

which may be turned in the form F + AF + BF? = 0, the familiar Lufing’s equation. With
the initial conditions F(O) = 1 and F(0) = 0, the solution of equation (V) ..+ I’ 1own
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Table 2. Showing wi fw; vs &

Value  Value Value of w] fw)
of of
] -25[‘ Immovable edge Movable edge
Calculated  Other known value  Calculated  Other knowsn
value {8} [7} value value {8]
0° — 1.15028 112 L4 1.03342 1.024
15° — 1.16621 - - 1.03365 —
30" 05 1.22803 - - 1.04313 —
45° — 1.36556 - - 1.06261 -
0 -_— 151413 142 148 112774 1.094
15° —_ 1.56211 —_— - 1.1286 —
30" 1.0 1.74133 -— - 1.1630 -
45° -— 2.11166 _— e 1.2315 —
elliptic integral F'(t) = C,(w}, t, k). Then the ratio of nonlinear frequency wi tor | car

frequency w) is given by

w} h cost ¢ w\* N [ w3 sed 0

Dot gy g ) (10 5) (R 4

W) 8(1+4 2 wn (b 20 h (1 =v?)C'a
(1+v+2@? 0)(1+v+4tan? 0)+ A5+ 17 wn? 0+ 12 tan® )]

. ]
+}]:I(1 +r+2an? O 4 A5+ 11t 64 6 wnd 0)[” , (8)
where ) = 1} + %, Wi = J}fand wp = \/A "‘jjj

5. Numerical Results

Numerical results of the ratio w[ /w; are shown in Tuble 2. For calculations, the »_ « sat.
which are used in the study of static behaviours of sandwich plates are used heze ul-

6. Observations

From the calculated results, the following observations are easily made.

1. The results of both static and dynamic behaviours of a sandwich plate having sk~ v ~pls
¢ = 0° and aspect ratio 1 are in excellent agreement with those obtained by I i ana
Banerjee [8].

2. Itis seen that the centrul deflection gradually devreases with the increase n sh - - i
for both movable as well as immovable edge conditions.

3. Forany assumed skew angle the central deflection is greater for the movable edge . alon

than for the immovable edge condition. This is quite expected from a practice. « «t o
View.
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4. In the dynamic case, the frequency ratio wj /w; increases continvously with ¢ . -w
angle 6, for both movable as well as immovable edge conditions of a skewed |+ e
ratio for immovable edge condition being always greater than that for the mova: . e
condition.

7. Conclusions

1. Greater deflections, obtained in the present theoreticul study in compantson w il icc-

tions obtainable from the other theories in open literature, indicate acceptibulin. o1 the
present method for practical purposes.

. It is advantageous from the point of view that following this method tesults, 300 oth

immovable as well us movable edge conditions of the plute, can be derived o+ e
cubic equation,

. The governing difterential equations, being de-coupled, are simple and casy s - out,

are able to yield results with considerable accuracy.

4. The great advantage of the present method hies in the fact that the accuracy vlth. . sl
does not depend on any correction factor and thus holds good for sandwich .1, o
different geometry.
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