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Abstract—Non-linear static behaviour of rhombic plates has been analysed following Banerjee’s
hypothesis (B. Banerjee, Large deflections of polygonal plates under non-stationary temperature.
J. Thermal Stresses 7, 285-292 (1984)). Calculations have been carried out for different skew angles.
To test the accuracy of the theoretical results so obtained, experiments were carried out on copper
and steet rhombic plates. The theoretical results were found to be in excellent agreement with those
obtained from an analysis of the experimental data.

INTRODUCTION

Skew or oblique panels find wide applications in the aircraft and spaceship industry; hence,
a study of the non-linear behaviour of skew plates is of great importance. In contrast to the
non-linear behaviour analysis of elastic plates of geometries like circular, rectangular,
triangular and elliptic, skew plates have not received much attention. This may be due to
their relatively difficult mathematical models.

The most important work in this field is due to Nowinski [2], who analysed the large-
amplitude oscillations of oblique panels having initial curvature. Two more interesting
papers on non-linear vibration problems of skew plates are by Sathyamoorthy and Pandalai
[3, 4]. They have analysed the non-linear flexural vibrations of simply supported skew
plates of isotropic as well as anisotropic materials, using Berger’s equation. In contrast to
works on non-linear vibration problems of skew plates, the literature on non-linear
deflection problems of skew plates is scanty. In this field three interesting papers could be
located. Kennedy and Simon [5] carried out non-linear analysis of skew plates by the
perturbation method. Srinivasan and Ramachandran [6] analysed the large deflections of
skew plates of variable thickness using the Newton-Raphson procedure. Ashton’s [7] work
is on the linear static analysis of anisotropic skew plates. It is interesting to note that most of
these investigations are carried out on skew plates of clamped edges only and the case of
simply supported edges has not received proper attention.

In this paper large deflections of simply supported rhombic plates are studied following
Banerjee’s approach. A set of uncoupled differential equations has been obtained in oblique
coordinates and solved by applying the Galerkin technique. The case of a simply supported
rhombic plate is discussed in detail. To test the accuracy of the method, experiments were
carried out on copper and steel rhombic plates. The details of the experiments are given in
the Appendix. The numerical results obtained from the theoretical and the experimental

analysis are compared. The present method appears to be more acceptable from the
practical point of view.

* Formerly at: Department of Mathematics, Government Engineering College, Jalpaiguri and Hooghly Mohsin
College, Serampore, Hooghly, West Bengal, India.
Contributed by J. N. Reddy.
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ANALYSIS

Consider a thombic plate of an elastic, isotropic material, having uniform thickness of h.
Let the size of each side of the skew plate be a which is sufficiently large compared to h. The
origin of the rectangular Cartesian coordinate (x, y) is located at one of the corners of the
skew plate (see Fig. 1). The plate is considered to be simply supported along its edges and

loaded uniformly all over.
Following Banerjee’s hypothesis [ 1], the differential equations, referred to the system of

rectangular Cartesian coordinates are:
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where

@ = the deflection normal to the middle plane of the plate
v = Poisson’s ratio of the material of the plate

A=v?

g = load per unit area acting on the plate

D = the flexural rigidity of the plate = Eh%/12(1 — v?)

E = the modulus of elasticity of the material of the plate

1{/0w)\? dw \? du  Ov
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which is a constant depending on the surface and edge conditions of the plate, and V2 is the

Laplacian operator.
For a skew plate, let us adopt a system of oblique coordinates (x,, y;, ), as shown in

Fig. 1, 0 being the skew angle.

Clearly,
x=x,0080, y=y +xsinf (3)
are the coordinate transformation equations. Hence the partial differential operators
become
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Fig. 1. Plan form of skew plate.
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Using these operators, transforming the differential equations (1) and (2) in oblique
coordinates, we arrive at the following set of transformed differential equations:
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Now to solve the problem, let us assume
® = wosin L sin 2L (6)
a a

o being the maximum central deflection.
For the value of 4, let us integrate equation (5) over the whole area of the plate. Then we

have
a fa 1 a (fa aw 2 a(l) 2
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After integration, we get

A=

s—(1 + v + 2tan? ). (7

Here, it is to be noted that, since the normal displacements are our primary interest, the in-
plane displacements have been eliminated through integration by choosing suitable ex-
pressions for them, compatible with their boundary conditions.

Now, applying Galerkin’s method of approximation to the transformed differential
equation (4) and keeping in mind the value of 4 from equation (7), we get the following
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cubic equation determining f ( = wy/h).

(1+ sin’ﬂ)(%) 2{[(1 + ) + (1 — v)sin2 §]2

. 3 4 ga*
+ v3(5 2q Yo \" _ 4
vi(5 + sin )}< . i ) cos 6. (8a)

Adopting the well known equation [8], of Berger with e,[1] neglected, the corresponding
cubic equation determining the central deflection parameter (for immovable edges only)
takes the following form (after applying Galerkin’s technique):

(1 + sin 9)( - >+15< - ) 4 (‘g’h)cos 0. (8b)

NUMERICAL CALCULATIONS

For a steel plate we have E = 2x 10'? dyne/cm? and v = 0.3, for which equation (8a)
becomes

(1 +sm20)< . >+ [(1.3 + 0.7sin? §)?

- 2 Wy 3 ~15 qa4
+ 0.09(5 + sin6)] " =22.66x 10 " cos* 9 (9a)

whereas for a copper plate we have E = 1.25x 102 dyne/cm? and v = 0.333, so that
equation (8a) becomes

3
(1 + sin? 9)(%) + 301333 + 067sin? )

e @0\ _sfqa*
+ 0.11(5 + sin’ 6)] 5 ) = 3546 x 107 1% Ty cos*6. (9b)
Also, for a steel plate equation (8b) becomes
3 qa4
1+ sm20)< > + 1. 5( ; ) = 22.66 x 10“5<h—4>cos49 (9¢c)
and for a copper plate it becomes
3 4
(1 + sin? 9)(%) + 1.5(%) = 35.46 x 10_15(‘%>cos"'0. 9d)

Tables 1 and 2 present a comparative view of the various theoretical and experimental
values of the central deflection parameter f ( = w,/h) for different values of the load
function Q ( = qa*/Dh), for the case of steel plate and copper plate, respectively. For
movabie edge conditions the value of A4 will be zero. (The experimental method is explained
in the Appendix.)

OBSERVATIONS

It is observed from the two tables that the results of the present study are in excellent
agreement with those obtained from the experimental analysis. It is well known that
Berger’s method fails [9] miserably under movable-edge conditions. The results for simply
supported immovable edges, obtained by Berger's method (as shown in the Tables 1 and 2)
show that this method is not even acceptable from the practical point of view. It is worth
noting that Berger’s method always gives less deflections for a given load. The errors of
Berger’s method (as shown in Tables 1 and 2) are certainly questionable from the view point
of safety design.



Table 1. The central deflection parameter (8 = wo/h) vs the load function (Q = ga*/Dh) for steel plate (a = 16 cm for skew angle § = 15° and a = 14 cm for 6 = 30° h = 0.1343 cm)

B (for 8 = 15°)

Movable edges Immovable edges Percentage error -

o~

Banerjee’s S

qa*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee’s hypothesis Experimental Berger’s method  Banerjee’s hypothesis a

o

111.72 0.3716 0.3872 4% 0.3285 0.3454 0.36485 9.96% 533% g‘.

223.44 0.7038 0.7372 4.5% 0.5378 0.5914 0.6329 15% 6.56% =1

335.16 0.98592. 1.0201 3.3% 0.6843 0.7703 0.8414 18.67% 8.45% 2,

446.88 1.22484 1.2882 49% 0.7982 09107 0.9903 19.4% 8% %

558.6 1.4303 1.5115 54% 0.8924 1.027 1.1244 20.6% 8.66% 8

=5

B (for 0 = 30°) o

08

Movable edges Immovable edges Percentage error %

®

Banerjee’s g

ga*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee’s hypothesis Experimental Berger’s method  Banerjee’s hypothesis £

»

e

65.5 0.12208 0.134 8.9% 0.1202 0.1209 0.12658 5% 4.49% =

131 0.2427 0.25316 4.13% 0.2301 0.2346 0.25316 9.11% 7.33% g

196.5 0.3604 0.37975 5.1% 0.3254 0.3369 0.36485 10.8 % 7.66% =
262 04742 0.4989 5% 0.40782 0.4276 0.46165 11.66% 7.4%

3275 0.5835 0.61802 5.59% 0.4795 0.5081 0.55845 14.2% 9%

The average percentage error from Banerjee’s hypothesis is only around 6% for skew angles of 8 = 15°, 30° whereas from Berger’s method it is around 17% for 8 = 15° and 10% for § = 30°.
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Table 2. The central deflection parameter (8 = wq/h) vs the load function (Q = qa*/Dh) for copper plate (a = 16 cm for skew angle # = 15° and a = 14 cm for 6 = 30°% k = 0.0789 c¢m)

f (for 6 = 15°)

Movable edges Immovable edges Percentage error
Banerjee’s
qa*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee's hypothesis Experimental Berger’s method  Banerjee’s hypothesis
1467.53 2.3727 2.4208 2% 1.36820 1.57802 1.673 18.22% 5.68%
2935.06 3.2506 3.308 1.7% 1.79580 208753 2.23067 19.5% 6.4%
4402.59 3.8437 3.9924 3.72% 2.0891 243578 2.6109 19.98% 6.7%
5870.12 4.307 4.4867 4% 2.32003 2.7095 2.90241 20.07% 6.65%
7337.65 4.6935 4.90494 4.3% 2.5138 2.93893 3.1559 20.35% 6.9%
B (for 0 = 30°)
Movable edges Immovable edges Percentage error
Banerjee’s
qa*/Dh hypothesis Experimental Percentage error Berger’s method Banerjee’s hypothesis Experimental Berger’s method  Banerjee’s hypothesis
860.2 1.2602 1.2801 1.55% 0.8553 0.9283 0.9886 13.5% 6.1%
17204 1.9429 2.0279 4.2% 1.1901 1.3095 1.40684 15.5% 6.92%
2580.6 2.4064 2.5095 4.1% 1.4156 1.5657 1.6857 16% 7.12%
3440.8 2.765 2.9404 6% 1.5913 1.7649 1.90114 16.3% 7.17%
4301 3.0617 3.2319 5.3% 1.73760 1.9307 209125 16.91% 1.7%

The average percentage error from Banerjee’s hypothesis is only around 5% for skew angles 0 = 15°, 30° whereas from Berger’s method it is around 20% for 0 = 15° and around 15% for
0 = 30°. The errors are calculated considering the experimental results as standard (sacrificing instrumental and personal errors).

[410)1
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It is observed that deflections for movable edges are always greater than those for
immovable edges. This is quite expected from the practical point of view, because movable
edge conditions give stress-free boundary and, hence, there are large energy changes in the
boundary.

Here the results for skew angles 8 = 15° and 30° only have been considered, because for
greater values of the skew angles the effect of non-linearity does not play important role in
design, and the study of linear analysis serves the practical purpose.

CONCLUSIONS

Von Karman’s classical equations are in the coupled form and the transformations of
these coupled equations in oblique coordinates will involve much mathematical complexity.
So this entails difficulty in solution. Berger’s equations, although decoupled are question-
able. Thus, the present method seems to be more advantageous. The main advantages are:

(1) the differential equations are uncoupled and easy to solve;

(2) it gives accurate results both for movable and immovable edge conditions; and

(3) from a single cubic equation determining f§ ( = w,/h) the results could be obtained for
movable as well as immovable edge conditions.

Thus, to study non-linear behaviour of skew plates, the present method seems to be more
acceptable.
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APPENDIX

Experimental arrangement

A sketch of the apparatus used for the experimental purpose is shown in Fig. 2. Two skew boxes with upper side
open are constructed and each of the four side walls are made of steel. Each vertical wall of one box is 16 cm and of
the other is 14 cm. The upper side of each wall is made sharp (knife edge), care being taken to see that all the knife
edges lie on the same horizontal plane. The walls of the box with sides 16 cm long are welded in a manner that the
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Fig. 2. The experimental arrangement.

two opposite angles are each 75° and the other two opposite angles are each 105°. Two opposite angles of the
second box with sides 14 cm long are each 60° and the other two opposite angles are each 120°. Two holes are
drilled on two opposite sides of each box and fitted with short metal pipes, one of which acts as an air inlet and the
other as an air outlet.

For the experiment with the first skew box, the centre of the box is first found and then a plumb line is set as an
indicator along the vertical line on which the centre of the box lies. For the free movable boundary conditions one
test plate (which is approximately mirror surfaced) is symmetrically placed on the knife edges of the box and a
pointer is fixed on the upper surface of the test plate with some adhesive along the plumb line. The outlet pipe is
then joined to an exhaust pump by rubber tubing and the inlet pipe is joined to a standard vacuum meter and an
air pressure regulator (as shown in the sketch). Along the contact line beneath the test plate some thick grease is
used to make the box perfectly airtight. (Grease does not apply any appreciable tension on the plate.) When the
exhaust pump operates, the box becomes evacuated, thereby causing the depression of the test plate by the excess
outside air pressure, which is uniform all over the effective skew part of the test plate. The central deflection of the
test plate is easily measured with the help of a precision cathetometer set at a distance of approximately 1.5 m from
the pointer.

To make the free boundaries of a skew plate immovable, four pieces of steel collars are taken whose lengths are
equal to the length of outer boundary line of the skew plate. The collars are kept outside the box in contact with the
lower surface of the plate and with the side walls of the box and then the collars are tightly clamped with the test
plate using nuts and bolts in sufficient number well outside the boundary of skew section.
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Abstract—This paper concerns a new approach to the investigation of non-linear behaviours of
heated rhombic plates. A new set of differential equations in oblique co-ordinates have been derived
in this investigation. Numerical results showing central deflection parameters versus thermal load
functions have been computed for different skew angles 6. For 6 = 0° the results obtained in the
present study are in excellent agreement with the known results. It is believed that the results
obtained for other different skew angles are completely new.

INTRODUCTION

Determination of thermal deflections in thin elastic plates, is of vital importance in cases
where the thermal stresses play a significant role. Although thermal deflections of thin elastic
plates have been investigated by many authors (Aleck, 1949 ; Zizicas, 1952 ; Schneider, 1955;
Boley and Weiner, 1960 ; Forray and Newmann, 1960 ; Nowacki, 1962 ; Katayama et al.,
1967 ; Sarkar, 1968 ; Kaiuk and Pavlenko, 1971, 1972 ; Roychowdhury, 1972 ; Prabhu and
Durvasula, 1974 ; Matumoto and Sekiya, 1975), the literature on the large thermal deflec-
tions is somewhat sparse. The most interesting papers in this field are;Williams (1955, 1958)
who quite elegantly carried out large deflection analysis for a plate strip subjected to normal
pressure and heating. Biswas investigated the large deflection of heated circular plates under
non-constant temperature (Biswas, 1974) and large deflections of heated elastic plates under
uniform load (Biswas, 1975). The author followed Berger’s equation in his investigations.

Another interesting paper in this field is,Banerjee and Dutta (1979)¥investigation of non-

linear behaviours of heated elastic plates under non-constant temperatures,The authors

utilized a conformal mapping technique along with Berger’s hypothesis. Later on Banerjee
proposed a new approach to the Large Deflection analysis of thin elastic plates (Banerjee
and Dutt, 1981) and afterwards carried out quite elegantly the non-linear behaviours of
polygonal plates under non-constant temperatures (Banerjee, 1984). Following Banerjee’s
approach, another interesting paper is by Sinharay and Banerjee (1985) on non-linear
behaviours of heated spherical and cylindri-ca shells, where the authors have achieved
satisfactory results from the practical point of view. Also, the works of Kamiya (1978) on
the large thermal bending of sandwich plates are very attractive and useful too.

All the investigations mentioned above deal with plate geometry either circular or
rectangular or in the shape of regular polygons. Only five papers (Katayama et al., 1967 ;
Kaiuk and Pavlenko, 1971, 1972; Prabhu and Durvasula, 1974 ; Matumoto and Sekiya,
1975) concerned with the study of thermal behaviours of skew plates are found in the
literature. But these papers do not consider the large deflections of plates. To the authors’
knowledge, no paper has been devoted to the investigations of non-linear behaviours of

t Formerly head of the Department of Mathematics, Government Engineering College, Jalpaiguri, West
Bengal, India.
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heated elastic skew plates having various applications in modern design, especially in the
space industry.

In this paper non-linear behaviours of simply-supported heated skew plates (taken in
rhombic form for simplicity of calculation) are investigated. Various numerical results
have been calculated showing central deflection parameters versus thermal load functions.
Whereas the results for skew angles other than 0° are believed to be new, the results for a
0°-skew angle are found to be in remarkable agreement with the already known results [see
Biswas (1975)].

ANALYSIS

Let us consider a rhombic plate of skew angle 8 whose uniform thickness is 4 and
edge-length 2a. The material of the plate is considered isotropic having mass density p,
Young’s modulus E and Poisson’s ratio v. The origin of the co-ordinates is located at the
geometric centre of the plate. The deflections are consideed to be of the same order of
magnitude as the plate thickness, the edge—length being sufficiently large compared to the
thickness.

Now the uncoupled set of differential equations in rectangular Cartesian co-ordinates,
governing the thermal behaviours of elastic plates [see Banerjee (1984)] is given by

e 22 5 R (2 ()

h? &) K ox
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ou dv 1 {/owy ow ¥
A “$+‘5§+5{(5§> Y (F>} (Hmao, @

4 = v* for simply-supported elastic plates, and D = Eh*/12(1 —v?), the flexural rigidity of
the material of the elastic plate.

It is to be noted that in the derivation of eqns (1) and (2) in rectangular Cartesian co-
ordinates, the expression

(a ,)[av + 1 (6u')2:|+ <6u N ér + ow 6w)2 1
— "- — - — — R — L ———
oy 2\ 0y ox &y éx &y) 2(1+w)

in the total P.E. of the elastic plate (Banerjee, 1984) has been replaced by

L&)+

As a consequence the partial differential equations governing the deflection of the plate
have become uncoupled and the two decoupled differential equations (1) and (2) have been
obtained.

In the present problem, the temperature is assumed to vary linearly w.r.t. the thickness
direction z. We also note that
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Fig. 1. Plan form of skew plate and co-ordinate system.

T(-",}’, .'.') = TO(x) }") +ZT(X,y),

in which
| 1
1o = (T + 1), T=71(T1"‘T2),

h h
T, = T(x,y, 5) and T, = T(x,_v, - 7) (Banerjee, 1984).

Clearly 74 is the temperature in the middle plane and t varies along the thickness of the

plate and hence t # 14.
The plan of the skew co-ordinates (x,, y;, 8) is shown in Fig. 1. Clearly
x=Xx,cosf
and y=y +x;sind 3)
are the co-ordinate transformation equations. Hence we have the following partial differ-

ential operators in oblique co-ordinates:

2 wswo( o). 222
ax Ny, T ) T Eny
&, (62 @ - 2)
5{3=S°c 9 6x§—-2sm66xlay-l-+sm 05;? s
R : e ¢
5= . —=secl i 5 ],
oy-  Cyi O0x Oy > (63(, v, S 06 ‘)
, , ( -7 2 a:)
V:=sec’ 8 = —2sin @ e
\Ox} Ox, 0y,  dyi
and
a* o* o a* o*
v = m-——4'( ) c2sintg) . 0 O
sec {6):? sin @ T ap, + &, o +2(1+2sin* 0) axTayt + & 4

We now transform eqn (2) in oblique co-ordinates. For simply-supported plates the

boundary conditions are
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Then let us choose the deflection function for the simply-supported plate as

Xy my{
W = We COS —— COS —,
2a 2a

which clearly satisfies the above-mentioned boundary conditions.

)

Now putting (5) in eqn (2) transformed in oblique co-ordinates and then integrating
the relation thus obtained, over the entire surface of the plate, we obtain the value of 4 in

the following form:

)
niwi

A=52

(1 +v+2tan’ 0) — (1 +v)a,1,.

(6)

(As the normal displacement w is our primary interest, the in-plane displacements u, ¢

have been eliminated through integration by the choice of appropriate functions for

such

isplacements.) Again transforming eqn (1) in oblique co-ordinates, introducing eqns (5)

- Jisplacements)

and (6) in the transformed equation and then applying Galerkin’s error minimizing tech-

nique we get the following equation determining the central deflection parameter
depending on the thermal load function ¢"a*/ER*:

65 TR L
[(l +2tan? @) sec’ 0 — o {ZV//'.(I —v)-sec' §

+(1+v)(1 +v+2 tan? 0)}](1,;9)+ i[(1+v+2tan’6)?

; 3 2 s 4
4 , . wo) 768(1-v7) (qa
+4(8+49tan 6+29 tan 0)](h) =——\g )
where

a 2
S = 2(1—) (I +v)a1,

and

g =q—Dx(1+v)V1.

\1'0//7

(N

Equation (7) is applicable for the immovable edge condition of the simply-supported skew

plate. For the movable edge condition we have A = 0, so that eqn (7) takes the form :

128 W
1+21an? 0) sec? - ~—o /71 —v7)-sec? @ |( %
[(+ tan” 8) sec*d TEne (1 \)scce:](h)

34 wo) _ 768(1—v*) (¢'a*
34 2 4 __9 =\ "7
+35B+491an’§+29 tan 62]_(,,) 7 Er*)

®
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Table I.S=0,ie.1,=0

wo/h by present method wo/h by Berger's methodt
(Biswas,
1975)
=0 0=15 0 = 30° 0=0° 8#=15 86=30
51'_"_1 Movable Immov- Movable Immov- Movable Immov- Immov- Immov- Immov-

En* edge  able edge edge ableedge edge ableedge able edge able edge able edge

2 1.30156  0.91435 1.08167 0.82069 0.6269  0.53604 0.9013 0.79972 0.5367t
4 21909 1313t 1.85443  1.20857 1.14734  0.84631 1.29017 1.16888 0.848

8 3.23354  1.78866 28581  1.67119 1.89675 1.22355 1.75406 1.60902 1.2266
(U 3.73498 19613 3.2243  1.83866 2.17977  1.3597 1.92254 1.76847 1.36324

+Berger’s method has been applied to the present problem by neglecting e, the second strain invariant in
the expression for total P.E. of the plate.

NUMERICAL RESULTS

Numerical results are presented here (Tables 1 and 2) in the tabular forms for $ = 0,
0.1;8 =0° 15°,30°and ¢'a*/Eh* = 2, 4, 8, 10.

—

OBSERVATIONS AND CONCLUSIONS

From the numerical analysis of the undertaken problem the following observations
are made

(i) The nature of the central deflection of a skew plate under thermal loading is the
same as that of the plate under mechanical loading, i.e. the central deflection increases
continuously with the increase of loading for any edge condition of the skew plate, whether
movable or immovable.

(ii) The central deflection for the movable edge condition of the skew plate is always
greater than that for the immovable edge condition of the plate, for the same loading.

(i) Irrespective of the edge condition, the central deflection decreases with the increase
in the skew angle.

(iv) The results for immovable edge conditions of the skew plate obtained by the
present method, agree well with the results obtained by Berger’s method. It is to be noted
that Berger’s method is a purely approximate method based on the neglect of e,. But the
present study is based on Banerjee’s hypothesis which suggests a modified strain—energy
expression, and thus this model embraces less approximation (Banerjee and Dutt, 1981) than

that of Berger. Again Berger's method is meaningful only for immovable edge conditions of
the plates.

(v) The deflections increase with 1,.

The present method seems to be more advantageous than any other method found in
open literature. The main advantages are:

Table2. §=0.1,ie. 1,20

Wo/h by present method wo/h by Berger’s method (e,=0)
(Biswas,
1975)
=0 =15 0 = 30° =0 6=15 6=230
‘L”‘ Movable Immov- Movable Immov- Movable Immov- Immov- Immov- Immov-

Ent edge  able edge edge  able edge edge ableedge able edge able edge able edge

2 1.32786  0.94985 1.10168  0.83899 0.63597 0.55925 0.94058 0.83515 0.56109
4 222082 1.34324 1.87831 1.20992 1.1604  0.86901 1.32336¢ 1.19954 0.87185
8 335106 181316 2.88067 1.65221 Lottt 1.24302 1.781 1.63412  1.24706
0 3.76118  1.98415 3.24585 1.81269 2.19385  1.37799 1.94764 1.79188 1.38247

- —
= I
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(1) The differential equations are decoupled and easy to solve;

(2) from a single cubic equation determining w/h, the results could be obtained for
movable as well as immovable edge conditions; and

(3) unlike Berger's method it gives accurate results both for movable and immovable
edge conditions. Based on Banerjee’s hypothesis a good number of works have
been carried out and in each case sufficiently accurate resuits have been obtained
[e.g. Banerjee and Dutt (1981), Banerjee (1984), Sinharay and Banerjee (1985) and
Ray et al. (1992, 1993)]. So in the present case also, the same degree of accuracy

was expected. //
44
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Abstract. Nonlinear static and dynamic behaviours of freely supported Rhombic sandwich plates have becn
studied following Banerjee’s hypothesis. Numerical tesults for 0° skew angle are compared with other known
results. Results for other skew angles are believed 10 be new.

Somumario. Si studia, scguenda I ipwacyl di Banerjee, I compratatnenio nondineare statico ¢ dinasnico <
rombiche semplicemente sppoynate. Si presentano risullati numerici realivi a piastre sombiche ¢ zetia: 4
quest ultimi vengono parsgodi a nisultau gid noti, meotie | pami s sigagono auovi,

Key words: Skew plalesysandwick plates; nonlincar analysis.

1. Introduction

Sandwich plates find wide applications in technology and modem design. Outstanding invecs-
tigations [1-8] on large deflections as well as large amplitude vibrations of such plates ure
limited to the rectangular form only. No attempt on the nonlinear bel.. viours of skewed
sandwich plates has been reported as yet.

In this paper an attempt has been made to analyse the nonlinear behav., .. ~! “elv
supported skewed sandwich plates having an isotropic core within isotropic uppc . = wer
faces and under both static and dynamic loadings. For the sake of simplicity, a skewed
plate in the form of a rhombus has been ¢ nsidered. Foliowing the modified stramn energy
expression proposed by B. Banerjee, [8] a new set of decoupled differential equations for
skewed sandwich plates has been derived. The final equations have been solved by Galerkin’s
method. Numerical results are computed and those for the 0° skew angle are compared with
the other known results. The results for other skew angles are completely new.

2, Governing Eyuutine

Let cach side of w shabyc s ich plte be e s sog ue w0 s cote o8 shickies- 4 -
iSOtropiv upper aind baa - taces of Wentical thp ks so ty e 1y g A,

Now let un set one welgaguli cartesion cunamte = v ca, y, 2} aod wae o,
coordinate systemn (<4, yy, #) ul the same colper of the e, 1, g being in the nidole ...
of the core; Z the thicknesy direction; 2y, ¥y are paratlel t the sides of the plate and ¢ Lo
skew angle (see Figure 1). Clearly, asethe coordinate transtormation equations, aye

=zjcos fandy = y; + z; sin 0 (i)

G.0.: PIPS Nr.: 47441
meccili.tex ~ Date: February 11, 1994 Time: 1u. 23
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Fig. 1. Plan form of skew plate.

Following Banerjee’s hypothesis, [8] the differential equations in ... .cc angular coordinate
system governing the deflections and vibrations of sandwich plates are

-

Ety _, g] 2E;, . [*W +U(92W
[2(1 —v) A=)\ 0a2 oy?

Et) | aw>2 (0W)2 2
2 —
+hV W+(1-u2)6"’{(6w (% viw

S (y? ooyl e o aw ]
* | da? X oy * dyr \ oy /) Tiiy e Oy { 5
VY L
whete { = y/07 v gawfinear static deilb s o,
A Y
__(pm(;; 2 00:2, for taidiesat clisu 3 Wnadbiuns, 1)
1 aW)l (8W>2 gp oy
mo.. — — —— -
and [j —2{(6:3 tv Jy +é):c+u(')y
= constant, for nonlinear static deflections )
= C f(t) for nonlinear elastic vibrations,
C being a constant dependingon 0 . )
In the above equations W is the transverse deflection function; ¢, the lateral Joad dis. 1. 1ion
function; P, Q are the in-plane displacements along = and y axes respectively; &, the Y g’
Modulus of elasticity of the material of the upper and lower faces; G, the shear modul ¢ ¢ the

core material; v/, the poisson’s ratio of the face material, A = v2; p;, py are the surface we iy
and core density respectively, and f(t), F(t) are the functions of time such that f(¢) - & (¢}
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It is to be noted that the strain-energy expression in ref. [8] has been modificd by .
Banerjee's hypothesis, which states that the stretching of the plate is propoitional tu

(3W)2+ (aW)2 :

Oz dy ' '

As a consequence of this assumption, a set of uncoupled differential equauom has .
obtained as given above.

3. Analysis
3.1. NON-LINEAR STATIC BEHAVIOUR OF FREELY SUPPORTED SKEWED SANDWICH PLATL:

To find normal displacement W, the inplane displacements of the upper and lower faces ar:
being eliminated through integration by choosing suitable expressions for them in the (orm
of trigonometric functions compatible with the boundary conditions of the plate [8]. Thex
transforming equation (3u) in oblique coordinates, choosing

T XY
W = Wsm-——-—sm LA VL
a
and
P & 2 TR ('}
g = § sin —— sin el b
a u

and then integrating the transtorined equation over the whole domain of the plate we g

21472
W
I{n = 8a2 (1+U+2 ulnz H), 4y

Again transforming equation (2) with £ = ¢/(”, in oblique coordinates, introducing equations
(4a), (4b) and (4¢) in the transforimed equation und then applying Galerkin procedure, we arrive
at the following cubic equation determining W, the central deflection of a freely supported
rhombic sandwich plate

4 2EuS
il [7{ 1Secd {(1+v+2uwn® (14 v+4 o)

4(1-2) [(1-v?)G'a?
+A(5+ 17 tan? 6 + 12 tan* 0)} + %{(1 + v+ 2 tan? §)?

h

27r4t1$ec20 1774 qa* 2 Eht)Sec?d
142 tan 6 — ] = 1 - . -
+ [ (1- ( * )] ( h e | T (1- UZ)G’az} )

4. Numerical Results

L\ 3
+A(5+ 11 tan® 6 + 6 tan* 0)}} (Z‘i)

Table 1 shows differeat numerical results of the central detlections of a (0.254 m « 0.7 § 1)
rhombic plate having t; = ©.35 x 107 m,h = 1.7135 x 102 m. |5, 8].
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Tuble 1. Showng Wihvs§. E =162 x 10°psm, G’ = 9.3 x 10°psm, v

=03, &5 = 10[5,8)

v Valueof W/h

lmmovable edge Movable edge

Value Cukulgted  Othier known  Caleulated  Other knowny

of ¢ value vislue valie vilue!"
{4) lﬁl
0 1.49%4 1.53 l JU 2 322.9 2 558
15° 1.3644 — —_— 215603 e
30° 1.0328 — — 1.6360 -—
45° 0.6051 —_— e 1.0414 —_

Note: For movable edge condnlun of llu frecly supponed plate [{" = 0.

4.1. NONLINEAR DYNAMIC BEHAVIOURS OF FREELY SUIPORTLD SKEWED SANDWICH . A 1S

Let us now consider free vibrations of skewed sandwich plates. Neglecting in-plass.

(IS Y]
for obvious reasons, transforming equation (3b) in oblique coordinates, choosing
W =W sin ke sin —ty—l (t) it
a
for fundamental mode of vibration and then integrating the transformed equation  © the
whole domain of the plate we get
21772
W
It = (14 v +2 tan? 6)F3(1). ob
Now transforming equation (2) with £ = et ;,.Ji‘} Q W in oblique coordinates, : - ting

equations (6a) and (6b) i the transformed equistion md lhux applying Galerkan's 1 -2vjure
we get the following equation for time function

*(pity v‘zi'f*fli)“’. Sect ¢ — (1t t mh) F
(l —_ ‘/ f“; h
21!‘41311‘:

+[(1“If2) it 7 2’ 0) e "}1
T ELGW? [ 121 Sec?
4(1 - v%)a* | (1 - v?)G'a?

(1 + v+ 2 an? 0)(1+ v +4 tan® 8)

+A(5+ 17 tan® 6 + 12 tan* 0),+-

(1+ v+ 2 tan® §)?
+A(5+ 11 tan® 6 + 6 tan® 0)|}] #3 =0, (7)

which may be turned in the form F + AF + BF? = 0, the familiar Lufing’s equation. With
the initial conditions F(O) = 1 and F(0) = 0, the solution of equation (V) ..+ I’ 1own
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Table 2. Showing wi fw; vs &

Value  Value Value of w] fw)
of of
] -25[‘ Immovable edge Movable edge
Calculated  Other known value  Calculated  Other knowsn
value {8} [7} value value {8]
0° — 1.15028 112 L4 1.03342 1.024
15° — 1.16621 - - 1.03365 —
30" 05 1.22803 - - 1.04313 —
45° — 1.36556 - - 1.06261 -
0 -_— 151413 142 148 112774 1.094
15° —_ 1.56211 —_— - 1.1286 —
30" 1.0 1.74133 -— - 1.1630 -
45° -— 2.11166 _— e 1.2315 —
elliptic integral F'(t) = C,(w}, t, k). Then the ratio of nonlinear frequency wi tor | car

frequency w) is given by

w} h cost ¢ w\* N [ w3 sed 0

Dot gy g ) (10 5) (R 4

W) 8(1+4 2 wn (b 20 h (1 =v?)C'a
(1+v+2@? 0)(1+v+4tan? 0)+ A5+ 17 wn? 0+ 12 tan® )]

. ]
+}]:I(1 +r+2an? O 4 A5+ 11t 64 6 wnd 0)[” , (8)
where ) = 1} + %, Wi = J}fand wp = \/A "‘jjj

5. Numerical Results

Numerical results of the ratio w[ /w; are shown in Tuble 2. For calculations, the »_ « sat.
which are used in the study of static behaviours of sandwich plates are used heze ul-

6. Observations

From the calculated results, the following observations are easily made.

1. The results of both static and dynamic behaviours of a sandwich plate having sk~ v ~pls
¢ = 0° and aspect ratio 1 are in excellent agreement with those obtained by I i ana
Banerjee [8].

2. Itis seen that the centrul deflection gradually devreases with the increase n sh - - i
for both movable as well as immovable edge conditions.

3. Forany assumed skew angle the central deflection is greater for the movable edge . alon

than for the immovable edge condition. This is quite expected from a practice. « «t o
View.
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4. In the dynamic case, the frequency ratio wj /w; increases continvously with ¢ . -w
angle 6, for both movable as well as immovable edge conditions of a skewed |+ e
ratio for immovable edge condition being always greater than that for the mova: . e
condition.

7. Conclusions

1. Greater deflections, obtained in the present theoreticul study in compantson w il icc-

tions obtainable from the other theories in open literature, indicate acceptibulin. o1 the
present method for practical purposes.

. It is advantageous from the point of view that following this method tesults, 300 oth

immovable as well us movable edge conditions of the plute, can be derived o+ e
cubic equation,

. The governing difterential equations, being de-coupled, are simple and casy s - out,

are able to yield results with considerable accuracy.

4. The great advantage of the present method hies in the fact that the accuracy vlth. . sl
does not depend on any correction factor and thus holds good for sandwich .1, o
different geometry.
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