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Abstract—Non-linear static behaviour of rhombic plates has been analysed following Banerjee's 
hypothesis (B. Banerjee, Large deflections of polygonal plates under non-stationary temperature. 
J. Thermal Stresses 7, 285-292 (1984)). Calculations have been carried out for different skew angles. 
To test the accuracy of the theoretical results so obtained, experiments were carried out on copper 
and steel rhombic plates. The theoretical results were found to be in excellent agreement with those 
obtained from an analysis of the experimental data. 

INTRODUCTION 

Skew or oblique panels find wide applications in the aircraft and spaceship industry; hence, 
a study of the non-linear behaviour of skew plates is of great importance. In contrast to the 
non-linear behaviour analysis of elastic plates of geometries Uke circular, rectangular, 
triangular and elliptic, skew plates have not received much attention. This may be due to 
their relatively difficult mathematical models. 

The most important work in this field is due to Nowinski [2], who analysed the large-
amplitude oscillations of oblique panels having initial curvature. Two more interesting 
papers on non-linear vibration problems of skew plates are by Sathyamoorthy and Pandalai 
[3, 4]. They have analysed the non-linear flexural vibrations of simply supported skew 
plates of isotropic as well as anisotropic materials, using Berger's equation. In contrast to 
works on non-linear vibration problems of skew plates, the literature on non-linear 
deflection problems of skew plates is scanty. In this field three interesting papers could be 
located. Kennedy and Simon [5] carried out non-linear analysis of skew plates by the 
perturbation method. Srinivasan and Ramachandran [6] analysed the large deflections of 
skew plates of variable thickness using the Newton-Raphson procedure. Ashton's [7] work 
is on the linear static analysis of anisotropic skew plates. It is interesting to note that most of 
these investigations are carried out on skew plates of clamped edges only and the case of 
simply supported edges has not received proper attention. 

In this paper large deflections of simply supported rhombic plates are studied following 
Banerjee's approach. A set of uncoupled differential equations has been obtained in oblique 
coordinates and solved by applying the Galerkin technique. The case of a simply supported 
rhombic plate is discussed in detail. To test the accuracy of the method, experiments were 
carried out on copper and steel rhombic plates. The details of the experiments are given in 
the Appendix. The numerical results obtained from the theoretical and the experimental 
analysis are compared. The present method appears to be more acceptable from the 
practical point of view. 

* Formerly at: Department of Mathematics, Government Engineering College, Jalpaiguri and Hooghly Mohsin 
College, Serampore, Hooghly, West Bengal, India. 
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ANALYSIS 

Consider a rhombic plate of an elastic, isotropic material, having uniform thickness of h. 
Let the size of each side of the skew plate be a which is sufficiently large compared to h. The 
origin of the rectangular Cartesian coordinate (x, y) is located at one of the corners of the 
skew plate (see Fig. 1). The plate is considered to be simply supported along its edges and 
loaded uniformly all over. 

Following Banerjee's hypothesis [1], the differential equations, referred to the system of 
rectangular Cartesian coordinates are: 

V (̂a 
l2Afd^ 6/ 

V^w 
da)Y 

cy) ^ 

+ 2 + 4 dxdy J\dx D (1) 

where 
(a = the deflection normal to the middle plane of the plate 
V = Poisson's ratio of the material of the plate 

q = load per unit area acting on the plate 
D = the flexural rigidity of the plate = Eh^l\2(\ - v̂ ) 
E = the modulus of elasticity of the material of the plate 

1 du dv 
dx dy (2) 

which is a constant depending on the surface and edge conditions of the plate, and V̂  is the 
Laplacian operator. 

For a skew plate, let us adopt a system of oblique coordinates (Xj, >'i, 0), as shown in 
Fig. 1, 6 being the skew angle. 

Clearly, 
x = XiCos0, >> = ^i + Xj sin 0 (3) 

are the coordinate transformation equations. Hence the partial differential operators 
become 

ex ycxj cyi 

dx^ \dxl dxidyi 

1^ = 1^ 
dy ~ dyi 

+ tan^ 9 
dyi 

y, y 

Fig. 1. Plan form of skew plate. 
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and 

——- = secy -—-— 
oxoy \dxidyi dyi 

~ \dx\ dxidyi dyl) 

7'^ = sec*6 

dx\dyl dy\ 
(3a) 

Using these operators, transforming the differential equations (1) and (2) in oblique 
coordinates, we arrive at the following set of transformed differential equations: 

sec'^e 
d*co d'^m 

+ • 
d^co 

dx\ \dx\dy-^ ^ dx^^dyl 
+ 2(1 +2sin2 0) 

d*(o d^w 
+ • 

dx\dy\ dy\ 

\1A 
IF 

Jd- CO 
sec^0( ^r-^r — 2sin0 

\dxi 
8^co 

+ tan^ e—^ + v—y 
dxidyj dyi dyi 

fdoiV fdco_ 
dy^ 

dcoV d^co(doi\ 

\dx^ dyj dyl\dyj 
+ 4sec^0( —— sin0—y 

c7XiO)'i oyi 

da . 8(o\/ dco 

and 

^=-^sec^0 
dx. 

D 

2 s i n 0 | | ^ Y ^ ) + s i n ^ e | ^ 

(4) 

dxj\dy^ 8y^ + V 
dw 

dy^ 

„f du . ^du\ dv 
+ sec0 s i n 0 ^ + V-—, 

\dxi dyi J dy^ 

Now to solve the problem, let us assume 

. nx, . ny^ 
CO = co„ sin sin — 

a a 

(5) 

(6) 

COQ being the maximum central deflection. 
For the value of yl, let us integrate equation (5) over the whole area of the plate. Then we 

have 

j AcosOdx^dyi =-\ ^sec^O 
Jo Jo 2Jo Jo m-H^" 

After integration, we get 
^-»'S)(l^)j + V -— ycostiaxidy, . 

^ = ! ^ ( l + v + 2tan^0). (7) 

Here, it is to be noted that, since the normal displacements are our primary interest, the in-
plane displacements have been eliminated through integration by choosing suitable ex­
pressions for them, compatible with their boundary conditions. 

Now, applying Galerkin's method of approximation to the transformed differential 
equation (4) and keeping in mind the value of A from equation (7), we get the following 

file:///dxidyi
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cubic equation determining (I ( = cjoih). 

(1 + sin'e)(^]+-{[{[ +v) + (l-v)sin^0]^ 

Adopting the well known equation [8], of Berger with gjCl] neglected, the corresponding 
cubic equation determining the central deflection parameter (for immovable edges only) 
takes the following form (after applying Galerkin's technique): 

NUMERICAL CALCULATIONS 

For a steel plate we have £ = 2 x 10̂ ^ dyne/cm^ and v = 0.3, for which equation (8a) 
becomes 

(1 + sin2 0 ) ( ' ^ J + ^[(1.3 + O.Vsin^̂ )̂  

+ 0.09(5+ s i n ^ 0 ) ] ( ^ j = 22.66 X 10" ' ' ( ' ^ ' Jcos^e (9a) 

whereas for a copper plate we have E = 1.25 x 10'^ dyne/cm^ and v = 0.333, so that 
equation (8a) becomes 

(1 + sin20)( ^ j + ^[(1.333 + 0.667sin^0)2 

+ 0.11(5+ s in^0)] (^ J = 35.46 x lO- '5 (^ ' ) cos*0 . (9b) 

Also, for a steel plate equation (8b) becomes 

(1 + s i n ^ 0 ) [ ^ ] + l - 5 ( ^ Y = 22.66X lO- ' ' ( ' ^ )cos '^0 (9c) 

and for a copper plate it becomes 

(l + s in^(? ) ( ' ^ ' )+1 .5f^Y = 35.46xlO-»'('^')cos*0. (9d) 

Tables 1 and 2 present a comparative view of the various theoretical and experimental 
values of the central deflection parameter p ( = coo/h) for different values of the load 
function Q ( = qu'^/Dh), for the case of steel plate and copper plate, respectively. For 
movable edge conditions the value of A will be zero. (The experimental method is explained 
in the Appendix.) 

OBSERVATIONS 

It is observed from the two tables that the results of the present study are in excellent 
agreement with those obtained from the experimental analysis. It is well known that 
Berger's method fails [9] miserably under movable-edge conditions. The results for simply 
supported immovable edges, obtained by Berger's method (as shown in the Tables 1 and 2) 
show that this method is not even acceptable from the practical point of view. It is worth 
noting that Berger's method always gives less deflections for a given load. The errors of 
Berger's method (as shown in Tables 1 and 2) are certainly questionable from the view point 
of safety design. 



Table 1. The central deflection parameter (fi = (ojh) vs the load function (Q = qa*/Dh) for steel plate (a = 16 cm for skew angle 6 = 15° and a = 14 cm for 6 = 30°; h = 0.1343 cm) 

e 
qa^IDh 

Q 
qa^/Dh 

P (for e = 15°) 

Movable edges Immovable edges Percentage error 

Banerjee's 
hypothesis Experimental Percentage error Berger's method Banerjee's hypothesis Experimental Berger's method Banerjee's hypothesis 

111.72 
223.44 
335.16 
446.88 
558.6 

0.3716 
0.7038 
0.98592-
1.22484 
1.4303 

0.3872 
0.7372 
1.0201 
1.2882 
1.5115 

4% 
4 5 % 
3.3% 
4.9% 
5.4% 

0.3285 
0.5378 
0.6843 
0.7982 
0.8924 

0.3454 
0.5914 
0.7703 
0.9107 
1.027 

0.36485 
0.6329 
0.8414 
0.9903 
1.1244 

9.96% 
15% 
18.67% 
19.4% 
20.6%. 

5.33% 
6.56% 
8.45% 
8% 
8.66% 

o 
o' 
B 
O 

o-

3 

p (for 0 = 30°) 

Movable edges Immovable edges Percentage error 

Banerjee's 
hypothesis Experimental Percentage error Berger's method Banerjee's hypothesis Experimental Berger's method Banerjee's hypothesis 

The average percentage error from Banerjee's hypothesis is only around 6% for skew angles of 9 = 15°, 30° whereas from Berger's method it is around 17% for 9 = 15° and 10% for 9 = 30° 

t 

65.5 
131 
196.5 
262 
327.5 

0.12208 
0.2427 
0.3604 
0.4742 
0.5835 

0.134 
0.25316 
0.37975 
0.4989 
0.61802 

8.9% 
4.13% 
5.1% 
5% 
5.59% 

0.1202 
0.2301 
0.3254 
0.40782 
0.4795 

0.1209 
0.2346 
0.3369 
0.4276 
0.5081 

0.12658 
0.25316 
0.36485 
0.46165 
0.55845 

5% 
9.11% 

10.8 % 
11.66% 
14.2% 

4.49% 
7.33% 
7.66% 
7.4% 
9% 

•T3 

O 

3 -



Table 2. The central deflection parameter {P = cDjh) vs the load function (Q = qa*/Dh) for copper plate (a = 16 cm for skew angle 0 = 1 5 ° and a= 14 cm for 0 = 30°; h = 0.0789 cm) 

li (for 0= 15°) 

Movable edges Immovable edges Percentage error 

Q 
qa*/Dh 

1467.53 
2935.06 
4402.59 
5870.12 
7337.65 

Banerjee's 
hypothesis 

2.3727 
3.2506 
3.8437 
4.307 
4.6935 

Experimental 

2.4208 
3.308 
3.9924 
4.4867 
4.90494 

Percentage error 

2% 
1.7% 
3.72% 
4% 
4.3% 

Berger's method 

1.36820 
1.79580 
2.0891 
2.32003 
2.5138 

Banerjee's hypothesis 

1.57802 
2.08753 
2.43578 
2.7095 
2.93893 

Experimental 

1.673 
2,23067 
2.6109 
2.90241 
3.1559 

Berger's method 

18,22% 
19.5% 
19,98% 
20,07% 
20,35% 

Banerjee's hypothesis 

5.68% 
6.4% 
6.7% 
6.65% 
6.9% 

> 

pa 
p (for 0 = 30°) 

Movable edges Immovable edges Percentage error 

Q 
qa*/Dh 

860.2 
1720.4 
2580.6 
3440.8 
4301 

Banerjee's 
hypothesis 

1.2602 
1.9429 
2.4064 
2.765 
3.0617 

Experimental 

1.2801 
2.0279 
2.5095 
2.9404 
3.2319 

Percentage error 

1.55% 
4.2% 
4.1% 
6% 
5.3% 

Berger's method 

0.8553 
1.1901 
1.4156 
1.5913 
1.73760 

Banerjee's hypothesis 

0.9283 
1.3095 
1.5657 
1.7649 
1.9307 

Experimental 

0.9886 
1.40684 
1.6857 
1.90114 
2.09125 

Berger's method 

13.5% 
15.5% 
16% 
16.3% 
16.91% 

Banerjee's hypothesis 

6.1% 
6.92% 
7.12% 
7.17% 
7.7% 

The average percentage error from Banerjee's hypothesis is only around 5% for skew angles 0 = 15°, 30" whereas from Berger's method it is around 20% for 0 = 15" and around 15% for 
0 = 30". The errors are calculated considering the experimental results as standard (sacrificing instrumental and personal errors). 
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It is observed that deflections for movable edges are always greater than those for 
immovable edges. This is quite expected from the practical point of view, because movable 
edge conditions give stress-free boundary and, hence, there are large energy changes in the 
boundary. 

Here the results for skew angles 9 = 15° and 30° only have been considered, because for 
greater values of the skew angles the effect of non-linearity does not play important role in 
design, and the study of Unear analysis serves the practical purpose. 

CONCLUSIONS 

Von Karman's classical equations are in the coupled form and the transformations of 
these coupled equations in oblique coordinates will involve much mathematical complexity. 
So this entails difficulty in solution. Berger's equations, although decoupled are question­
able. Thus, the present method seems to be more advantageous. The main advantages are: 

(1) the differential equations are uncoupled and easy to solve; 
(2) it gives accurate results both for movable and immovable edge conditions; and 
(3) from a single cubic equation determining jS ( = ojo/h) the results could be obtained for 

movable as well as immovable edge conditions. 

Thus, to study non-linear behaviour of skew plates, the present method seems to be more 
acceptable. 
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A P P E N D I X 

Experimental arrangement 

A sketch of the apparatus used for the experimental purpose is shown in Fig. 2. Two skew boxes with upper side 
open are constructed and each of the four side walls are made of steel. Each vertical waU of one box is 16 cm and of 
the other is 14 cm. The upper side of each wall is made sharp (knife edge), care being taken to see that all the knife 
edges lie on the same horizontal plane. The walls of the box with sides 16 cm long are welded in a manner that the 
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CATHETO 
MCTER 

POINTER 

TO EXHAUST 
PUMf 

KNIFE EDGE 

KNIFE EDGE 

OETAIU PLAN OF KNIFE EDGE 
ARRANGEMENT 

Fig. 2. The experimental arrangement. 

two opposite angles are each 75° and the other two opposite angles are each 105". Two opposite angles of the 
second box with sides 14 cm long are each 60" and the other two opposite angles are each 120°. Two holes are 
drilled on two opposite sides of each box and fitted with short metal pipes, one of which acts as an air inlet and the 
other as an air outlet. 

For the experiment with the first skew box, the centre of the box is first found and then a plumb line is set as an 
indicator along the vertical line on which the centre of the box lies. For the free movable boundary conditions one 
test plate (which is approximately mirror surfaced) is symmetrically placed on the knife edges of the box and a 
pointer is fixed on the upper surface of the test plate with some adhesive along the plumb line. The outlet pipe is 
then joined to an exhaust pump by rubber tubing and the inlet pipe is joined to a standard vacuum meter and an 
air pressure regulator (as shown in the sketch). Along the contact line beneath the test plate some thick grease is 
used to make the box perfectly airtight. (Grease does not apply any appreciable tension on the plate.) When the 
exhaust pump operates, the box becomes evacuated, thereby causing the depression of the test plate by the excess 
outside air pressure, which is uniform all over the effective skew part of the test plate. The central deflection of the 
test plate is easily measured with the help of a precision cathetometer set at a distance of approximately 1.5 m from 
the pointer. 

To make the free boundaries of a skew plate immovable, four pieces of steel collars are taken whose lengths are 
equal to the length of outer boundary line of the skew plate. The collars are kept outside the box in contact with the 
lower surface of the plate and with the side walls of the box and then the collars are tightly clamped with the test 
plate using nuts and bolts in sufficient number well outside the boundary of skew section. 
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Abstract—This paper concerns a new approach to the investigation of non-linear behaviours of 
heated rhombic plates. A new set of diffeiential equations in obUque co-ordinates have been derived 
in this investigation. Numerical results showing central deflection parameters versus thermal load 
functions have been computed for different skew angles 0. For 0 = 0° the results obtained in the 
present study are in excellent agreement with the known results. It is believed that the results 
obtained for other different skew angles are completely new. 

INTRODUCTION 

Determination of thermal deflections in thin elastic plates, is of vital importance in cases 
where the thermal stresses play a significant role. Although thermal deflections of thin elastic 
plates have been investigated by many authors (Aleck, 1949; Zizicas, 1952; Schneider, 1955; 
Boley and Weiner, 1960; Forray and Newmann, 1960; Nowacki, 1962; Katayama et al., 
1967; Sarkar, 1968; Kaiuk and Pavlenko, 1971,1972; Roychowdhury, 1972; Prabhu and 
Durvasuia, 1974; Matumoto and Sekiya, 1975), the literature on the large thermal deflec- ' WV̂ *' 
tions is somewhat sparse. The most interesting papers in this field areyWilliams (1955,1958)__—— T^^-'- ' ' ' ' '^ 
who quite elegantly carried out large deflection analysis for a plate strip subjected to normal v>Q 
pressure and heating. Biswas investigated the large deflection of heated circular plates under 
non-constant temperature (Biswas, 1974) and large deflections of heated elastic plates under • ' WJ) 

^ ^ uniform load (Biswas, 1975). The author followed Berger's equatioii in jiis investigations. Y\ . V v ^ B / ^ ' ^ 
V>\. VV^-^ Another interesting paper in this field is^nerjee and Dutta (1979),Jrinvestigation of non- \-—-"^ 
^^\fA linear behaviours of heated elastic plates under non-constant temperatures./^The authors .̂i , Vro'ir^'V -y'V^^ 

-' utilized a conformal mapping technique along with Berger's hypothesis. Later on Banerjee AiT*̂  
nror)o<;ed a new nnnrnafh tn tVip T Jirai* TW^flftrtinn analvs is o f thin plastir r>latft<s fRanerif^e pK*' proposed a new approach to the Large Deflection analysis of thin elastic plates (Banerjee 
and Dutt, 1981) and afterwards carried out quite elegantly the non-linear behaviours of 
polygonal plates under non-constant temperatures (Banerjee, 1984). Following Banerjee's /^ 7 ^y^ 
approach, another interesting paper is by Sinharav and Baneriee (1985) on non-linear 
behaviours of heated spherical and cyliinirical shells, where the authors have achieved 
satisfactory results from the practical point of view. Also, the works of Kamiya (1978) on 
the large thermal bending of sandwich plates are very attractive and useful too. 

All the investigations mentioned above deal with plate geometry either circular or 
rectangular or in the shape of regular polygons. Only five papers (Katayama et al., 1967; 
Kaiuk and Pavlenko, 1971, 1972; PraWiu and Durvasuia, 1974; Matumoto and Sekiya, 
1975) concerned with the study of thermal behaviours of skew plates are found in the 
literature. But these papers do not consider the large deflections of plates. To the authors' 
knowledge, no paper has been devoted to the investigations of non-linear behaviours of 

t Formerly head of the Department of Mathematics, Government Engineering College, Jalpaiguri, West 
Bengal, India. 
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heated elastic skew plates having various applications in modern design, especially in the 
space industry. 

In this paper non-linear behaviours of simply-supported heated skew plates (taken in 
rhombic form for simplicity of calculation) are investigated. Various numerical results 
have been calculated showing central deflection parameters versus thermal load functions. 
Whereas the results for skew angles other than 0° are believed to be new, the results for a 
0°-skew angle are found to be in remarkable agreement with the already known results [see 
Biswas (1975)]. 

ANALYSIS 

Let us consider a rhombic plate of skew angle 0 whose uniform thickness is h and 
edge-length 2a. The material of the plate is considered isotropic having mass density p, 
Young's modulus E and Poisson's ratio v. The origin of the co-ordinates is located at the 
geometric centre of the plate. The deflections are consideed to be of the same order of 
magnitude as the plate thickness, the edge-length being sufficiently large compared to the 
thickness. 

Now the uncoupled set of differential equations in rectangular Cartesian co-ordinates, 
governing the thermal behaviours of elastic plates [see Banerjee (1984)] is given by 

?^..r. --^(&^i^[-{ej^(ij 
c.V \CxJ cv^ \cyj J ex cv ex cv 

'^° /}nlv'-\-x?'-u:^n -u,A« û r = 1 
0-K 

where 

+ ̂ V;-(r-v=)-VW(l+v)a.V^r = -̂ , (1) l-"̂  

/. = v̂  for simply-supported elastic plates, and D = £/7'/12(l — v^), the flexural rigidity of 
the material of the elastic plate. 

It is to be noted that in the derivation of eqns (I) and (2) in rectangular Cartesian co­
ordinates, the expression 

(I-v=) 
Py 2 \dyj _ 

du dv dw 5M'Y 1 
+ \T: + -^.^T: \dx dy ex cyj 2(\+v) 

in the total P.E. of the elastic plate (Banerjee, 1984) has been replaced by 

m^m^ 
As a consequence the partial differential equations governing the deflection of the plate 
have become uncoupled and the two decoupled differential equations (1) and (2) have been 
obtained. 

In the present problem, the temperature is assumed to vary linearly w.r.t. the thickness 
direction z. We also note that 
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iX IX, 

in which 

Fig. I. Plan form of skew plate and co-ordinate system. 

T{x,y,z) = Xo{x,y)+zx(x,y), 

u = {{T, + T,), T = - ( r , - r , ) , 

r, = T (..4 and F; = r | A-,3', - - I (Banerjee, 1984). 

Clearly to is the temperature in the middle plane and T varies along the thickness of the 
plate and hence T / TO. 

The plan of the skew co-ordinates (jC|,>'i,0) is shown in Fig. 1. Clearly 

X = Xi cos 9 

and y = y\ -I-JC, sin 8 (3) 

are the co-ordinate transformation equations. Hence we have the following partial differ­
ential operators in oblique co-ordinates: 

d „( d . ^ d \ d d 
-r- = sece\- s in0^—I, — = -ir-, 
ox \dxi cytJ cy cy, 

and 

dx-
= sec^0 

^-

(^ W^ 
d' 

•^2 a2 

•2sine , ^ ^ - -|-sin^0T-^), 
cx,cvi cy-,; 

dy- cy]' dx cy = sec I 
c- d-

-—r sine-T-^ 
o.X| ^Vi cyi 

V^ = sec^ e{~-2 sin d-—:^- + - r^ 
d' 

\dxt dx^dy^ dyi 

W* = s e c ^ e ] ^ , „ 4 s i n 0 ( - - | l - ~ -|- ^ - ^ 3 ) - j - 2 ( l 4 - 2 s i n ^ 0 ) - 4 ^ , + | ^ 1 . (4) 
[dxt \Sx,dyi cx,dyiJ Sxidy] dy,) 

We now transform eqn (2) in oblique co-ordinates. For simply-supported plates the 
boundary conditions are 
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w = 0 at .V| = ±a and at j , = ±a, 

—-̂  = 0 at x^ = ±a and ^r-^ — O at >| = +a . 
dx-, dyi 

Then let us choose the deflection function for the simply-supported plate as 

TTX, Ky{ 
w = Wo cos -:;— cos ——, 

la la 
(5) 

which clearly satisfies the above-mentioned boundary conditions. 
Now putting (5) in eqn (2) transformed in oblique co-ordinates and then integrating 

the relation thus obtained, over the entire surface of the plate, we obtain the value of ^ in 
the following form: 

2 2 

32a 
v(l-l-v-f-2tan^0)-(l-f-v)a,To- (6) 

(As the normal displacement M- is our primary interest, the in-plane displacements u,v 
have been eliminated through integration by the choice of appropriate functions for such 
displacements^ Again transforming eqn (1) in oblique co-ordinates, introducing eqns (5) 
and (6) in the transformed equation and then applying Galerkin's error minimizing tech­
nique we get the following equation determining the central deflection parameter Wg/li 
depending on the thermal load function q'a^jEh^: 

(H-2tan^0)sec^0-
6S 

(I+v)7r 
5{2v'';-(l-v-')-sec-0 

+ (l+v)(l+v-(-2tan^0)} " ' -W8[( l + v + 2tan^0)^ 

.^(S.«.....„a„..„(^J = I55«l^(g;), (7) 

where 

and 

S = 2l-l(l-^v)a>To 

9' = 9-Z)a,(l+v)V2T. 

Equation (7) is applicable for the immovable edge condition of the simply-supported skew 
plate. For the movable edge condition we have /< = 0, so that eqn (7) takes the form: 

,t\?>-i 
^ 

(1-1-2 tan^0)sec^0-
12S 

(I-t-v)?: 
,yl(l— V*) • sec" Q 

- t - ^ ( 8 + 49tan^0 + 29 tan '0 ) ] f^^ ' ^^^^' 
n' {Eh' (8) 
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Tab!el.5 = 0,i.e.To = 0 

0 = 0= 

wjh by present method 

0=15' 0 = 30' 

'•'o/'' by Berger's methodt 

(Biswas, 
1975) 
0 = 0" 0=15" 0 = 30' 

Eh' 
Movable Immov-

edge able edge 
Movable Immov-

edge able edge 
Movable Immov- Immov- Immov- Immov-

edge able edge able edge able edge able edge 

2 
4-
8 
10 

1.30156 
2.1909 
3.23354 
3.73498 

0.91435 
1.3131 
1.78866 
1.9613 

1.08167 
1.85443 
2.8581 
3.2243 

0.82069 
1.20857 
1.67119 
1.83866 

0.6269 
1.14734 
1.89675 
2.17977 

0.53604 
0.84631 
1.22355 
1.3597 

0.9013 
1.29017 
1.75406 
1.92254 

0.79972 
1.16888 
1.60902 
1.76847 

0.53671 
0.848 
1.2266 
1.36324 

t Berger's method has been applied to the present problem by neglecting f j , the second strain invariant in 
the expression for total P.E. of the plate 

NUMERICAL RESULTS 

Numerical results are presented here (Tables 1 and 2) in the tabular forms for 5 = 0, 
0.1; 0 = 0^ 15°, 30= and q'a^jEh* = 2,4, 8, 10. 

1 T 
OBSERVATIONS AND CONCLUSIONS 

From the numerical analysis of the undertaken problem the following observations 
are made; 

(i) The nature of the central deflection of a skew plate under thermal loading is the 
same as that of the plate under mechanical loading, i.e. the central deflection increases 
continuously with the increase of loading for any edge condition of the skew plate, whether 
movable or immovable. 

(ii) The central deflection for the movable edge condition of the skew plate is always 
greater than that for the immovable edge condition of the plate, for the same loading. 

(iii) Irrespective of the edge condition, the central deflection decreases with the increase 
in the skew angle. 

(iv) The results for immovable edge conditions of the skew plate obtained by the 
present method, agree well with the results obtained by Berger's method. It is to be noted 
that Berger's method is a purely approximate method based on the neglect of ei- But the 
present study is based on Banerjee's hypothesis which suggests a modified strain-energy 
expression, and thus this model embraces less approximation (Banerjee and Dutt, 1981) than 
that of Berger. Again Berger's method is meaningful only for immovable edge conditions of 
the plates. 

(v) The deflections increase with to. 
The present method seems to be more advantageous than any other method found in 

open literature. The main advantages are: 

\ ^ 

Table2. 5 = 0.1,i.e. To^tO 

Eh' 

«„//i by present method 

0 = 0= 1=15^ 0 = 30° 

Movable Immov-
edge able edge 

Movable Immov-
edge able edge 

Movable Imraov-
edge able edge 

Wn/h by Berger's method (e j = 0) 

(Biswas, 
1975) 
0 = 0' 0 = 1 5 ' 0 = 30' 

Immov- Immov- Immov­
able edge able edge able edge 

2 
4 
8 
10 

1.32786 
2.22082 
3.35106 
3.76118 

0.94985 
1.34324 
I.8I3I6 
1.98415 

1.10168 
1.87831 
2.88067 
3.24585 

0.83899 
1.20992 
1.65221 
1.81269 

0.63597 
1.1604 
1.9111 
2.19385 

0.55925 
0.86901 
1.24302 
1.37799 

0.94058 
1.32336 
1.781 
1.94764 

0.83515 
1.19954 
1.63412 
1.79188 

0.56109 
0.87185 
1.24706 
1.38247 
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(1) The differential equations are decoupled and easy to solve; 
(2) from a single cubic equation determining M'o/ft, the results could be obtained for 

movable as well as immovable edge conditions; and 
(3) unlike Berger's method it gives accurate results both for movable and immovable 

edge conditions. Based on Banerjec's hypothesis a good number of works have 
been carried out and in each case sufficiently accurate results have been obtained 
[e.g. Banerjee and Dutt (1981), Banerjee (1984), Sinharay and Banerjee (1985) and 
Ray et al. (1992, 1993)]. So in the present case also, the same degree of accuracy 
was expected. 
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Abstract. Nonlinear static and dynamic behaviours of Trccly supported Rhombic sandwich plates have been 
studied following Banerjee't hypothesis. Numerical results lor 0" skew angle are compared with other k.uuv>n 
results. Results for other skew angles arc believed to be new. 

Soaunario. Si studia, scgucw^* llfMiet^ di banerjcc ti cu(i>|**'̂ ii>tn'̂ ^ nunlinearc statico e dinaimcn u\ 
lombiche seanpticeinente wp^ttg^H- Si piesentano cisuliati nunierici rdati»i a piastre ruinbiche e taut, J 
qucstl ulliiai vengono pangooaii a timifaM gti noti. menti« i pnmi si fii«>*gono miovi. 

Key words: Skew plalesri&aadwicb (dates; nonlinear analysis. 

1. Introduction 

Sandwich plates find wide applications in technology and modem design. Outstanding inves­
tigations [1-8] on large deflections as well as large amplitude vibrations of such plates are 
limited to the rectangular form only. No attempt on the nonlinear b'=:I. viours of skewed 
sandwich plates has been reported as yet. 

In this paper an attempt has been made to analyse the nonlinear behav. . ,,, : *" ^e'v 
supported skewed sandwich plates having an isotropic core within isotropic uppt . .vcr 
faces and under both static and dynamic loadings. For the sake of simplicity, a skewed 
plate in the form of a rhombus has been c -nsidered. Following the modified strain energy 
expression proposed by B. Banerjee, [8] a new set of decoupled differential equations for 
skewed sandwich plates has been derived. The final equations have been solved by Galerkin's 
method. Numerical results are computed and those for the 0*' skew angle are compared with 
the other known results. TIMJ results for other skew angles are completely new. 

2. tiuvtirii^iiti tiiiiiul^iiK 

Let cm;lv side of n IIUHHN wMt»*\Mt.h ptuli; >w i m ^o^ m* t> *M \4. i..uii: lA l̂iickn»">- -i 
isotropic uppei ^id tu* i n><-0'^ t»f kK^ntii.ul ilii> ku» M », I'-K M < /i. 

Now liA Mti set (MiKi iHkhNtjiuiiU carlesiiHi t nrj'Jt itH»' ,-irtn. EiB, tj, i) iind ¥>[r o. . 
coordinate system {'JH, JH, V) m IIM same iyoimt ni ihe)»|iv, , , <j IMJIHU In ihe uniiitk',. u.. 
of the core; Z the thickness direction; 11, y i are (iwullei to lh« iides of the plate aitd c. U-
skew angle (see Figure 1). Clearly, aM-the coordinate transformauon equations, a i * 

I = X J cos 6 andy ~ yi-\- xi sin 0 Lh 

C O . : PIPS Nr. : 47441 
meccHl . t ex - Date: February 11, 1994 Tiiae: 10 2j 
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Fig. 1. Plan form of skew plale. 

Following Banerjee's hypothesis, [8] the differential equations in . -o, cc angular coordmaie 
system governing the deflections and vibrations of sandwich plates are 

2(1 - J/2) ^ h 

-h/tV^Vf + 
i;tiA 

2Eii ,,„ ( ^ d^^ 

2 / ; i U / \ 2 ' ) i fdW\ 0W\' 
Py) 

M 

(1 - t/2)6" 

I iiJ'x Mr ) ^ Jy^ \dy) "̂  'ihh^ ' Ih 
yv/'i f(/V*l!^ » 

+ ̂  

when5( :» (//(/'r»fi Wiwiinvwsiaiit. ikil-tjt Mh, 

G' 
-!*••• —.—.. 

i)<2 
tor IIUH1U<I>>KU i^lihiik vlli«4ltLiitii, 

and/r = I OP iJLj 
Ux dy 

dwy fdwy 
dx ) \dy ) ^ 

— constant, for nonlinear static deflections u) 

— Cf{t) for nonlinear elastic vibrations, 

C being a constant depending on 6 . 'a) 

In the above equations W is the transverse deflection function; q, the lateral load dis. 1: -1.: ion 
function; P, Q are the in-plane displacements along a; and y axes respeclively; /•', liie i t ig 's 
Modulusof eiaslicily of the material of the upper and lowerfaccs;G',the shear riuidui,- • ! the 
core material; u, the poisson's ratio of the face material, A = u^; p\,pi are the surtatc ui. IH> 
and core density respectively, and f{t),F{l) are the functions of time such thai / ( ( j / (i) 



Skewed Sandwich Flate: 

It is to be noted that the strain-energy expression in ref. [8] has been modi(u-<l hy i 
Banerjee's hypothesis, which states that the stretching of the plate is propoiiionui Ui 

rdw\\(dw^ 
+ \dy) 

As a consequence of this assumption, a set of uncoupled differential equations has : •• •: 
obtained as given above. 

3. Analysis 

3.1. NON-LINEAR STATIC BEHAVIOUR OF FREELY SUPPORTED SKEWED SANDWICH FLATL 

To find normal displacement W, the inplane displacements of the upper and lower facc> ^r-
being eliminated through integration by choosing suitable expressions for them in the i^rni 
of trigonometric functions compatible with the boundary conditions of the plate |8J. 
transforming equation (3u) in oblique coordinates, choosing 

T H , 
nc-i 

W — W sm sm — 
a a 

and 
_ . ffxi TTyi 

q = q sin — Sin — 
a u 

t J 

and then integrating the translonned cquudun ovci Ihc whuie douiuin of (he pluic wc jî . 

/r = 8a2 
-{l+u + 2 lai? 0). 

Again transforming equation (2) with ^ = q/0", in oblique coordinates, introducing equuiiuus 
(4a), (4b) and (4c) in the transformed equation and llicn applying Galerkin procedure, we an i vc 
at the following cubic equation determining W, the ccairal Uellection of a freely suppoUcJ 
rhombic sandwich plate 

TTHI 

4(1 - i/2) {\-^)G'ai^^^ '^"^^ '"" ' t^)(l + <̂  + 4 tan^ 0) 

1 
+A(5 + 17 tan^ 6* + 12 tan'* 0)} + -{(1 + f + 2 tan^ 6)^ 

-l-A(5-i-ll tan^ e + 6 tan" e)} 
h 

+ (1 - u^jli 
( H - 2 tan^ d) K - 4 

qa 1 + 
TT^EhtiSec^e 
(1-1/2)^/^2 > } 

4. Numerical Results 

Table 1 shows different numerical results of the central dctlectioas of a (0.254 m A 0 - : 5 ii> 
rhombic plate having U = 6.35 x 10"* m,/» = 1.7135 x 10-^ m. [5, 8J. 
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Table I. iltuwuiR W/h vs &. E = 16.2 x lO^psra. C = 9.3 x lO'-psm, v 

= 0.3, | ^ » 1 0 [ 5 , 8 ] 

Value of Vy/Zt 

immovable edge Movable edge 

Value Calculated Otticr known Calcululud OUicr kiiowi^ 
ottf v«luc vttluB vrtliic value'"' 

IHl |0 | 

0" 1.4y»« 1.53 l.JU 2 3223 2,5«(8 
15° 1.3644 _ _ 2 1563 — 
30" 1.0328 — — 1.6360 — 
45" 0.6651 — — 1.0414 — 

Note: Por movable edge condilioa ot (lie freely supported plate 7"' - 0. 

4.1. NONLINEAR DYNAMIC BBIIAVIOURS OI- HRt-t-x-Y SUI'IXJRILU sKiiWiiu SANDWHii v. A I.S 

Let us now consider free vibrations of skewed sandwich plates. Neglecting iii-j>lai,. a lu 
for obvious reasons, transforming equation (3b) in oblique coordinates, choosing 

W = W sin ^^ sin ^F(t) 
a a 

for fundamental mode of vibration and then integrating the iransformed cqujtjon . JK 
whole domain of the plate we get 

IT = " 8 ^ ( 1 + J' + 2 tan^ e)F\t). ob; 

Now transforming equation (2) with ^ ^ -l£i.'.^^J ^Jijl in oblique coordinates. ; A imu 
equations (6a) and (6b) ui the transformed equation wiU then applying Galerkin's f • • -lure 
we get the following oqtiation for time function 

T^(^i'i -f i'.-/*)AU „ 2 . {piti i ink) 
Sec^ tf _ ilJ 

. .^2 77—-x—A I + 2 tiUĴ  0) Sec'' H 
(1 -!/*)«* ' 

4 ( 1 - . 2 ) , 4 | ( 1 _ , 2 ) ( ^ V | ^ ^ + ^ - ^ ^ ^ ^X' + '- + ^^^^ 

1 
+A(5+17 tan^ 6* + 12 tan'' 0) + - (I + t/ + 2 lan̂  e) ..n2 fl\2 

+A(5 + 11 tan^ ^ -I- 6 tan" (?)|}] F^ = 0, (7) 

which may be turned in the form F + /IF + BF^ = 0, the familiar Duffinp's equation. With 
the initial conditions F{Q) = 1 and F{0) - 0, the solution of equation (7) , , j i ' nown 



Skewed Sandwii h l'!i. 

TableIShumngw'/u, vs* 

Value 
of 
8 

0" 
15" 
30" 
45" 

0" 

15" 
30" 
45" 

VttlMJ 

of 
JL 

— 

— 

0.5 

— 

— 

— 

1.0 
— 

Vuluo ol uf] 

Immovable edge 

Calculated 
value 

1.15028 
1.16621 
1.22803 
1.36556 

1.51413 
1.56211 
1.74133 
2.11166 

Other known value 
18] [71 

1.12 1.14 
_- _ 
— — 
~ _ 

1.42 J.48 
— — 
— — 

— ~ 

fun 

Movable edge 

Calculated 
value 

1.03342 
1.03365 
1.04313 
1.06261 

1.12774 

1.1286 
1.1630 
1.2313 

Other known 
value 18J 

1.024 
— 
— 

— 

1.094 
— 
— 

— 

elliptic integral F{t) = C„(w*, t, k). Then the ratio of nonlinear frequency u^ to i I CM 
frequency wj is given by 

^+8(1 

il + u + 2iim^ 0){l+u + 4 tan̂  0) + A(5 + 17 tan^ 0 + \2 tan* ^ 

+ ^ |(1 + t/ + 2 lan^ tf)^ 4- ACi + 11 tan^ S + 0 tan" 0)\\ 

where/ti = tj -f- | , wi a \//lundw^ - -/.4 T7y. 

'«) 

5. Numerical Results 

Numerical results of the ratio ul/ui are shown in Table 2. For calculations, the .v- ^ ijt_ 
which are used in the study of static behaviours of sandwich plates are used hcsc ul-

6. Observations 

From the calculated results, the following observations are easily made. 
1. The results of both static and dynamic behaviours of a sandwich plate having sk -J .:^^,\C 

0 = 0° and aspect ratio 1 are in excellent agreement with those obtained by I ;, anj 
Banerjee [8]. 

2. It is seen that Uie ccmrul dcllectian gradually dtxncajics with the increase i» hi - .,,k;k 
for both movable as well as immovable edge conditions. 

3. Foranyassumcdikewanglethecentralde/kictionisgreaierforthemovablcedgc i ..la,.! 
than for the iramoviiWc edge condition. Iliis is tjuiie expected from a piatiic-. . ui oi 
view. 
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4. In the dynamic case, the frequency ratio cj'/wi increases continuously with i; . , vv 
angle 6, for both movable as well as immovable edge conditions of a skewed | iic 
ratio for immovublo edge condition being always ^rcalcr than that lor the inova; > t;c 
condition. 

7. Conclusions 

1. Greater deflections, obtained in the present ihcorciiLul study in coiiipaiison tu lit L c 
tions obtainable from the other theories in open literature, indicate acceptibilii. *! ihc 
present method for practical purposes. 

2. It is advantageous front the point of view llial lullowiin} this method it-sulib, ; i v̂ ih 
immovable as well its movitble edgucondiiiunsot the plate, can be derived iiviitt s >iiic 
cubic equation. 

3. The governing dittcreniial ctiualioiih, being Uo-coiii)led, are simple and easy lu ,M > ;>ut, 
are able to yield results with considerable accuracy. 

4. The great advantage of the present metJiod lies in the facl tlial the accui acy . •! JII. , utc 
does not depend on any correction factor and thus holds good for sandwich ^ . u: 
different geometry. 
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and Structures, 1 (l%3) 157-177. 
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