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CHAPTER «~ II

" NON-LINEAR DYNAMIC RESPONSE OF MODERATELY THICK

PLATES PLACED ON ELASTIC FOUNDATION

ABSTRACT

In this chapter the nonlinear dynamic response of

thick plates of different shapes placed on elastic founda-
tion of the Winkler-type is investigated by using the appro-
ximate method offered by Berger. Conformal mapping technique
has been utilised in the investigation. The cases of square
plates, rounded cornered plates and circular plates have been
studied in detail. The ratios of the non-lineartime periods
including shear deformation and the linear time period of the
classical plate theory have been computed for these plates
for different values of the foundation modulus %%laﬁ and

discussed,

(2) Vibrations of square plates and square plates with

rounded corners , *

Let us consider the free vibrations of thick plates of thick-
ness h . The deflections are considered to be of the same

order of magnitude as the thickness of the plate., Berger's
equations given by 20(a) and 20(b) (h chapter Icrerewritte

* Accepted for publication in the Journzl of Sound and
Vibration U,K, July 1990,
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in the following form for thick plates placed on elastic
foundation of the Winkler-type (Ariman /34_7 )

Tol-9) Ge -

-2r2 - 2
«h E |lody_ T2 - &2 .2 2
{‘ }V - TW - T o (VW)

12 BN - K. 2-% 2 k. _
al cp® 21 1o D l—va+Bw = <
ee.. (213)

where ££l= foundation modulus

D = flexural rigidity

and the coupling parameter o™ is given by

2L EE Do  DVe |
Try R + Ve y L (2

2 2
. TS éﬁ) .L(BV_\’) vee. (21b)

) Yy

To solve the governing equations let us assume the deflection

in the following form

WCx,¥51) = wCx,y)T(t) cee. (22)

Substituting (22) in 21(a) we get

T4w, Wk, 2-Y VW, k.
[ - T + }_fC{)

Wi W D
(2 & ,D VZW. .
*[recp? -5 Er W, ]m)

-2, 4 _
+[o<f\ . E .V"\)uoc?_YWMJTB@):O cev. (23)
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A solution of equation (%3) is possible if
4

E%Kjriz AT ce.. 24(a)
V\f\)"f‘:-?\? cee. 24(D)
From 24(a) we have
(V5T Dw=0 e ()
and from 24(b) we have
(V4 2PIW, =0 ... 25(b)

It is evident that to get a complete solution it is sufficient

to solve

2 N2
(V+7\.)W, =O ce.. 25(c)
In a complex co-ordinate system,

Z = x+ly and 7 = X~Ly
The equation 25(c¢) changes and

ltet 2 =§(%) , Z ={(%&) e (26)
be the analytic function which maps the given shape in the
Z - plane on to 2 unit circle in the % - plane. After
transforming equation 25(c) intc the complex co-ordinates
(Z ,Z ) and using relation (26) we obtain the following
differential equation in ( % , E )} co=-ordinates for the

deflection function W,

a?'\/\)l + 7\?-0{—2 .C{:E .
3T 2% 4 d% 4%

{
O
)
3
o
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Similarly equation 21(b) changes into

0( ;'\ dz Az aLLo dodz
T (dg'ctg) 2% d§ +a§ az

3% 55 -85

+QaN(.BW1.d2.d§
2% o% <% A%

eess 27(b)

' = -1
¥ and % = Ve 0 , T being the radius of

Here §= e
the ci;cle. For transverse vibrations the inplane displace-
ments Lo and Vs, are of no interest and they have been
eliminated finally through integrations by choosing suitable
expressions for the displacements compatible with their

boundary conditions i.e. (L,= 0, U,= 0 on the boundary.

To solve equation 27(a) let us choose the deflection
function v% ( g,:% ) 4in the following form

wi=aei- 57 ][1- 5 R e (55 E) (e e ]
. (28)

Clearly W, is 6 dependent and satisfies the simply supported

edge conditicns, namely,

V\)‘= 0 at Y = 1

2
0 “9': 0 at 7T= 1

SEDT
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Substituting (28) in 27(a) and inserting the values of g\‘% ’

é%g- from the given mapping functions # = f(@) we get the

error function éf(:ﬁ,%~ ') . Galerkin's technique requires

that
2K . 1

J €(5 5)w (§.F)relrds =0

8=0 Jr=0 eeee (29)

-2
The values of &K have been determined by substituting (28) in
27(b), remembering the values of é%%— , é%%- from the given
mapping functions and finally integrating %ver the area of the

plate. After evaluating the integrals in (29) we get the

2 T4w, . T W

ecessary va £ N . s the values of 'and .

n sary values o ! Thus the valu W n W,
are determined. Inserting 2ll these values in (23) we get
the following cubic equation determining the unknown time

function T(1) in the form

T+ & TCL) +A,T(t) =0 o\ (30)
The solution of the above equation subject to the boundary
conditions
Tl)y= 1
TO= o

is well-known and is obtained in terms of Jaccbi's elliptic

funCtiOn.

The ratio of the non-lineartime periods to the linear

time periods of the classical plate (thin plate) is
2
-

1f—=' A m2 Vﬁ
ST
[|+ e }




28

where )é = éic is the ratio of the static deflection to

the thickness of the plate.

X
4
Table I shows different values of J; Vs, %§_0~
different A for the simply supported square and rounded

cornered square plates.,

for



Table - 1

Ratio of the noun-lineer to linear periods for the free vibrations

of simply supported square plates and square plates with rcunded

Immovable edge conditions have been considered.

corners.
: i T b E o=
% -:i.- FOR »D=0'3, —&so~2, E‘C=25.
| WITHOUT ELASTIC [ \wy1i ELASTIC FOUNDATION.
PLATE MAPPING /g Ao FOUNDATION WIT
: = + .
SHAPE FUNCTION i h S = 4 o 4 ! . T 4
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S - .
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T vsa
T VS A for

SIMPLY SUPPORTED SQUARE PLATE WITH SIDE 20

AND
ROUNDED CORNERED SQUARE PLATE.

(IMMOVABLE EDGES )
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FIG.-4.
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(b) Vibrations of circular plates.

Let us consider the free vibrations of thick circular
plates of radius a. The deflections are considered to be of

the same order of magnitude as the plate thickness.,

For circular plate of radius a the mapping function

is #Z = Cl?

N

Thus fiZL.= = — = a = constant,
2% d%

On this assumption the equations25(a) and 25(b) namely
2
(72T HAT) W, =0 veos 32(a)
offer an interesting closed form solution. Changing equation

32(a) into complex co-ordinates as shown in the previous case

we héve the following two differential equations

2g2% 4 L
2
37(/\),’1_ _ N O’ZW’{ o I eve. 32(c)
> 4 |
2% 3% J

/ /
where (W, = W, + W,

2
The equation determining o ~given by the equation 27(!

remains same as in the previous case. The solution of the

differential equations32(c) is obtained in terms of Bessel
function in the form



B3

Wl . W‘I +N‘I!

i

AJo (2P/%E )+ Bl (2P/%E)

= AJ(2Pv)+pl, (2PF) ool (33)

p aA,

PRSI

2

where

For clamped edge boundary conditions
W,z 0 at Y = 1
=z 0 at Y= 1.

Thus the frequency equation is obtained in the form
Jo(2p) I.(2p)

= 0 eees (34)

’JnCQt§ IxCQFQ
Solving (34) the value of 2P =3-20 is obtained from the

table / 54_7.

For simply supported edge conditions
W= 0 at v = 1
9% Wy D oW

STZ T v Tor
Thus the frequency equation in this case is

=0 at 'V‘:ﬁ

J.(2b) lo(2b)

= 0 coee (39)
(-9)J,(20)-2pJ(2P)  =(+-N1,2P)+2ple(2P)
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Solving (33%) we get 2p = 2:22 from table /54_/.

The values of 5~ have been determined as in the
previous case by putting (33) in 27(b) and integrating over
the entire area of the plate. Now knowing the values of

4 2
p=Q& ?\*/Q,the values of VWWJ and ¥ \/3\)'- are determined

g f
in each case. Inserting all these values in equation (23)

we get 3 similar type of cubic equation as equation (30) for

determining the time function Af({) . The solution of this
cubic equation is obtained in terms of Jacobi's elliptic

function as in the previous case.

The following table shows %; \k54%§ a4 for

—

different values of /3



35

Ratio of non-linearto linear periods for the vibrations of

circular plates.

[%: O-2 s ‘D=O'3}

. T
PPLATE _ —.—r—'
SUATE g i WITHOUT ELAsTIC WiTH ElAsTIC
Evé‘;ug = ‘%‘0 ( FOtJNDAT{oN(Klz@ FOUNDATION
CONDITION %Reswr REF. REF. T T

& a4 inlk o e ke g
stioy | [52] | [40] | =0 k15 F8% 20

!

[ : -

|
1
| ¢ 992G 0:'9R2| | 09921 0‘9760 2771 ic'9780

CLAMPED | &2 |
CIRCULAR ; |

i— B
PLATE | ! - . 1
E |6 09395 ©:213B | 09366 | 08403 | 0'B492 | 68572

Ge |
= 86127 !
}
!

Lo o85S | ©'BO29 | O'BE33 | OT032 | 7238 | 0 741G

|

4

|
|
|
]

e ]

/. PrESENT | REF. [40] |K.ahio koot s ko ot 20
Bl STDY D 5
Simpely o2 OD7Ss G OT4S O 9828 | 0:9850| 098 GT
SUPPORTED‘i ;
CIRCULAR R e S
ce | ©B294 c- 8265|0872 088G | 08372
PLATE | |
£ )
G

o 1 |




Observations

The tables 1 and 2 «clearly show the response of

4
the foundation modulus'kl%S on the ratio of the time pericds

L

- /{(04' «
T for different A . As I=p increases —;—increases.

This is quite expected from the practical point of view.

When '&}%g = 0 1i.e., when there is no elastic foundation,
the results obtained in the present study for square plates

and for circular plates with simply supported as well as

36

clamped edges are found to be in very good agreement with othev

known results. The results of the rounded cornered square

plates are completely new.
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) . T Qa
(C) A comparative study on the time perjod ratlo-?-Vs.‘k.Ts for

different A of the simply supported square plates and square

plates with rounded corners on the basis of the area of

the plates

Table - 2.
- E _.,. h_~
[ ‘/2):!, ~>uOu3’ (—;2—25,.a=02]
Tl
PLATE SHApE T
[SIMPLY SUPPORTED WITHOUT ELASTIC WiTH ELASTIC
EDGE CONDITION] FOUNDATION . FOUNDATION, &, 5210
i - (Ki=o) . _
SQUARE PLATE OF ]
SIDE 20
O'GT23 S-T7387
SQUARE PLATE WITH - B
ROUNDED CORNERS OFSIDE-Da
O B> l O GAZO
i
i
Observation :
Arn interestihg observation on Table - 3 is variation of

*
the time pericd ratio-%;vdjh the area of the respective

”

plates. Tt is observed that 2s the area of the plate increase:
this ratio increases. This is true irrespective of the response
of the foundation modulus., Obviously, the area of the square

plate is greater than that of the rounded cornered square plate,
f
T increases accordingly. This is noteworthy from the prac-

T

tical point of view.
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(d) A useful observation on Berger's equations :

Let us now examine Berger's equations on the movable edge

conditions.

A clamped circular plate of radius a 1is considered
here. The deflection function for the circular plate 1is

.-

assumed as

22 -

W =A°T§*)["id‘zr N 1))

This clearly satisfies the required boundary conditionsof the

clamped edgesf

Before recalling our attention to the original equation
(23) let us turn to the equation 21(b) which reduces (in the

present case) to the following form,

-2 1
T .t)oc h _ A wo o o 1 rdnh\2
% 12 = Ar + T + 2 ow*, eoee (37)

let Wom W (P T2CH) cen e (3700
Putting (36) in (37) multiplying the equation by v we obtain

the following equation after integration

At 1 = 0, = O. Thevefore C:=:0

Hence Uis obtained as

-2 2 ] % - g
ul: Qf__h_-r - B8AS [Y rs 1 J

4 a4 | 4 Y EYE

38(b)
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For movable edge condition at V' =

Aty oy w1 AWt
TV F oy e

Using this condition we obtain the value for 5{2 as

A CIRNEY ] ver. (39)

Inserting now (36) in equation (23), remembering
) .
ol thus evaluated from (39) and applying Galerkin's
technique we get as usual a cubic equation determining

the time function (1) in the form

TA) + 6T ~AT(H) =0 ee. (40)

Which leads to meaningless results because the coefficient

of Tfaci)is negative,

Thus we arrive at the following conclusion :

Although Berger's equation can be conveniently applied to the
nonlinear theory of thick plates, its application is limited

to the immovable edge conditions only.



