CHAPTER - II

NON-LINEAR DYNAMIC RESPONSE OF MODERATELY THICK PLATES PLACED ON ELASTIC FOUNDATION

CHAPTER - II

NON-LINEAR DYNAMIC RESPONSE OF MODERATELY THICK PLATES PLACED ON ELASTIC FOUNDATION

ABS TRACT

In this chapter the nonlinear dynamic response of thick plates of different shapes placed on elastic foundation of the Winkler-type is investigated by using the approximate method offered by Berger. Conformal mapping technique has been utilised in the investigation. The cases of square plates, rounded cornered plates and circular plates have been studied in detail. The ratios of the non-linezrtime periods including shear deformation and the linear time period of the classical plate theory have been computed for these plates for different values of the foundation modulus $\frac{k_{1}}{D} a^{4}$ and discussed.
(a) Vibrations of square plates and square plates with rounded corners .*

Let us consider the free vibrations of thick plates of thickness h. The deflections are considered to be of the same order of magnitude as the thickness of the plate. Berger's equations given by $20(a)$ and $20(b)$ in chapter I are rewrittel

[^0]in the following form for thick plates placed on elastic foundation of the Winkler-type (Ariman $[34]$)
\[

$$
\begin{align*}
& {\left[1+\frac{\bar{\alpha}^{2} h^{2}}{1 O\left(1-\nu^{2}\right)} \cdot \frac{E}{G c}\right] \nabla^{4} w-\bar{\alpha}^{2} \nabla^{2} w-\frac{\sigma}{5} \cdot \frac{P}{G c} \cdot \frac{\partial^{2}}{\partial t^{2}}\left(\nabla^{2} w\right)} \\
& +\frac{12}{h^{2} c_{p}^{2}} \cdot \frac{\partial^{2} w}{\partial t^{2}}-\frac{h^{2}}{10} \cdot \frac{k_{1}}{D} \cdot \frac{2-\nu}{1-\nu} \nabla^{2} w+\frac{k_{1}}{D} w=0 \tag{21a}
\end{align*}
$$
\]

where $\quad k_{1}=$ foundation modulus

$$
D=\text { flexural rigidity }
$$

and the coupling parameter $\bar{\alpha}^{2}$ is given by

$$
\tau^{2}(t) \frac{\bar{\alpha}^{2} h^{2}}{12}=\frac{\partial u_{0}}{\partial x}+\frac{\partial v_{0}}{\partial y}+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2} \quad \ldots .(21 b)
$$

To solve the governing equations let us assume the deflection in the following form

$$
\begin{equation*}
w(x, y, t)=w,(x, y) \tau(t) \tag{22}
\end{equation*}
$$

Substituting (22) in 21 (a) we get

$$
\begin{align*}
& {\left[\frac{\nabla^{4} w_{1}}{w_{1}}-\frac{h^{2}}{10} \cdot \frac{k_{1}}{D} \cdot \frac{2-\nu}{1-\nu} \cdot \frac{\nabla^{2} w_{1}}{w_{1}}+\frac{k_{1}}{D}\right] \tau(t)} \\
& +\left[\frac{12}{h^{2} c_{p}^{2}}-\frac{6}{5} \cdot \frac{P}{G c} \cdot \frac{\nabla^{2} w_{1}}{w_{1}}\right] \ddot{\tau}(t) \\
& +\left[\frac{\bar{\alpha}^{2} h^{2}}{1 O\left(1-\nu \nu^{2}\right)} \cdot \frac{E}{G c} \cdot \frac{\nabla^{4} w_{1}}{w_{1}}-\bar{\alpha}^{2} \cdot \frac{\nabla^{2} \omega_{1}}{w_{1}}\right] \tau^{3}(t)=0 \tag{23}
\end{align*}
$$

A solution of equation (23) is possible if

$$
\begin{align*}
& \frac{\nabla^{4} w_{1}}{W_{1}}=\lambda_{1}^{4} \tag{a}\\
& \frac{\nabla^{2} W_{1}}{W_{1}}=-\lambda_{1}^{2} \tag{b}
\end{align*}
$$

From 24(a) we have

$$
\left(\nabla^{2}-\lambda_{1}^{2}\right)\left(\nabla^{2}+\lambda_{1}^{2}\right) w_{1}=0 \quad \cdots 25(a)
$$

and from $24(\mathrm{~b})$ we have

$$
\begin{equation*}
\left(\nabla^{2}+\lambda_{1}^{2}\right) w_{1}=0 \tag{b}
\end{equation*}
$$

It is eviderit that to get a complete solution it is sufficient to solve

$$
\begin{equation*}
\left(\nabla^{2}+\lambda_{1}^{2}\right) w_{1}=0 \tag{c}
\end{equation*}
$$

In a complex co-ordinate system,

$$
z=x+i y \text { and } \bar{z}=x-i y
$$

The equation $25(c)$ changes and
let $Z=f(\xi), \bar{Z}=f(\bar{\xi})$
be the analytic function which maps the given shape in the Z - plane on to a unit circle in the ξ - plane. After transforming equation $25(c)$ into the complex coordinates (z, \bar{z}) and using relation (26) we obtain the following differential equation in $(\xi, \bar{\xi})$ coordinates for the deflection function W_{1}

$$
\begin{equation*}
\frac{\partial^{2} w_{1}}{\partial \xi \bar{\xi}}+\frac{\lambda_{1}^{2}}{4} \cdot \frac{d z}{d \xi} \cdot \frac{d \bar{\eta}}{d \bar{\xi}} \cdot w_{1}=0 \tag{a}
\end{equation*}
$$

Similarly equation $21(b)$ changes into

$$
\begin{aligned}
\tau^{2}(t) \cdot \frac{\bar{\alpha}^{2} h^{2}}{12} \cdot\left(\frac{d z}{d \xi} \cdot \frac{d \bar{z}}{d \bar{\xi}}\right)^{2}= & \frac{\partial u_{0}}{\partial \xi} \cdot \frac{d \bar{z}}{d \bar{\xi}}+\frac{\partial u_{0}}{\partial \bar{\xi}} \cdot \frac{d z}{d \xi} \\
& +\left(\frac{\partial v_{0}}{\partial \xi} \cdot \frac{d \bar{z}}{d \bar{\xi}}-\frac{\partial v_{0}}{\partial \xi} \cdot \frac{d z}{d \xi}\right) \\
& +2 \frac{\partial w_{1}}{\partial \xi} \cdot \frac{\partial w_{1}}{\partial \bar{\xi}} \cdot \frac{d z}{d \xi} \cdot \frac{d \bar{z}}{d \bar{\xi}}
\end{aligned}
$$

Here $\bar{\xi}=r e^{i \theta}$ and $\bar{\xi}=r \cdot e^{-i \theta}, r$ being the radius of the circle. For transverse vibrations the inplane displacements U_{0} and v_{0} are of no interest and they have been eliminated finally through integrations by choosing suitable expressions for the displacements compatible with their boundary conditions i.e. $U_{0}=0, v_{0}=0$ on the boundary.

To solve equation 27(a) let us choose the deflection function $W_{1}(\xi, \bar{\xi})$ in the following form

$$
\begin{equation*}
w_{1}=A_{0}[1-\xi \bar{\xi}]\left[1-\frac{1}{3} \xi \bar{\xi}+\frac{1}{2}\left(\xi^{2}+\bar{\xi}^{2}\right)(1-\xi \bar{\xi})^{2}\right] \tag{28}
\end{equation*}
$$

Clearly W_{1} is θ dependent and satisfies the simply supported edge conditions, namely,

$$
\begin{aligned}
W_{1} & =0 \quad \text { at } \quad r=1 \\
\frac{\partial^{2} \omega_{1}}{\partial \xi \partial \bar{\xi}} & =0 \quad \text { at } \quad r=1
\end{aligned}
$$

Substituting (28) in $27(a)$ and inserting the values of $\frac{d z}{d \xi}$. $\frac{d \bar{z}}{d \bar{\xi}}$ from the given mapping functions $z=f(\xi)$ we get the error function $\epsilon(\xi, \bar{\xi}$. . Galerkin's technique requires that

$$
\begin{equation*}
\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \epsilon(\xi, \bar{\xi}) w_{1}(\xi, \bar{\xi}) r d r \cdot d \theta=0 \tag{29}
\end{equation*}
$$

The values of $\bar{\alpha}^{2}$ have been determined by substituting (28) in 27(b), remembering the values of $\frac{d z}{d \bar{\xi}}$, $\frac{d \bar{z}}{d \bar{\xi}}$ from the given mapping functions and finally integrating over the area of the plate. After evaluating the integrals in (29) we get the necessary values of λ_{1}^{2}. Thus the values of $\frac{\nabla 4 \omega_{1}}{\omega_{1}}$ and $\frac{\nabla^{2} \omega_{1}}{\omega_{1}}$ are determined. Inserting all these values in (23) we get the following cubic equation determining the unknown time function $\tau(t)$ in the form

$$
\begin{equation*}
\ddot{\tau}(t)+\alpha_{1} \tau(t)+\beta_{1} \tau^{3}(t)=0 \tag{30}
\end{equation*}
$$

The solution of the above equation subject to the boundary conditions

$$
\begin{aligned}
& \tau(0)=1 \\
& \dot{\tau}(0)=0
\end{aligned}
$$

is well-known and is obtained in terms of Jacobi's elliptic function.

The ratio of the non-lineartime periods to the linear time periods of the classical plate (thin plate) is

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 K / \pi}{\left[1+\frac{\beta_{1}}{\alpha_{1}} \bar{\beta}^{2}\right]^{1 / 2}} \tag{31}
\end{equation*}
$$

where $\bar{\beta}=\frac{A_{c}}{h}$ is the ratio of the static deflection to the thickness of the plate.

Table I shows different values of $\frac{T^{*}}{T}$ Vs. $\frac{k_{1}}{D} a^{4}$ for different $\bar{\beta}$ for the simply supported square and rounded cornered square plates.

Ratio of the non-linear to linear periods for the Eree vibrations of simpiy supported square plates and square plates with rounded corners. Immovable edge conditions have been considered.

plate SHAPE	MAPPING FUNCTION	$\bar{B}=\frac{A_{0}}{h}$	$\frac{T}{} T^{*}$ FOR $\nu=0.3, \frac{h}{a}=0.2, \frac{E}{G_{c}}=2.5$.				
			WITHOUT ELASTIC FOUNDATION		WITH ELASTIC FOUNDATION.		
			$K_{1} \cdot \frac{a^{4}}{D}=0$		$k \cdot \frac{a^{4}}{D}=10$	$k \cdot \frac{a^{4}}{D}=15$	$k \cdot \frac{a^{4}}{D}=20$
			$\begin{aligned} & \text { FRESENT } \\ & \text { STUDY } \end{aligned}$	REF.[38]			
SIMPIY SUPPORTED square plate GFSIDE $2 a$	$Z=1.08 a \xi-0.11 a \xi^{5}$	0.2	0.9772	1.0037	c. 9836	0.9856	0.9872
		0.4	0.9175	0.9418	c. 9391	0.9461	0.9517
		0.6	0.8353	0.8606	c. 8768	0.8678	0.9003
		0.8	0.7564	c. 7758	O.ecte	0.8258	0.8408
		1.0	0.6793	c. 6976	c. 7387	0.7608	0.7993
SIMPLY SUPPORTED SQUARE PLATE WITH RCUNDED CORNERS	$Z=\frac{25}{48} a \xi-\frac{1}{48} a \xi^{5}$	0.2	0.9704	-	0.9711	0.9714	0.9718
		0.4	0.8957	-	0.8981	0.8990	0.9000
		0.6	$0 \cdot 8025$	-	$0 \cdot 8<60$	0.8077	0.8094
		0.8	0.7104	-	0.7151	0.7169	0.7190
		1.0	0.6283	-	$0 \cdot 6330$	0.6353	0.6376

$$
\frac{T^{*}}{T} V S \bar{\beta} \text { FOR }
$$

SIMPLY SUPPORTED SQUARE PLATE WITH SIDE $2 a$.
ROUNDED CORNERED AND SQUARE PLATE.
(IMMOVABLE EDGES)

FIG.-1.
(b) Vibrations of circular plates.

Let us consider the free vibrations of thick circular plates of radius a. The deflections are considered to be of the same order of magnitude as the plate thickness.

For circular plate of radius a the mapping function is $\quad Z=a \xi$

Thus $\frac{d z}{d \bar{\xi}}=\frac{d \overline{2}}{d \bar{\xi}}=a=$ constant.

On this assumption the equations 25 (a) and 25 (b) namely

$$
\begin{aligned}
\left(\nabla^{2}-\lambda_{1}^{2}\right)\left(\nabla^{2}+\lambda_{1}^{2}\right) \cdot \omega_{1} & =0
\end{aligned} \quad \ldots 332(a)
$$

offer an interesting closed form solution. Changing equation $32(a)$ into complex co-ordinates as shown in the previous case we have the following two differential equations

$$
\begin{aligned}
& \frac{\partial^{2} w_{1}^{\prime}}{\partial \xi \partial \xi^{\prime}}+\frac{\lambda_{1}^{2}}{4} a^{2} w_{1}^{\prime}=0 \\
& \frac{\partial^{2} w_{1}^{\prime \prime}}{\partial \xi \partial \bar{\xi}_{e}}-\frac{\lambda_{1}^{2}}{4} a^{2} w_{1}^{\prime \prime}=0 \\
& \text { where } w_{1}=w_{1}^{\prime}+w_{1}^{\prime \prime}
\end{aligned}
$$

The equation determining $\bar{\alpha}^{2}$ given by the equation 27 (1 remains same as in the previous case. The solution of the differential equations $32(c)$ is obtained in terms of Bessel function in the form

$$
\begin{align*}
W_{1} & =W_{1}^{\prime}+W_{1}^{\prime \prime} \\
& =A J_{0}(2 p \sqrt{\xi \bar{\xi}})+B I_{0}(2 p \sqrt{\xi \bar{\xi}}) \\
& =A J_{0}(2 p r)+B I_{0}(2 p r) \quad \ldots \tag{33}
\end{align*}
$$

where $P=\frac{a \lambda_{1}}{2}$
For clamped edge boundary conditions

$$
\begin{aligned}
W_{1}=0 \quad \text { at } r=1 \\
\frac{\partial W_{1}}{\partial r}=0 \quad \text { at } r=1 .
\end{aligned}
$$

Thus the frequency equation is obtained in the form

$$
\left|\begin{array}{ll}
J_{0}(2 p) & I_{0}(2 p) \\
-J_{1}(2 p) & I_{1}(2 p)
\end{array}\right|=0 \quad \ldots .(34)
$$

Solving (34) the value of $2 p=3.20$ is obtained from the table [54].

For simply supported edge conditions

$$
\begin{aligned}
& w_{1}=0 \quad \text { at } r=1 \\
& \frac{\partial^{2} w_{1}}{\partial r^{2}}+\frac{\partial}{r} \cdot \frac{\partial w_{1}}{\partial r}=0 \quad \text { at } r=1
\end{aligned}
$$

Thus the frequency equation in this case is

$$
\left|\begin{array}{lr}
J_{0}(2 p) & J_{0}(2 p) \\
(1-\nu) J_{4}(2 p)-2 p J_{0}(2 p) & -(1-\nu) I_{1}(2 p)+2 p I_{0}(2 p)
\end{array}\right|=0 \quad \ldots .(35)
$$

Solving (35) we get $2 p=2.22$ from table [54].
The values of $\bar{\alpha}^{2}$ have been determined as in the previous case by putting (33) in $27(b)$ and integrating over the entire area of the plate. Now knowing the values of $p=a \lambda_{1 / 2}$, the values of $\frac{\nabla^{4} \omega_{1}}{\omega_{1}}$ and $\frac{\nabla^{2} \omega_{1}}{W_{1}}$ are determined in each case. Inserting all these values in equation (23) we get a similar type of cubic equation as equation (30) for determining the time function $\tau(t)$. The solution of this cubic equation is obtained in terms of Jacobi's elliptic function as in the previous case.

The following table shows $\frac{T^{*}}{T} V_{s} \frac{k_{1}}{D} a^{4}$ for different values of $\bar{\beta}$

Table -2.

Ratio of non-linear to linear periods for the vibrations of circular plates.

$$
\left[\frac{h}{a}=0.2, \nu=0.3\right]
$$

Observations:

The tables 1 and 2 clearly show the response of the foundation modulus $k_{1} \frac{Q^{4}}{D}$ on the ratio of the time periods $\frac{T^{*}}{T}$ for different $\bar{\beta}$. As $K_{1} \frac{a^{4}}{D}$ increases $\frac{T^{*}}{T}$ increases. This is quite expected from the practical point of view. When $k_{1} \frac{a^{4}}{D}=0$ i.e. when there is no elastic foundation, the results obtained in the present study for square plates and for circular plates with simply supported as well as clamped edges are found to be in very good agreement with other known results. The results of the rounded cornered square plates are completely new.
(C) A comparative study on the time period ratio $\frac{T^{*}}{T} V s . \mathcal{K}_{1} \frac{a_{4}}{D}$ for different $\bar{\beta}$ of the simply supported square plates and square plates with rounded corners on the basis of the area of the plates:

Table-3.

$$
\left[\bar{\beta}=1, \nu=0.3, \quad \frac{E}{G c}=2.5, \frac{h}{a}=0.2\right]
$$

plate shape [SIMPLY SUPPORTED EDGE CONDITION]	$\frac{T^{*}}{T}$	
	without elastic fOUNIDATION. $\left(k_{1}=0\right)$	With elastic FOUNDATION, $k, \frac{a}{D}=10$
SQUARE PLATE OF SIDE $2 a$.		
	0.6793	$0 \cdot 7387$
square plate with. ROUNDED CORNERS OFSIDE-2a		
	0.6283	0.6330

Observation :
Ar interesting observation on Table - 3 is variation of the time period ratio $\frac{T^{*}}{T}$ with the area of the respective plates. It is observed that as the area of the plate increases this ratio incteases. This is true irrespective of the response of the foundation modulus. Obviously, the area of the square plate is greater than that of the rounded cornered square plate. $\frac{T^{*}}{T}$ increases accordingly. This is noteworthy from the practical point of view.
(d) A useful observation on Berger's equations :

Let us now examine Berger's equations on the movable edge conditions.

$$
\text { A clamped circular plate of radius } a \text { is considered }
$$ here. The deflection function for the circular plate is assumed as

$$
\begin{equation*}
W_{1}=A_{0} r(t)\left[1-\frac{r^{2}}{a^{2}}\right]^{2} \tag{36}
\end{equation*}
$$

This clearly satisfies the required boundary conditions of the clamped edges.'

Before recalling our attention to the original equation (23) let us turn to the equation $21(\mathrm{~b})$ which reduces (in the present case) to the following form.

$$
\begin{equation*}
\tau^{2}(t) \frac{\bar{\alpha}^{2} h^{2}}{12}=\frac{d u_{0}}{d r}+\frac{u_{0}}{r}+\frac{1}{2}\left(\frac{d w)_{1}}{d r}\right)^{2} \tag{37}
\end{equation*}
$$

Let $u_{0}=u_{1}(r) \tau^{2}(t)$
Putting (36) in (37) multiplying the equation by γ we obtain the following equation after integration

$$
u_{1} r+c=\frac{\bar{\alpha}^{2} h^{2}}{24} \cdot r^{2}-\frac{8 A_{0}^{2}}{Q^{4}}\left[\frac{r^{8}}{8 a^{4}}+\frac{r^{4}}{4}-\frac{1}{3} \cdot \frac{r^{6}}{a^{2}}\right]
$$

At $r=0, u_{1}=0 . \quad$ Therefore $c=0$
Hence U_{1} is obtained as

$$
u_{1}=\frac{\bar{\alpha}^{2} h^{2}}{24} \cdot r-\frac{8 A_{0}^{2}}{a^{4}}\left[\frac{r^{3}}{4}-\frac{r^{5}}{3 a^{2}}+\frac{r^{7}}{8 a^{4}}\right]
$$

For movable edge condition at $r=a$

$$
\frac{d u_{1}}{d r}+\nu \frac{u_{1}}{r}+\frac{1}{2}\left(\frac{d w_{1}}{d r}\right)^{2}=0
$$

Using this condition we obtain the value for $\bar{\alpha}^{2}$ as

$$
\begin{equation*}
\bar{\alpha}^{2}=\frac{8 \Delta_{0}^{2}}{h^{2} a^{2}} \cdot \frac{\nu-1}{\nu+1} \tag{39}
\end{equation*}
$$

Inserting now (36) in equation (23), remembering $\bar{\alpha}^{2}$ thus evaluated from (39) and applying Galerkin's technique we get as usual a cubic equation determining the time function $\tau(t)$ in the form

$$
\begin{equation*}
\ddot{\tau}(t)+\alpha_{1} \tau(t)-\beta_{1} \tau^{3}(t)=0 \tag{40}
\end{equation*}
$$

Which leads to meaningless results because the coefficient of $\tau^{3}(t)$ is negative.

Thus we arrive at the following conclusion :
Although Berger's equation can be conveniently applied to the nonlinear theory of thick plates, its application is limited to the immovable edge conditions only.

[^0]: * Accepted for publication in the Journal of Sound and Vibration U.K, July 1990.

