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CHAPTER - I I 

NON-LINEAR DYNAMIC RESPONSE OF MODERATELY THICK 

PLATES PLACED ON ELASTIC FOUNDATION 

ABSIKACT 

In this chapter the non-linear dynamic response of 

thick plates of different shapes placed on elastic founda­

tion of the Winkler-type is investigated by using the appro­

ximate method offered by Berger. Conformal mapping technique 

has been utilised in the investigation. The cases of square 

plates, rounded cornered plates and circular plates have been 

studied in detail. The ratios of the non-lineartime periods 

including shear deformation and the linear time period of the 

classical plate theory have been computed for these plates 

for different values of the foundation modulus 
-^0.4 and 

discussed. 

(a) Vibrations of square plates and square plates with 

rounded corners . * 

Let us consider the free vibrations of thick plates of thick­

ness K . The deflections are considered to be of the same 

order of magnitude as the thickness of the plate. Berger's 

equations given by 20(a) and 20(b) tl̂  chapter I arc rewrittei 

*• Accepted for publication in the Journal of Sound and 
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in the following form for thick plates placed on elastic 

foundation of the Winkler-type (Ariman £*34_7 ) 

14-
vl 

^^vO-5V^W-f,^^.-|l(V^^) 

4 
\Q. ^i^ U"- -k. 2-̂ > k._, 

K̂ c:̂ ^ 3-L- lo 
.^L.^Vc^+^'K) = o 

.. (21a) 

where k|ss foundation modulus 

D = flexural rigidity 

— 2 
and the coupling parameter cC is given by 

2̂ ..5l\'-ret) 
12 

+ M ^ + ' ( _ ^ \ > r^w )^ . . . . (21b) 

To solve the governing equations let us assume the deflection 

in the following form 

^oC^5y5i) = w,(;^oy)TC"t) (22) 

Subs t i tu t ing (22) in^21(a) we get 

TCO 

4 

4 

K^Cp' 

^SV 

rci) 

lOCl-^^) 'Sc" V\i «A)| 
T C-t) = o • - . (23) 
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A solution of equation (23) is possible if 

^ ^ ^ ^ 1 -...24(3) 

^ ^ ^ - A f .... 24(b) 
VJ 

From 24(a) we have 

(V^-Af)Cv2-fA^)K),= 0 .... 25(a) 

and from 24(b) we have 

(V^^Af-)v\;, = o .... 25(b) 

It is evident that to yet a complete solution it is sufficient 

t o solve 
( V + A ^ } W | = O 25(c) 

In a complex co-orciinate system^ 

7 = x 4 (Ij/ and Z =- X - L y 

Th(̂  equation 25(c) changes and 

let 2 . i-(\) , f =-f(^) ....(26) 

be the ana ly t ic function which maps the given shape in the 

Z - plane on to a unit c i i 'c le in the "̂  - plane. After 

transforming equation 25(c) into the complex co-ordinates 

( ^ , Z ) and using r e l a t i on (26) we obtain the following 

d i f f e r e n t i a l equation in ( "̂  , ^ ) co-ordinates for the 

def lect ion function vOi 

9 ^ -— 

^1 ^"^ 4 d"^ d ^ 
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Similar ly equation 21(b) changes in to 

rci).: 
12 

J- O ^ ^ ' ^ ^ t oTE^ CTJIZ 

27(b) 

Here ^ = r e and H = IT-e , r being the radius of 

the circle. For transverse vibrations the inplane displace­

ments i^o and \)o are of no interest and they have been 

eliminated finaiiy through integrations by choosing suitable 

expressions for the displacements compatible with their 

boundary conditions i.e. UL,,* 0 , li'̂  = 0 on the boundary. 

T o solve equation 27(a) let us choose the deflection 

function U), ( I , ̂  ) in the following form 

^^), = A^5 
- ̂ 2.' .'-̂ ^Ju-3^^+K^ '̂0('-̂ iJ 

(28) 

Clearly W)̂  is Q dependent and satisfies the simply supported 

edge conditions, namely, 

K),= 0 at r= 1 

= 0 at r = 1 
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â  
Substituting (28) in 27(a) and inserting the values of ^-^ 

ai 
d ^ 

=- from the given mapping functions. 2 = jC^) ^^ 5®*̂  "̂ ^̂  

error function £ ( ^ ^ 5 ^ ' ) . Galerkin's technique requires 

that 

' ' ' • f 

'Q-0 ^r-o 

^ (̂^ , ̂ ] K), C^,f)r olr.cls - o 
(29) 

-,2. 
The values of o<̂  have been determined by substituting (28) in 

27(b), remembering the values of from the given 

mapping functions and finally integrating over the area of the 

vl), 
plate. After evaluating the integrals in (29) we get the 

necessary values of i^\ . Thus the values of . , and —7-1-

are determined. Inserting all these values in (23) we get 

the following cubic equation determining the unknown time 

function T{'t) in the form 

t C t ) + oC. TCt;+y5>,T\ t ) =0 .... (30) 

The solution of the above equation subject to the boundary 

conditions 

T(o)- 1 

f(0)= 0 

i s well-known and is obtained in terms of Jacobi's e l l i p t i c 

function. 

The ra t io of the non-lineartime periods to the linear 

time periods of the classical plate (thin plate) is 

X' 
T 

2K/. 
T. 

V'2. 
(31) 



29 

where J^ = -— is the ratio of the static deflection to 
K 

the thickness of the plate. 

Table I shows different values of ̂  Vs. -^ ̂  for 

different /i for the simply supported square and rounded 

cornered square plates. 



Table - 1 

Ratio of the non-1 inGax" to l i nea r periods tor the free v ib ra t ions 

of simply supported square p l a t e s and square p l a t e s with rounded 

corners. Immovable edge condit ions have been considered. 

PLATE 
S K A P E 

SlMPl-T SUPPORTED 

ROi/ NDED COZ^ 

• 1 
> 

JER5. 

MAPPING 

F U W C T / ^ N 

Z^i-ofia^-D'lla-^^ 

i 
i 

1 — 

1 
i 
i 

1 

O'Q. 

O'A 

C)'£ 

c-b 

\-o 

0-2 

O'A 

0-G 

0-8 

I ' O 

I ^ K o e . -^ = o 

WlTJ-IOi^r E L A S T I C 
FOUNDATlOhJ 

P R E S E N T 
S T f D Y 

0 - 9 7 7 2 

C' 9i 1 7 S 

C ' 8 3 S 3 

0 - 7 5 G 4 

0 - G 7 9 3 

L_~ .̂-3704 

C - 6 9 5 7 

o - S r . 2 S 

0 ' G 2 8 3 

D 

REF.[38.J 

1-0037 

C'94(6 

.3,A.o.i 

V / U H E l 

D 

G - 8 G C G 

C-7 7 5 S 

C ' ( S 9 7 g 

-

C ' e 7 ( ? 5 

O ' g C / C 

C ' 7 3 S 7 

c^'S/n 

^ • 5 9 6 1 

i' 0-&C (EO 

1 
i O ' 7 1 S 1 
1 

- C - (E .33 0 

-AST IC F o J N D A T i O M . 

t 

O - S S S G 

C - 3 4 ( S i 

O ' S B / S 

C5 -S256 

cs-yeog 

0 ' 9 7 M 

1 

0 ' S C 7 7 

c - 7 / < S 9 
i 

i 

D 

^ " 9 8 7 2 

0 0 5 / 7 

O ' 9 c o 3 

0 ' S 4 o 6 

0 . 7 7 9 3 

C 3 ' 3 7 ' S 

O- 3 o o c 

O - & 0 9 4 

0 - 7 1 ^ 0 

o-S37<s 



r 
T 

V S ^ POR 

S I M P U Y SUPPORTED SQ-UAPg PLATE WITH SI6E- 2(X 

AND 
RQUKPED CQRHERE-D SQUARE- PL AT E . 

( I M M O V A & L L LDSE-S ) 

I'OO-

0«90--

H K 

0-60-

O - 7 0 •• 

O'lfO--

- i ^ a ' ^ = 2 0 ^ S a U A R E P L A T E ) 

^ 0-4^ Q ( ^ S Q U A R E P L A T E ; . 
D 

"fS Q--̂ . O (^SaUARE- PLATE- W I T H 

^ ROUNDE-O CORNERS) 

iS .a-^^2ors<g.UARE PX.AT£\^ITM 
V. _ 

ROUNDED C O R N E R S ) 

0'2o 0-4 

— >S 

F I G . - i 



32 

(b) Vibrations of circular plates. 

Let us consider the free vibrations of thick circular 

plates of radius a. The deflections are considered to be of 

the same order of magnitude as the plate thickness. 

For circular plate of radius a the mapping function 

is 2 = a^ 

AT. £^'2. ^ , 
Thus - - = = a = constant. 

On this assumption the equations25(a) and 25(b) namely 

(V'-X^)(V^A?).W, =o .... 32(a) 

(v2+'Xf)t\J, - o .... 32(b) 

offer an interesting closed form solution. Changing equation 

320) into complex co-ordinates as shown in the previous case 

we have the following two differential equations 

_^!kV_.^QVUo \ ....32(0 

where U) | = IAJ| + t\>i 

The equation determining oC given by the equation 27(1 

remains same as in the previous case. The solution of the 

differential equations32(c) is obtained in terms of Bessel 

function in the form 
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/ . . \li V\), = K ) i + v O 

AJ6C2f=^v)H-&ic.C^pr) . . . . (33) 

where p cx\ 

For clamped edge boundary c o n d i t i o n s 

^ ^ ) i 

J^J,« 0 a t r = 1 

= 0 a t r = 1 . 

Thus t h e frequency equat ion i s obta ined in t h e form 

= 0 (34) 

Solving (34) t h e value of 2 |3 = 3-^o i s obta ined from t h e 

table C^'^JJ' 

For simply supported edge c o n d i t i o n s 

lO^= 0 a t r = 1 

Thus t h e frequency equat ion in t h i s case i s 

JoC^W loC^W 

Cl-'i>)J/2|D)-2pJoC2|D) -(J-^)l,(2{>)+2|oloC2|3) 

0 . . . (35) 
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Solving (35) we get Q^ = 0.-71 from table ̂ '"54__7. 

The values of TC have been determined as in the 

previous case by putting (33) in 27(b) and integrating over 

the entire area of the plate. Now knowing the values of 

b = aAi/.,the values of ^ J^ and ^-i^'- are determined 

in each case. Inserting all these values in equation (23) 

we get a similar type of cubic equation as equation (30) for 

determining the time function T(i} • The solution of this 

cubic equation is obtained in terms of Jacobi's elliptic 

function as in the previous case. 

The following table shows X Vs -— ^^ for 
1 T D 

different values of /h 
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Table - 2. 

Ratio of non-iinearto linear periods for the vibrations of 

circular p la tes . 

ex 

\ 
\ 

P U T £ 

WatJ 

t D G E 

COKlDlT'C'N 

C/.AMPED 

1 PLATE 

1 E 

= g - l 9 7 i 

St'PPORlEO 

PLATt 

JL. 

= 2 - 9 3 7 ^ 

A r 
_ Ao 1 

1 

i 

0 - 2 

l -o 

^̂t 
K 

: 0 - 2 

0 - 6 

i 

T 

WITHOUT E L A S T I C ! 
FoiJHDATioN (*:i=£^ 

PRt5 lNT 

S T ^ o y 

C '992G 

0 - 9 3 9 5 

0^8551 

0 ' 9 8 2 | 

C -913& 

O ' S 0 2 9 

P K E S t M T 

r ~̂  
0 ' 9 7 S 6 

O ' S.29Z] 

o-«S(SS7 

R E F -

C40] 

0-99 2 1 

a-93<&£. 

c>'85 33 

REF. I^o] 

0 ' 9 7 4 5 

C ' S 2 G 5 

O - G < £ 8 S 

1 

\/V'(TM E L A S T I C : 
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D 

0-97GO 

O ' 8 4 o 3 

<3-7032 

D 

C - 9 8 2 & 

0 - 8 7 2 I 

0 7 3 0 4 

D 

0 - 9 7 7 I 

0 - 6 4 9 2 

0-72 3 8 

O 'SSSO 

0 ' 8 6 £ i 

0'754^ 

c - 9 7 g o 

c-2.572 

0-7-4 IG 

D 

0 - 9 & G 7 

0 - 8 9 7 2 

0.7737 
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Observations : 

The t ab le s 1 and 2 c lear ly show the response of 
Jit Q"^ the foundation modulus '^i ~Q on the r a t i o of the time periods 

- j " for d i f fe ren t /3 . As "5 increases — increases . 

This is qui te expected from the p rac t i ca l point of view. 

When '•-TT = 0 i . e . when there is no e l a s t i c foundation, 

the r e su l t s obtained in the present study for square p la tes 

and for c i r cu la r p la tes with simply supported as well as 

clamped edges are found to be in very good agreement with other* 

known r e s u l t s . The r e s u l t s of the rounded cornered square 

p la tes are completely new. 
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T* a^ (C) A comparative study on the t i n e period r a t i o ^ Vs .'><( -^ for 

d i f fe ren t Jj of the .simply supported square pla tes and square 

e l a t e s with rounded corners on the basis of the area of 

the p l a t e s : 

Table - 3. 

P L A T E S H A P E 

[SIMPLY SUPPORTED 

I.DQB CONDITION] 

SQUARE PLATE. 
S I D E 7a. 

ROUKt>E 
t PLATE. IV 

or 

• TH • 

. 

T* 
T 

WITHOUT ELASTIC 
FOUMDATION , 

o>G793 

O-GOSS 

WrTH ELA<.Tic , 
FOUKDATlON, k , -~» lO 

0 - 7 3 S 7 

C! 'G330 

Observation 

An interesting observation on Table - 3 is variation of 
T* 

the time period r a t i o — with the area of the respect ive 

p l a t e s . I t i s observed tha t as the area of the p la te increases 

t h i s r a t i o increases . This i s t rue i r r e spec t ive of the response 

of the foundation modulus. Obviously, the area of the square 

p la te is greater than that of the rounded cornered squa.re p l a t e . 

— increases accordingly. Tliis i s noteworthy frorr: the prac­

t i c a l Koint of view. 
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U) A useful observation on Berger 's equations : 

Let us now examine Berger 's equations on the movable edge 

condi t ions , 

A clamped c i r cu la r p la t e of radius a is considered 

here . The deflect ion function for the c i r cu la r p l a t e i s 

assumed as 

, 2 - i ^ 
VN), ^AJCi)[|_X^^ (36) 

This c l ea r ly s a t i s f i e s the required boundary conditionsof "the. 

clamped edges. 

Before r eca l l ing our a t t en t ion to the or ig inal equation 

(23) l e t us turn to the equation 21(b) which reduces (in the 

present case) to the following form. 

X\i)'^ ^^ ^^° ' '"̂  
2 c±r ' r ' 2 V d r y + °- + (37) 

lei IJLO-u,cornet) •—• (a?*) 

Putting (36) in (37) multiplying the equation by T we obtain 

the following equation after integration 

a,r+ c: QC\^ ^^ QAI 
1A 

• r 
a-' 

r e 
Qix.^ 

-f- r 

At T = 0» lX-̂ = 0 . TUeve-fore c = o 

Hence LX,,is obta ined as 

y 5 Y => 7 -5 -ĵ 7 
" 4 - - 3 ^ -̂  ^ 4 

38(a) 

38(b) 



39 

For movable edge condition at T" = Ct 

o 
— 1 

Using t h i s condition we obtain the value for (^ as 

8 A o -i)-! 

-̂"•C^̂  v + l . . . . (39) 

Inserting now (36) in equation (23), remembering 
- 2 . 

oC thus evaluated from (39) and applying Galerk in ' s 

technique we get as usual a cubic equation determining 

the time function T ( ' t ) in the form 

t a ) + c C , T C - t ) - y S . T ^ C - t ) - o . . . . (40) 

Which leads to meaningless results because the coefficient 

of T^(i)is negative. 

Thus we arrive at the following conclusion : 

Although Berger'3 equation can be conveniently applied to the 

nonlinear theory of thick plates, its application is limited 

to the immovable edge conditions only. 


