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ABSTRACT

In this chapter a set of wuncoupled differentigl
equations in cartesian as well as in polar co-ordinates
have been formulated to study the ncn-linear kehavicurs
of thick plates showing the effects of shear deformetion
and rotatory inertia. Banerjee's hypothesis /18 7 along
with Reissner's variational theorem / 26 _/ has been

utilised in the formulation.

FCRMULATION OF THE DIFFERENTIAL EQUATIONS

r—

We consider the free vibration of thick elastic plates
of thickness h., The material 1s +transversely isotropic
(such as pyrolytic graphite, for example). The origin of
the co-ordinates 1is located @t the centre of the plate,
The deflections are considered tc be of the same order of

magnitude as the plate thickness.
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So far as Reissner's variational theorem is applied,

the stresses are taken in the formJ£2€g7
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Note that the expressions of Cﬂczgdyil are assumed to be
the same form as those for small deflection case. Since
free vib:ations are concerned, O3> 1is assumed equal to
zero. The membrane stresses Nx/k , N)’/p\ and NJW/F\ R
involved in the expressions of Gx , Jy and Oﬁgj respec-
tively, which are neglected in the linear theory as outlined
in /26_/, can no longer be disregarded in the analysis of
large deflection problems. The foregoing equations also

satisfy all the stress boundary conditions.

In order to account for transverse shear deformation
and rotatory inertia effects in the plate theory, where the
lateral deflection is comparable with the thickness, the

displacement components are assumed to be of the following
expressions [3 8]
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The subscript O 1is used to associate with the middle
surface. It should be noted that the relations involve
the combined action of bending and stretching which
characterizes the behaviour of the problem. However, the
thickness is assumed to be unchanged during the deformation
procedure, and the elements normal to the middle surface
before deformation are not required to remain perpendicular

to the deformed middle plane,

In view of equations (4) - (6), the strain-displace-

ment relations for large deflection of plates are of the

form

D odx 2 2

36 1 (2w
>y T ey tZ (%S

€ xy= 2<auo+3ve +Z Bo; +7 a,e)+ ~ag»\)*)(aw >
€52 = 7 (-2 +/5)

|
€ A7 :3‘ ".é*‘i + d)

€x‘= a’uo+ :Z BO< +__L_ aV\) )2

€g:O



The membrane stress resultants in terms of strains are given

by :
Eh
Nx = —_—“‘g(éxo‘i-))éyo)
Ny = T:—f<€70+‘>€xo)
hlxdy= '+’) é;to>% cee. (8)
where Cx_ é)’o are the normal strains of the middle

surface in the x and y-directions, respectively; € .,y 1is

the middle surface shearing strain. From (7) it is seen
that

_ bV /du, auo> l<9v\))( av\))
€ %oy=7 +5%/732 >
LIS (9)
Recalling that the normal stress in the transverse direction
is assumed to be zero in equation (3), the strain-stress

relations for a transverse isotropic material, such as a

pyrolytic graphite material, are found to be [38]
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The Reissner's functional as outlined in / 26_/is of the

form
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It is to be noted that the last two integrations, concerned
with body forces and surface tractions, are eliminated in
this problem. Now, the Reissner's functional ' becomes
3 strain-energy expressiorn as the first term on the right-

hand side of equation (11).

The substitution of equations (7) and (10) into
equation (1l1) gives
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Integrating equation (12) with respect to z and using
equations (1), (2), (8) and (9) in the preceding, we

obtain [3 5]

¥ ﬂ 20 w[Je - 201-9) T
+M>c +My 2 1My 7( aﬁ()
+Qx< +0(> —ery +/5>

_ [ (M My - 24-&@1&]

- B‘GJ\(Q“QV)} el

. (13)
where Jo , ]l are the first and second invariants of
the middle surface strains., These are
Te=Cuot €, 5 To=€x €, €2
e Ao Jeo ) €T ~Xe-D, Koo
. (14)

Let us now apply Banerjee's hypothesis and rewrite

the expression for Y4/ in the following form :
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where

T U ‘)31/' l aw) 5)( ... 15(b)
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and A is a constant depending onPoisson's ratio of the
plate material / 18 7.

The Kinetic energy equation after integrating through the
thickness is

T”’ﬁ (ék{ 2u)’, 2vs)'y (—%?4—)1
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In order to derive the equation of motion we now apply
Hamilton's principle in conjunction with the strain-energy
equation given by (15) as well as the kinetic energy given
by (16). Therefore we have to minimise the integral,

to
& :f (\y_ T)ou e (A7)
{

Taking the variation of_CP , equating it to zero and

eliminating h&x_. PAy , Ddx)r, etc. we get the following
set of decoupled differential equations governing the

vibrations of the plates : ¥

-— - a - - R

*published in the International JouLnAI of Non linear
Kechanics, (U.S.A.) Yol. 24, No. 3.PP. 159 - 164 4 1989,
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The coupling parameter L2 (e qwen by
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where T (1) is a function of time and C¥>==[?;%%j:$§]

is the speed of wave propagation along the surface of the

plates.
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For movable edge condition c; = 0 and for immovable

edge condition W,= U, = 0 at the boundary.

In polar co-ordinates the above set of equations are

transformed into the following form : *

(2 drW
+ kchg a_tg_ - o
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- T + (== e
* p”b'"shed in the Jourmal of S(u*d and ° .Dla{;;;-"‘*"““"

(WKLY, 133(1), rr. 185 - 188, 1989
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For movable edge condition ¢(= O and for immovable edge
condition We= 0 at the boundary. Equationsl&(a) - 19(b)
will be utilised to study the nonlinear behaviours of

different elastic plates.
BERGER'S EQUATICNS

To derive Berger's equations, as outlined by Wu and
Vinson / 38_/, let us now recall our attention to the strain
energy expression given by equation (13). If Tie is
neglected in the expression (13) we shall arrive at the
following set of decoupled equaticns by using the same

procedure as adopted in the previous case.
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Equations 20(a) and 20(b) are well-known Berger's equaticnsg
on the thick plate theory and will now be utilised to
investigate the nondinear behaviours of different elastic

plates.



