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NCN-LINEAR ANALYSIS OF MODERATELY 

THICK PLATES - A ÎEW APPROACH, 

P R E F A C E 

Structural members commonly kno\.vn as plates are used in 

machine parts, in aircraft design and also in modern structural 

design. The study of bending properties of such members is 

imperative to a design engineer. The bending properties of a 

plate depend greatly on its thickness as compared with its 

other dimensions. To study these properties we shall have to 

distinguish between two kinds of plates - (A) Thin plates and 

(B) Thick plates. 

A. Thin plates : 

St ruc tu ra l members whose one dimension i s small in compa­

r ison with other two dimensions are commonly known as th in p la tes 

Within the e l a s t i c l i m i t , the s t a t i c , the thermal and the dynamic 

behaviours/responses of thin p la tes are influenced by the follow­

ing factors : 

(1) Material p roper t ies defined by Young's modulus E and 

Poisson's r a t i o .. n) . E and -) may be va r i ab le . 

(2) Geometry of p l a t e — 

Geometry may be simple such as c i r cu la r or complicated. 

Thickness of the p la t e may be va r iab le . 



(3) Types of loading and 

(4) Nature of supports i . e . edge condi t ions . 

I t i s well-known tha t if def lec t ions \/J of a th in p la t e 

are small in comparison with i t s thickness U , a very s a t i s f a c ­

tory approximate theory of bending of the p l a t e under l a t e r a l 

loads can be developed by making the following assumptions : 

(a) There is no deformation in the middle plane of the 

p la t e and t h i s plane remains neut ra l during bending. 

(b) Points i n i t i a l l y lying on a normal t o the middle 

plane of the p la t e remain on the normal to the middle surface 

of the p l a t e af ter bending and 

(c) The normal s t resses in the d i rec t ion t ransverse t o 

the p la te can be disregarded. 

The above assumptions cons t i tu te the s implest and most 

widely used c l a s s i ca l small def lect ion theory developed by 

Lagrange /~1_7. 

The f i r s t assumption is completely sa t i s f i ed only i f a plat< 

i s bent in to a developable surface. In other cases bending of a 

p la te i s accompanied by s t r a in in the middle plane, but ca lcu la­

t ions show that the corresponding s t resses in the middle plane 

are negl ig ib le if the def lect ions of the p la t e are small in 

comparison with i t s th ickness . If the def lec t ions are not small. 



these supplementary stresses must be taken into account in 

deriving the differentiai equations governing the deflections 

of the plates. In this way, we obtain non-linear equations 

and the solution of the problem becomes much more complicated. 

With the advent of modern plate and shell constructions 

subjected to severe operational conditions, the classical linear 

theory for small deflections is no longer applicable in many 

cases. Methods of analysis dealing with large deflections, 

therefore, are of increasingly practical importance. It is 

well-known that the classical plate equations for studying the 

nonlinear behaviours oi thin plates are due to Von Karman /~2__7, 

Von Karman's equations are in the coupled form and hence 

difficult to solve. Different numerical methods have been 

offered by several authors to solve them. Outstanding research 

workers who worked on Von Karman's equations are Chu and 

Herrman /"3J7, Yamaki C^J* Nowiniski /"5_J7 and Baur /~6_7. 

Other note worthy works in this field are due to Dutta ^7_J7an(i 

Chowdhury C^J^ C^J-

Berger /~10j7 offered a simplified approach to study the 

nonlinear behaviours of thin plates. According to Berger's 

hypothesis the elastic energy due to the second invariant of 

the membrane strain may be disregarded as compared to the square 

of the first invariant without appreciably impairing the accuracy 

of the results. The Euler-Lagrange equations so derived from the 

variational equations turn out to be much simpler than those of 

Von Karman. Hence, this method gains popularity due to its 



simplicity, but its application is limited to the case of immo­

vable edge conditions only /"ll_7. Successful research workers 

who carried out useful investigations on this method are Nash and 

Modeer C^lj, Wah C^'iJ, Nowiniski C^^J* Banerjee /T^^J' 

Other interesting works on Berger's equations are due to 

Kamaiya /~16__7, Karmakar £"ltj who carried out their investiga­

tions on sandwich plates. Later Banerjee / ~ 1 8 ^ offered a modi­

fied strain-energy expression for the investigation of the 

nonlinear behaviours of thin plates, Banerjee's hypothesis is 

based on introducing directly the expression for the membrane 

stress into the total potential energy of the system. As a 

consequence, a new set of differential equations has been obtained 

in an uncoupled form. This hypothesis states that the radial 

stretching is proportional to (%^) • This is reasonable as 

because the contribution of the term (-̂jv̂) i" "tbe expression 

for the radial term is greater than that of -~r^ in bending. 

The author has carried out investigations on the nonlinear 

analysis of different elastic plates ^19__7, /~20_y' and obtained 

satisfactory results. Later Banerjee with Sinha Roy extended his 

line of thought to the large deflection of shallow shells £"21^/ 

and obtained excellent results. 

Another useful method to carry out the non-linear behaviours 

of thin plates is the finite element method. Eminent research 

workers in this field are Striz, Jang and Bert £"22J and Chi-lung 

Huang /'23_7. 
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B. Thick plates : · 

The approximate theories of thin plates discussed above, 

become unreliable in the case of plates of considerable thick­

ness. In such a case, the thick plate theory should be applied. 

This theory considers the problem as a three dimensional prob­

lem of elasticity where the effects of transverse shear deforma­

tions and rotatory inertia are to be considered, 

In recent years, a number of plate theories has been 

developed in an effort to extend the range of applicability of 

classical plate theory to that of thicker plates by including 

the effects of transverse shear deformation and transverse normal 

stress. It has been shown by Reissner ~24_7, ~25_7 that the 

inclusion of transverse shear deformation permits a return to 

Navier' s three dimensional boundary conditions. Later on, 

Reissner ~26_7 proposed a variational principle for the develop­

ment of both the governing equations and the boundary conditions. 

Donnell f:21J has given a three dimensional solution in the f_ormj 

of an infinite series in the loading functions for plates. 

Fredrick ~28_7 investigated stresses on thick plates on elastic 

foundation. Donnell and Lee ~29_7 have studied the problem of 

thick plates under tangential loads applied on the faces. Recta~ 

gular plates under different edge conditions have been studied 

in detail by many _authors among which the works of Salerno and 

Goldberg ~30_7, Volterra ~31_7, Essenburg ~32_7 arid Volterra 

~33_7 need special mention. All these authors used either 



R e i s s n e r ' s theory in t h e i r invest igat ion or equations very simil 

t o those obtained by Reissner, S ta r t ing with the assumptions con­

cerning the components of displacements, Ariman /~34_7 qui te 

successfully invest igated s t resses of th ick p la tes on e l a s t i c 

foundation. Lee / ~ 3 5 ^ has given a th ree dimensional solut ion fo: 

simply supported thick rectangular p la t e s by applying the method 

followed by Donnell, Goldenviezer ^ 3 6 _ 7 has given an approxima-

theory of bending of a p l a t e by the method of asymptotic in tegra­

t ion of t he governing equat ions. A th ree dimensional e l a s t i c i t y 

solution for rectangular p la tes has been developed by Srinivas 

Cy^S/' This paper i s a lso i n t e r e s t i n g , 
« 

The study of the nonlinear behaviours of moderately thick 

p la tes i s gaining momentum day by day due to i t s wide appl ica t ion 

in modern s t ruc tu re and design. An a t t r a c t i v e work in t h i s f ie ld 

i s due t o Wu and Vinson ^ 3 8 j 7 . The authors have used an improvec 

Re issner ' s va r i a t iona l theorem along with Berger 's hypothesis t o 

propose a set of governing equations including the effects of 

t ransverse shear deformation and ro ta to ry i n e r t i a for large 

amplitude free v ibra t ions of p la t e s composed of t ransverse ly 

i so t rop ic mater ia l . Another important work i s due t o Iyenger» 

Chandrashekhara and Sebastian /~39_7 ^ o car r ied out the analysis 

of thick rectangular p l a t e s by using a higher order theory which 

i s an extension of Re issner ' s shear deformation theory. Kanaka 

Raju and Venkateswara Rao ^^OjT' have studied the axisymetric 

v ibra t ions of c i r cu la r p l a t e s including the effects of geometric 

non-linearity, shear deformation and ro t a to ry i n e r t i a by employing 



the f i n i t e element method to obtain t h e i r so lu t ion . Another paper 

can be located by Kanaka Raju,^41__7 where the nonlinear v ibra t ions 

of beams considering shear deformation and ro ta tory i n e r t i a have 

been studied in d e t a i l . St resses in a th ick p la t e with a c i r cu la r 

hole under axisymmetric loading have been qui te successfully 

invest igated by Chandrashekhara and Muthanna/"42^. The authors 

have obtained an exact t heo re t i ca l solut ion in terms of Fourier 

-Bessel s e r i e s and i n t e g r a l s . Kanaka Raju, Venkateswara Rao and 

I . S. Raju /~43__7 further studied the geometric nonl inear i ty on 

the free f lexural v ibra t ions of moderately thick rectangular 

p l a t e s . The authors employed f i n i t e element formulation t o 

obtain the non-linear to l inea r period r a t i o s for rectangular 

p l a t e s . A conformal f i n i t e element of rectangular shape, wherein 

the effects of shear deformation and rotatcary ine r t i a are included 

i s developed and used for the ana lys i s . Another paper by Kanaka 

Raju and Hinton, /T^^J/ needs special mention in which they qui te 

s a t i s f a c t o r i l y analysed the non-l inear v ibra t ions of th ick p la tes 

of d i f ferent shapes having dif ferent boundary conditions by using 

Mindlin p l a t e elements. 

A discussion on various non-linear theor ies appl icable for 

moderately th ick p la te s can be found in papers by Sathyamoorthy 

and Chia /~45_J^ and Sathyamoorthy ^46__7 where i t has been shown 

that the effects of t ransverse shear and ro ta to ry i ne r t i a play 

a s igni f icant ro l e in the large amplitude v ibra t ions of raoderatel 

thick p la tes of various geometries. Reddy and Chao /^^IJJ have 

studied the f i n i t e element analysis of the equations governing 
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the large amplitude free, flexural oscillations of laminated 

anisotropic rectangular plates, 

-_ _,̂ io.s 
Very recently Reissner ^AS^y-j^generalised some formulas of 

the theory of moderately thick plates. The author restates 

formulas for stresses and stress couples for a theory of isotro­

pic moderately thick plates fin the classical tests of Love and 

of Timoshenko) in a simplified form. Fuh-Gwo Yuan and Miller 

^49_7'>ave presented the development of a straight forward 

displacement type rectangular finite element for bending a 

flat plate with the inclusion of transverse (or lateral) shear 

effects. A simple higher order non-linear shear deformation 

plate theory has been proposed by Lee, Senthilnathan, Lim and 

Chow ̂ 50__7« The Von Karman extension of the theory is found 

to be remarkably simple for obtaining the approximate solution 

for the non-linear bending and vibration of thick, isotropic and 

transversely isotropic plates. 

To sum up 

( i ) Thick p l a t e theory i s an extension of the 

c l a s s i c a l th in p la t e theory , where the effects of t ransverse 

shear deformation and ro ta to ry i n e r t i a are to be included. 

( i i ) The ana ly t i ca l works so far carr ied out for 

inves t iga t ion of the non-l inear behaviours of th ick p la tes are 

based mainly on s ingle mode approximation and have often been 

done with the aid of e i the r Von Karman type nonlinear equations 

or Berger type approximation, along with Reissner ' s va r i a t i ona l 

p r i n c i p l e . 



(iii) Finite element formulation has recently been 

used by some authors. 

It is to be noted that Ferger's equation is a purely 

approximate method. It is meaningful only for immovable edge 

conditions. Von Karman equations are in the coupled form and 

thus difficult to solve, whereas finite element method needs 

much computational labour and lacks in the essence of formu­

lation of the classical plate equations. 

Aim of the present project : 

The aim of the present th.esis is to offer a simplified 

approach for the non-linear analysis of thick plates by using 

Rcissner's variational theorem along with Banerjee's hypothesis 

A set of uncoupled differential equations have been for.-ned to 

st\idy the non-linear behaviours of different elastic plates 

showing the effects of shear deformation and rotatory inertia. 

Accuracy of the results obtained from these equations has been 

tested for different plates and compared with other known 

results. The present study seems to be more advantageous than 

the previous investigations, because, 

(a) The results can be obtained from a single 

differential equation both for movable as well as immovable 

edge conditions, 

(b) The'results are sufficiently accurate from the 

practical point of viev/. 



(c) The proposed d i f f e r e i i t i a l equat ions ore in tb.c 

uncoupled form and hence easy to s o l v e . Computational lab^our 

i s fninimuni for i t s s imple for;n. 

The t h e s i s has been divided i n t o t h r e e c h a p t e r s . The 

f i r s t chap te r i s devoted t o deducing t h e proposed d i f f e r e n t i a l 

equa t ions aoverning t h e v i b r a t i o n s of t h i c k p l a t e s with shear 

deforrnatiopi and r o t a t o r y i n e r t i a e f f e c t . Baner j ee ' s hypo thes i s 

sugges t ing a luodified s t r a i n energy express ion along with 

Kcissner 'G v a r i a t i o n a l p r i n c i p l e has been u t i l i s e d . 

The second chapter dea l s vvith the a p p l i c a t i o n of Burger ' s 

equat ion on th i ck p l a t e t h e o r y . Non- l inear responses of t h i c k 

p l a t e s having d i f f e r e n t shapes placed on e l a s t i c foundat ion 

have been s tud ied in d e t a i l . Numerical r e s u l t s showing the 

e f f e c t s of shear modulus and rotr^tory i n e r t i a for d i f f e r e n t 

values of the foundation modulus have been given in t a b l e s and 

compared with o ther known r e s u l t s . Trie study shows t h a t 

B e r g e r ' s approximate t h e o r y Ccin be conven ien t ly appl ied to t h e 

a n a l y s i s of the th i ck p l a t e s . But i t has been shov-;ri t h a t for 

movable edtje cond i t i ons Berger ' s theory f a i l s m i se r ab ly . 

The t h i r d and t h e concluding chap te r i s devoted t o the 

a p p l i c a t i o n o{ the new s e t of d i f f e r r n t i a l equat ions proposed in 

the p r e s e n t t ! , e s i s . The n o n - l i n e a r dynamic behaviours of th ick 

p l a t e s of s q u a r e , c i r c u l a r and r e g u l a r polygonal shapes. liBve 

been s tud ied in d e t a i l . The s t a t i c beh>'iviours of e l l l p t l c d l 

and r i g h t angled i s o s c e l e s t r i a n g u l a r p l a t e s have a l s o been 

s t u d i e d . D i f f e r en t edge cond i t i ons have been cor^.sidcrcd, For 

r e g u l a r polygonal p l a t e s conformal mapping t echn ique h£s been 

ev^,ployed. !:iKr.erical r e s u l t s sh/owing t h e ra."t:lo of the riOn-lineai 

tifne pe r iods t c l i n e a r time pe r iods for d i f f e r e n t values of 
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t ransverse shear deformations have been plot ted graphical ly 

in few cases and given in tabular form for other cases. I t 

has been observed that the r e su l t s obtained from the present 

study are in very good agreement with other known r e s u l t s . 

So, the proposed d i f f e r en t i a l equations of the present projec t , 

shewing ttie effects of shear detorniation and ro ta tory i n e r t i a , 

seem to predic t the non-l inear behaviours of different, thick 

e l a s t i c plates or both movable as well as irn.TiOvable edges, 

with ease and accuracy. 
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Glosr>ary of Sytnbols : 

Following symbols have been used in t h i s the-sis : 

E = Young's modulus. 

i) = P o i s s o n ' s r a t i o . 

tV = Def lec t ion normal t o the middle p lane of 

t h e p l a t e . 

h = Thickness of the p l a t e . 

G, Gc = Shear module. 

P - Mass d e n s i t y . 

^ = Mate r i a l c o n s t a n t . 

Ao = Amplitude of o sc i l J a t i o n s . 

^ = -rr-^ y^\ -• F lexura l r i g i d i t y . 

F i -- Body force components. 

T i = Surfa,ce force- com.ponents. 

u, V, U/ = Displaceir.ents in x, y ".nd 7. - d i r e c t i o n s 

r e s p e c t i v e l y . 

^ ( t ) = Time dependent func t ion , 

T = Kine t i c energy. 

' ^ ^ ( ^ i j ) = S t r a i n - e n e r g y , 



Mx, My, Mxy 

NX, Ny, Nxy 

Qx , Qy 

T » , T 

% 

a, b 

S t ress couples. 

In-plane s t r e s s r e s u l t a n t s . 

Transverse shear r e s u l t a n t s . 

Rotational displacements in x and y 

- d i rec t ions r e spec t ive ly . 

S t ra ins and s t r e s ses r e spec t ive ly . 

p r 1-o'^T " speed of wave propagation 

along the surface of the p l a t e . 

coupling parameter. 

Dimensionless amplitude. 

Tracing constant . 

Non-linear and l inear time period of 

o s c i l l a t i o n . 

Load function. 

Dimension of a p i s t e . 

Semi-major and semi-minor axes of the 

e l l i p t i c p l a t e . 



CHAPTER - I. 

A NEW APPROACH TO THE NQs!-LINEAR ANALYSIS 

OF MODERATELY THICK ELASTIC PLATES. 
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CHAPTER - I . 

A îEW APPROACH TO THE NON-LINEAR ANALYSIS 

OF MODERATELY THICK ELASTIC PLATtS 

ABSTRACT 

In t h i s c h a p t e r a s e t of uncoup led d i f f e r e n t i p l 

e q u a t i o n s in c a r t e s i a n as w e l l as i n p o l a r c o - o r d i n a t e s 

have been f o r m u l a t e d t o s t u d y t h e n o n - l i n e a r b e h a v i o u r s 

of t h i c k p l a t e s showing t h e e f f e c t s of s h e a r d e f o r m a t i o n 

and r o t a t o r y i n e r t i a . B a n e r j e e ' s h y p o t h e s i s / f " l8_7 a l o n g 

w i t h R e i s s n e r ' s v a r i a t i o n a l t h e o r e m / ~ 2 6 _ 7 has been 

u t i l i s e d i n t h e f o r m u l a t i o n . 

FCRMULATKU OF THE DIFFERENTIAL EQUATIONS 

We conGitier t h e f r e e v i b r a t i o n of t h i c k e l a s t i c p l a t e s 

of t h i c k n e s s h . The m a t e r i a l i s t r a n s v e r s e l y i s o t r o p i c 

( such as p y r o l y t i c g r a p h i t e , for e x a m p l e ) . Tlie o r i g i n of 

t h e c o - o r d i n a t e s i s l o c a t e d a t t h e c e n t r e of t h e p l a t e . 

The d e f l e c t i o n s a r e c o n s i d e r e d t o be of t h e same o r d e r of 

magni tude as t h e p l a t e t h i c k n e s s . 
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So far as Reissner's variational theorem is applied, 

the stresses are taken in the form / 26 / 

{(S^->6'y ,6-?) -- -^(^^x ,N^/, Nxy) 4 | | ( M X , My, M x.y) . . . (1) 

3 
^ ^ > ^ 2 ) ^ 2 T ^ / C 2 ' - (X / - ) ( ^ - ^ ^ > ) . . . . (2) 

(T? = o (3) 

Note that the expressions of ^x^i^CTy? are assumed to be 

the same form as those for small deflection case. Since 

free vibrations are concerned, C^ is assumed equal to 

zero. The membrane stresses ^-y^^ , '̂ /̂K and ^•^y/l^ , 

involved in the expressions of <5'IL , <5y and O'x.y respec­

tively, which are neglected in the linear theory as outlined 

in ^26_J7, can no longer be disregarded in the analysis of 

large deflection problems. The foregoing equations also 

satisfy all the stress boundary conditions. 

In order to account for transverse shear deformation 

and rotatory inertia effects in the plate theory, where the 

lateral deflection is comparable with the thickness, the 

displacement components are assumed to be of the following 

expressions 128 1 

107196 



Ui(x,y;2,i) = Uo(x,>',t)+2oC(x,--jot) .... (4) 

W ( X , ^ , 2 o t ) = l̂) (x.Nj,^) .... (6) 

The subscript 0 is used to associate with the middle 

surface. It should be noted that the relations involve 

the combined action of bending and stretching which 

characterizes the behaviour of the problem. However, the 

thickness is assumed to be unchanged during the deformation 

procedure, and the elements normal to the middle surface 

before deformation are not required to remain perpendicular 

to the deformed middle plane. 

In view of equations (4) - (6), the strain-displace­

ment relations for large deflection of plates are of the 

form : 

^LXo 

x? -̂  7 V-^x. 

Cp = o 
(7) 
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The membrane s t r e s s r e su l t an t s in terms of s t r a in s are given 

by : 

where ^Xo » ^V/5 ^^^ ^̂ *-' normal s t r a in s of the middlf^ 

surface in the x and y -d i r ec t ions , r e spec t ive ly ; C Xo^o ^^ 

the middle surface shearing s t r a i n . From (7) i t is seen 

tha t 

Recall ing tha t the normal s t r e s s in the t ransverse d i rec t ion 

i s assumed t o be zero in equation (3 ) , the s t r a i n - s t r e s s 

r e l a t i ons for a t ransverse i so t ropic mater ia l , such as a 

pyrolyt ic graphi te mate r i a l , are found t o befB&J 

€ x ^ =^G '^^y '•> ̂ yz =^ I'GC'^^^ 

2Gc ^^^^ 
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The Reissner's functional as outlined in /~26__7is of the 

form 

-',« ij si 
— (11) 

I t i s t o be noted tha t the l a s t two in t eg ra t i ons , concerned 

with body forces and surface t r a c t i o n s , are eliminated in 

t h i s problem. Now, the Reissner ' s functional <^ becomes 

a s t ra in-energy expression as the f i r s t term on the r i g h t -

hand side of equation (11). 

The subs t i tu t ion of equations (7) and (10) in to 

equation (11) gives 

r 
77 

4-cr. y 
^ ^° f ? _ | ^ 4. _L / ^ » ^ f 

L ^y 5y 2 V -̂ y / 

-^ [ 1 (crx%^/;- -^^cr.6>4 ^-0+^).o-,; 

-+• <^X2^-f^7^^)j c i x d y dz (12) 
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Integrating equation (12) with respect to z and using 

equations (1), (2), (8) and (9) in the preceding, we 

obtain [^^J 

y = £k [l'-2Ci->))l]J 

-fMx^-fM,|A,M.,(^4M_) 

fb^ bK> + Cxif^^^)4e^(^+^ 

2E 
12 ̂ Mx^f M/)-- ̂ -4-M-Ŵ ^̂ ^̂ ^̂  

-5%:k(^-^^^>'j"^"^^- .. (13) 

where Je , lie. ^^^ "*̂he first and second invariants of 

the middle surface strains. These are 

— ^ -—• 7 

(14) 

Let us now apply Banerjee's hypothesis and rewr i te 

the expression for y in the following form : 

y M-
^y 

1 
2£ ^ ( M X \ M , V ^ 2/1 Mx My 0 

;̂̂  

5GcK 
(^X + Qy^)\^^ciy 15(a) 
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where 

and A. is a constant depending on Poisson' s ratio of the 

plate material /" i Q _7. 

The Kinetic energy equation after integrating through the 

thickness is 

•iimm-pm^m T 

3 r / ^ .̂  w'Z , N /, v's 

(16) 

In order to derive the equation of motion we now apply 

Hamilton's p r inc ip le in conjunction with the s t ra in-energy 

equation given by (15) as well as the k ine t i c energy given 

by (16) . Therefore we have t o minimise the i n t e g r a l , 

* = J ( H ' - " r ) c L i . . . . (17) 

Taking the var ia t ion of 4^ , equating i t to zero and 

eliminating M-̂ c* My . Mxy » e t c . we get the following 

set of decoupled d i f f e r e n t i a l equations governing the 

v ibra t ions of the p l a t e s : * 

* published in the In terna t ional Journa.1 of fJon-iir.car 
Mechanics, (U.5.A.) Vol. 24, Mo. 3.PP. 159 - 164 ^ 19a9. 
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v̂ w + ^^-^m § \ Y . ) v^(|^,.o|^) 

+ 3X H-tyHmHw) 
4- 2^ '̂ -̂̂  

3 W / Stv) \'^ b (v" / d tO \^ •̂x 
+ ̂  3**^ ^to b(^ 

6A V^K <̂> )̂ ^ (W-) 
i-

+ 2. 

w- cp^ ai ^''^ ^ o 
. . . . 18(a 

-7 2 The coupling parameter oC I's gL.v̂ v\ b; 

o<̂ K^ - r V ^ \ _ <̂ tXo . ^ •2>a 
I I 

T'ci) =4^+ 
ax_ ^y 

if bio \^^ ::^fhj^\'^ 

where X (-1) i s a function of time and Cp -• 

18(b; 

'/2 

)] 
is the speed of wave propagation along the surface of the 

plates. 
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For movable edge cond i t i on oC = 0 and for immovable 

edge cond i t i on UL̂ = L?o = 0 a t t h e boundary. 

In p o l a r c o - o r d i n a t e s t h e above s e t of equat ions a r e 

t ransformed i n t o t h e follov/ing form : * 

•2. 

3r^ '^ f 'df 

+ 
5 0-0^) HI) X^^j^^-i 

\Q-

5 V <> ^<^ r'Ct) 

J-

2>p- r 3r 

2 (1 )̂̂  P -d 1 

5 Gc 3t^ 
S^k) + ^ ?«tv 

^r^ r 3r 

^^r\^)T'^-\ ^^ A. A ^ 
^r2 '^ r ' br 

6 A 
I br^^ i^dr A ^ av4 ' 3 ^ / 

+ 12 
= o 

. . . . 19(a 

where 

19(b 

* Publ ished in the Jouma] of Sound and Vibra t ion 

^^•K.) 1 133(1) , FP. 185 - 188 ; 1989 
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For movable edge cond i t ion c^- 0 and for immovable edge 

cond i t i on U.o= 0 a t t h e boundary. Equa t i ons l8 ( a ) - 19(b) 

w i l l be u t i l i s e d to s tudy t h e non l inea r behaviours of 

d i f f e r e n t e l a s t i c p l a t e s . 

BERGER'S EQUATIONS : 

To d e r i v e B e r g e r ' s equa t i ons , as ou t l i ned by Wu and 

Vinson Z~38_J7, l e t us now r e c a l l our a t t e n t i o n t o t h e s t r a i n 

energy express ion given by equat ion ( 1 3 ) . If ] ] g i s 

neg lec ted in the express ion (13) we s h a l l a r r i v e a t t h e 

follov^ing se t of decoupled equa t ions by using t h e same 

procedure as adopted in t h e prev ious c a s e . 

i'^u' 
' + ^ r r ^ ^ ( ^ ) -f ̂ )̂ J v̂ w -^^Tti)Cv^w) 

^ • . ^ • w C v M . \0. ^^tO 

U-C^ -bi.' 
CD 

2 0 ( a ) 

where 

(̂ î(W=#^^^^> 
. . 20(b) 

Equations 20(a) and 20(b) a re well-knovm Berge r ' s e q u a t i o n s 

on the th ick p l a t e theory and wi l l nov/ be u t i l i s e d t o 

i n v e s t i g a t e the non-linear behaviours of d i f f e r e n t e l a s t i c 

p l a t e s . 
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CHAPTER - I I 

NON-LINEAR DYNAMIC RESPONSE OF MODERATELY THICK 

PLATES PLACED ON ELASTIC FOUNDATION 

ABSIKACT 

In this chapter the non-linear dynamic response of 

thick plates of different shapes placed on elastic founda­

tion of the Winkler-type is investigated by using the appro­

ximate method offered by Berger. Conformal mapping technique 

has been utilised in the investigation. The cases of square 

plates, rounded cornered plates and circular plates have been 

studied in detail. The ratios of the non-lineartime periods 

including shear deformation and the linear time period of the 

classical plate theory have been computed for these plates 

for different values of the foundation modulus 
-^0.4 and 

discussed. 

(a) Vibrations of square plates and square plates with 

rounded corners . * 

Let us consider the free vibrations of thick plates of thick­

ness K . The deflections are considered to be of the same 

order of magnitude as the thickness of the plate. Berger's 

equations given by 20(a) and 20(b) tl̂  chapter I arc rewrittei 

*• Accepted for publication in the Journal of Sound and 

Vibration U.K,, Jul;/ 1990, 
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in the following form for thick plates placed on elastic 

foundation of the Winkler-type (Ariman £*34_7 ) 

14-
vl 

^^vO-5V^W-f,^^.-|l(V^^) 

4 
\Q. ^i^ U"- -k. 2-̂ > k._, 

K̂ c:̂ ^ 3-L- lo 
.^L.^Vc^+^'K) = o 

.. (21a) 

where k|ss foundation modulus 

D = flexural rigidity 

— 2 
and the coupling parameter cC is given by 

2̂ ..5l\'-ret) 
12 

+ M ^ + ' ( _ ^ \ > r^w )^ . . . . (21b) 

To solve the governing equations let us assume the deflection 

in the following form 

^oC^5y5i) = w,(;^oy)TC"t) (22) 

Subs t i tu t ing (22) in^21(a) we get 

TCO 

4 

4 

K^Cp' 

^SV 

rci) 

lOCl-^^) 'Sc" V\i «A)| 
T C-t) = o • - . (23) 
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A solution of equation (23) is possible if 

^ ^ ^ ^ 1 -...24(3) 

^ ^ ^ - A f .... 24(b) 
VJ 

From 24(a) we have 

(V^-Af)Cv2-fA^)K),= 0 .... 25(a) 

and from 24(b) we have 

(V^^Af-)v\;, = o .... 25(b) 

It is evident that to yet a complete solution it is sufficient 

t o solve 
( V + A ^ } W | = O 25(c) 

In a complex co-orciinate system^ 

7 = x 4 (Ij/ and Z =- X - L y 

Th(̂  equation 25(c) changes and 

let 2 . i-(\) , f =-f(^) ....(26) 

be the ana ly t ic function which maps the given shape in the 

Z - plane on to a unit c i i 'c le in the "̂  - plane. After 

transforming equation 25(c) into the complex co-ordinates 

( ^ , Z ) and using r e l a t i on (26) we obtain the following 

d i f f e r e n t i a l equation in ( "̂  , ^ ) co-ordinates for the 

def lect ion function vOi 

9 ^ -— 

^1 ^"^ 4 d"^ d ^ 
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Similar ly equation 21(b) changes in to 

rci).: 
12 

J- O ^ ^ ' ^ ^ t oTE^ CTJIZ 

27(b) 

Here ^ = r e and H = IT-e , r being the radius of 

the circle. For transverse vibrations the inplane displace­

ments i^o and \)o are of no interest and they have been 

eliminated finaiiy through integrations by choosing suitable 

expressions for the displacements compatible with their 

boundary conditions i.e. UL,,* 0 , li'̂  = 0 on the boundary. 

T o solve equation 27(a) let us choose the deflection 

function U), ( I , ̂  ) in the following form 

^^), = A^5 
- ̂ 2.' .'-̂ ^Ju-3^^+K^ '̂0('-̂ iJ 

(28) 

Clearly W)̂  is Q dependent and satisfies the simply supported 

edge conditions, namely, 

K),= 0 at r= 1 

= 0 at r = 1 
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â  
Substituting (28) in 27(a) and inserting the values of ^-^ 

ai 
d ^ 

=- from the given mapping functions. 2 = jC^) ^^ 5®*̂  "̂ ^̂  

error function £ ( ^ ^ 5 ^ ' ) . Galerkin's technique requires 

that 

' ' ' • f 

'Q-0 ^r-o 

^ (̂^ , ̂ ] K), C^,f)r olr.cls - o 
(29) 

-,2. 
The values of o<̂  have been determined by substituting (28) in 

27(b), remembering the values of from the given 

mapping functions and finally integrating over the area of the 

vl), 
plate. After evaluating the integrals in (29) we get the 

necessary values of i^\ . Thus the values of . , and —7-1-

are determined. Inserting all these values in (23) we get 

the following cubic equation determining the unknown time 

function T{'t) in the form 

t C t ) + oC. TCt;+y5>,T\ t ) =0 .... (30) 

The solution of the above equation subject to the boundary 

conditions 

T(o)- 1 

f(0)= 0 

i s well-known and is obtained in terms of Jacobi's e l l i p t i c 

function. 

The ra t io of the non-lineartime periods to the linear 

time periods of the classical plate (thin plate) is 

X' 
T 

2K/. 
T. 

V'2. 
(31) 
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where J^ = -— is the ratio of the static deflection to 
K 

the thickness of the plate. 

Table I shows different values of ̂  Vs. -^ ̂  for 

different /i for the simply supported square and rounded 

cornered square plates. 



Table - 1 

Ratio of the non-1 inGax" to l i nea r periods tor the free v ib ra t ions 

of simply supported square p l a t e s and square p l a t e s with rounded 

corners. Immovable edge condit ions have been considered. 

PLATE 
S K A P E 

SlMPl-T SUPPORTED 

ROi/ NDED COZ^ 

• 1 
> 

JER5. 

MAPPING 

F U W C T / ^ N 

Z^i-ofia^-D'lla-^^ 

i 
i 

1 — 

1 
i 
i 

1 

O'Q. 

O'A 

C)'£ 

c-b 

\-o 

0-2 

O'A 

0-G 

0-8 

I ' O 

I ^ K o e . -^ = o 

WlTJ-IOi^r E L A S T I C 
FOUNDATlOhJ 

P R E S E N T 
S T f D Y 

0 - 9 7 7 2 

C' 9i 1 7 S 

C ' 8 3 S 3 

0 - 7 5 G 4 

0 - G 7 9 3 

L_~ .̂-3704 

C - 6 9 5 7 

o - S r . 2 S 

0 ' G 2 8 3 

D 

REF.[38.J 

1-0037 

C'94(6 

.3,A.o.i 

V / U H E l 

D 

G - 8 G C G 

C-7 7 5 S 

C ' ( S 9 7 g 

-

C ' e 7 ( ? 5 

O ' g C / C 

C ' 7 3 S 7 

c^'S/n 

^ • 5 9 6 1 

i' 0-&C (EO 

1 
i O ' 7 1 S 1 
1 

- C - (E .33 0 

-AST IC F o J N D A T i O M . 

t 

O - S S S G 

C - 3 4 ( S i 

O ' S B / S 

C5 -S256 

cs-yeog 

0 ' 9 7 M 

1 

0 ' S C 7 7 

c - 7 / < S 9 
i 

i 

D 

^ " 9 8 7 2 

0 0 5 / 7 

O ' 9 c o 3 

0 ' S 4 o 6 

0 . 7 7 9 3 

C 3 ' 3 7 ' S 

O- 3 o o c 

O - & 0 9 4 

0 - 7 1 ^ 0 

o-S37<s 



r 
T 

V S ^ POR 

S I M P U Y SUPPORTED SQ-UAPg PLATE WITH SI6E- 2(X 

AND 
RQUKPED CQRHERE-D SQUARE- PL AT E . 

( I M M O V A & L L LDSE-S ) 

I'OO-

0«90--

H K 

0-60-

O - 7 0 •• 

O'lfO--

- i ^ a ' ^ = 2 0 ^ S a U A R E P L A T E ) 

^ 0-4^ Q ( ^ S Q U A R E P L A T E ; . 
D 

"fS Q--̂ . O (^SaUARE- PLATE- W I T H 

^ ROUNDE-O CORNERS) 

iS .a-^^2ors<g.UARE PX.AT£\^ITM 
V. _ 

ROUNDED C O R N E R S ) 

0'2o 0-4 

— >S 

F I G . - i 
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(b) Vibrations of circular plates. 

Let us consider the free vibrations of thick circular 

plates of radius a. The deflections are considered to be of 

the same order of magnitude as the plate thickness. 

For circular plate of radius a the mapping function 

is 2 = a^ 

AT. £^'2. ^ , 
Thus - - = = a = constant. 

On this assumption the equations25(a) and 25(b) namely 

(V'-X^)(V^A?).W, =o .... 32(a) 

(v2+'Xf)t\J, - o .... 32(b) 

offer an interesting closed form solution. Changing equation 

320) into complex co-ordinates as shown in the previous case 

we have the following two differential equations 

_^!kV_.^QVUo \ ....32(0 

where U) | = IAJ| + t\>i 

The equation determining oC given by the equation 27(1 

remains same as in the previous case. The solution of the 

differential equations32(c) is obtained in terms of Bessel 

function in the form 
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/ . . \li V\), = K ) i + v O 

AJ6C2f=^v)H-&ic.C^pr) . . . . (33) 

where p cx\ 

For clamped edge boundary c o n d i t i o n s 

^ ^ ) i 

J^J,« 0 a t r = 1 

= 0 a t r = 1 . 

Thus t h e frequency equat ion i s obta ined in t h e form 

= 0 (34) 

Solving (34) t h e value of 2 |3 = 3-^o i s obta ined from t h e 

table C^'^JJ' 

For simply supported edge c o n d i t i o n s 

lO^= 0 a t r = 1 

Thus t h e frequency equat ion in t h i s case i s 

JoC^W loC^W 

Cl-'i>)J/2|D)-2pJoC2|D) -(J-^)l,(2{>)+2|oloC2|3) 

0 . . . (35) 
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Solving (35) we get Q^ = 0.-71 from table ̂ '"54__7. 

The values of TC have been determined as in the 

previous case by putting (33) in 27(b) and integrating over 

the entire area of the plate. Now knowing the values of 

b = aAi/.,the values of ^ J^ and ^-i^'- are determined 

in each case. Inserting all these values in equation (23) 

we get a similar type of cubic equation as equation (30) for 

determining the time function T(i} • The solution of this 

cubic equation is obtained in terms of Jacobi's elliptic 

function as in the previous case. 

The following table shows X Vs -— ^^ for 
1 T D 

different values of /h 
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Table - 2. 

Ratio of non-iinearto linear periods for the vibrations of 

circular p la tes . 

ex 

\ 
\ 

P U T £ 

WatJ 

t D G E 

COKlDlT'C'N 

C/.AMPED 

1 PLATE 

1 E 

= g - l 9 7 i 

St'PPORlEO 

PLATt 

JL. 

= 2 - 9 3 7 ^ 

A r 
_ Ao 1 

1 

i 

0 - 2 

l -o 

^̂t 
K 

: 0 - 2 

0 - 6 

i 

T 

WITHOUT E L A S T I C ! 
FoiJHDATioN (*:i=£^ 

PRt5 lNT 

S T ^ o y 

C '992G 

0 - 9 3 9 5 

0^8551 

0 ' 9 8 2 | 

C -913& 

O ' S 0 2 9 

P K E S t M T 

r ~̂  
0 ' 9 7 S 6 

O ' S.29Z] 

o-«S(SS7 

R E F -

C40] 

0-99 2 1 

a-93<&£. 

c>'85 33 

REF. I^o] 

0 ' 9 7 4 5 

C ' S 2 G 5 

O - G < £ 8 S 

1 

\/V'(TM E L A S T I C : 

FOUKlDATION 

D 

0-97GO 

O ' 8 4 o 3 

<3-7032 

D 

C - 9 8 2 & 

0 - 8 7 2 I 

0 7 3 0 4 

D 

0 - 9 7 7 I 

0 - 6 4 9 2 

0-72 3 8 

O 'SSSO 

0 ' 8 6 £ i 

0'754^ 

c - 9 7 g o 

c-2.572 

0-7-4 IG 

D 

0 - 9 & G 7 

0 - 8 9 7 2 

0.7737 
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Observations : 

The t ab le s 1 and 2 c lear ly show the response of 
Jit Q"^ the foundation modulus '^i ~Q on the r a t i o of the time periods 

- j " for d i f fe ren t /3 . As "5 increases — increases . 

This is qui te expected from the p rac t i ca l point of view. 

When '•-TT = 0 i . e . when there is no e l a s t i c foundation, 

the r e su l t s obtained in the present study for square p la tes 

and for c i r cu la r p la tes with simply supported as well as 

clamped edges are found to be in very good agreement with other* 

known r e s u l t s . The r e s u l t s of the rounded cornered square 

p la tes are completely new. 
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T* a^ (C) A comparative study on the t i n e period r a t i o ^ Vs .'><( -^ for 

d i f fe ren t Jj of the .simply supported square pla tes and square 

e l a t e s with rounded corners on the basis of the area of 

the p l a t e s : 

Table - 3. 

P L A T E S H A P E 

[SIMPLY SUPPORTED 

I.DQB CONDITION] 

SQUARE PLATE. 
S I D E 7a. 

ROUKt>E 
t PLATE. IV 

or 

• TH • 

. 

T* 
T 

WITHOUT ELASTIC 
FOUMDATION , 

o>G793 

O-GOSS 

WrTH ELA<.Tic , 
FOUKDATlON, k , -~» lO 

0 - 7 3 S 7 

C! 'G330 

Observation 

An interesting observation on Table - 3 is variation of 
T* 

the time period r a t i o — with the area of the respect ive 

p l a t e s . I t i s observed tha t as the area of the p la te increases 

t h i s r a t i o increases . This i s t rue i r r e spec t ive of the response 

of the foundation modulus. Obviously, the area of the square 

p la te is greater than that of the rounded cornered squa.re p l a t e . 

— increases accordingly. Tliis i s noteworthy frorr: the prac­

t i c a l Koint of view. 
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U) A useful observation on Berger 's equations : 

Let us now examine Berger 's equations on the movable edge 

condi t ions , 

A clamped c i r cu la r p la t e of radius a is considered 

here . The deflect ion function for the c i r cu la r p l a t e i s 

assumed as 

, 2 - i ^ 
VN), ^AJCi)[|_X^^ (36) 

This c l ea r ly s a t i s f i e s the required boundary conditionsof "the. 

clamped edges. 

Before r eca l l ing our a t t en t ion to the or ig inal equation 

(23) l e t us turn to the equation 21(b) which reduces (in the 

present case) to the following form. 

X\i)'^ ^^ ^^° ' '"̂  
2 c±r ' r ' 2 V d r y + °- + (37) 

lei IJLO-u,cornet) •—• (a?*) 

Putting (36) in (37) multiplying the equation by T we obtain 

the following equation after integration 

a,r+ c: QC\^ ^^ QAI 
1A 

• r 
a-' 

r e 
Qix.^ 

-f- r 

At T = 0» lX-̂ = 0 . TUeve-fore c = o 

Hence LX,,is obta ined as 

y 5 Y => 7 -5 -ĵ 7 
" 4 - - 3 ^ -̂  ^ 4 

38(a) 

38(b) 
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For movable edge condition at T" = Ct 

o 
— 1 

Using t h i s condition we obtain the value for (^ as 

8 A o -i)-! 

-̂"•C^̂  v + l . . . . (39) 

Inserting now (36) in equation (23), remembering 
- 2 . 

oC thus evaluated from (39) and applying Galerk in ' s 

technique we get as usual a cubic equation determining 

the time function T ( ' t ) in the form 

t a ) + c C , T C - t ) - y S . T ^ C - t ) - o . . . . (40) 

Which leads to meaningless results because the coefficient 

of T^(i)is negative. 

Thus we arrive at the following conclusion : 

Although Berger'3 equation can be conveniently applied to the 

nonlinear theory of thick plates, its application is limited 

to the immovable edge conditions only. 
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CHAPTER - I I I . 

INFLUENCES OF LARGE AMPLITUDES, TRANSVERSE 

SHEAR DEFORMATION AND ROTATCBY INERTIA ON 

FREE VIBRATIONS OF TRANSVERSELY ISOTROPIC 

PLATES - A NEW APPROACH. 

ABSTRACT 

In t h i s Chapter t h e n o n - l i n e a r s t a t i c and dynamic 

behaviours of moderately t h i c k p l a t e s of d i f f e r e n t shapes 

have been analysed with t h e he lp of a new s e t of uncoupled 

d i f f e r e n t i a l equa t ions proposed in t h e chap te r I . Numerical 

r e s u l t s for d i f f e r e n t p l a t e s with d i f f e r e n t edge c o n d i t i o n s 

have been computed and compared with o ther known r e s u l t s . 

A.Tlon-i'>neaAp ouyw.ly.sts of s q u a r e , e l l i p t i c a l and i s o s c e l e s r i g h t 

angled t r i a n g u l a r p l a t e s . 

Ana lys i s : -

Let us cons ide r t h e f r ee v i b r a t i o n s of t h i c k p l a t e s 

of t h i c k n e s s y^ in c a r t e s i a n c o - o r d i n a t e system. The m a t e r i a l 

i s t r a n s v e r s e l y i s o t r o p i c (such as p y r o l y t i c g r a p h i t e , for 

example) . The o r i g i n of c o - o r d i n a t e s i s l oca ted a t t h e c e n t r e 

of t h e square p l a t e of s i d e 2a and a t t h e c e n t r e of t h e 

e l l i p t i c p l a t e with semi-axes a and b . For i s o s c e l e s 

http://ouyw.ly.sts


right angled triangular plate of equal side a, it is located 

at one corner. The deflections are considered to be of the 

same order of magnitude as the plate thickness. 

(i) Square plate ; 
V 
, 

o 

1 

-^ X 

For square plate of side 2a, let 

us choose the deflection function 

in the following form 

F(G-2. ^ ex. 
.... (41) 

for fundamental mode of v i b r a t i o n s . C l e a r l y t h i s form of V\) 

sa.4«sJVes t h e fol lowing simply supported edge c o n d i t i o n s 

VO = 0 

VO = 0 

= 0 

= 0 

a^wj 
S x 
'^^-
'^y^-

at X = i 0-

at y = 4; a. 

at X = ± a 

at y = ± a. 

Putting (41) in(18b) of the first chapter and integrating 

over the area of the plate one gets 

^ ~ & o?h^ 

For transverse vibration the normal displacement is our primary 

interest. So the inplane displacements have been eliminated 

through integration by choosing suitable expression for them 

compatible with their boundary conditions i.e. U-^s o, Vo = 0 

on the boundary. 

(42) 

Published in the International Journal of Nonlinear Mechanics, 

(U.S.A.) Vol. 24, No. 3 PP. 159 - 164 , 1939. 
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Now inse r t ing (41) in (18a) of the 1st chapter. 

Considering (42) and applying Galerk in ' s error minimising 

technique one gets the following d i f f e r e n t i a l equation for 

the time function T ( t ) 

3 T^^P 
5 a'^Ga 

2̂ 

^^ )̂ + 4 ^ ^f*) + 5 2 a 4 

The above equation is of the form 

. (43) 

(44) C 

The solution of equation (44) subject to the <wi.ttaL 

conditions 

T (0) = 1 

f (0) = 0 

i s well-known and i s obtained in terms of Jacobi ' s e l l i p t i c 

function. The r a t i o of the nonlinear and l inear time periods 

i s 

T*̂  2K 
T A 

, , 7\^ E k^ 
' 2 o C l - ^ ^ ) G ^ a ^ 

... (45) 

A. 
where yS = ~C ^^ ^'^^ ratio of the static deflection to the 

thickness of the plate. 
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Ĉ  
« 
o 

N 

\3 
6) 
O 

o 
f^ 
OJ 

(T 
0 

•^ 
•^ 

— 

t ^ 
CM 

Ol 
o 
— 

CJ> 
o 
o o 
" 

0 

6) 
0 

^ 

0 

1/) 

6) 

V 

0 
6) 
00 
• 
0 

I/) 
N 
09 

0 

K 
O) 

r̂ 
oO 

6 

tn 
o 
(D 
0̂  
o 

lO 
• ^ 

li) 

6) 
O 

o 

^ 
6) 

6 

0) 

6) 

0 

0 

0 

^ 1 

OS i 
0 

fa 

tn 
r̂  
» 
0 

V9 
00 
t ^ 

0 

0 
N 
G 
r-
0 

U) 
OJ 
(5̂  

0 

CO 
15 

6̂  
00 

0 

01 
01 
CD 
CO 

o 

10 

0 

CO 

6 

CM 

0 

0) 
_ 
N 
• 
0 

0 

0 

0 
0 
cr 
^ 

6 
CO 
o 
in 
oo 

rO 
r \ 
Ol 

oo 
0 

0 

^ 

0 

CO 

0 

0 

— 1 



PRESENT PINDIKIGS l?EF. [ 3 S ] 

TA6LE-G 

i 

1 
i 

^ CJL 

1 
3 0 . 

1 

O 

c-2 

G-4 

O-G 

C - 6 

l - O ' 

1 

T 

Mi-) 
2 - 5 

{'0030 

0 - 9 9 J 2 _ 

0 - 9 S 7 5 

0 - 3 0 9 3 

0 - S 5 2 3 

o- 7e>30 

1 

l-OQBB 

I ' O I 1 1 

0 - 3 7 S 3 

0 - 9 2 4 7 

O - S G ^ ) 

3 0 

i - 6 3 S ^ 

) '02QS 

0-96Gf> 

0 - ^ 3 3 4 

0 - S 7 2 2 

- - 1 

0 - S C 5 I 0 - 8 0 B 7 
j 1 

i 

so 

1 •0 5 8 S 

I-0445 

\-C05S 

C ' B S O I 

Hi) 
2 - S 

1-OO30 

C - 3 8 n 

0 - 9 > l 7 s 

0 ' S 4 ' S 4 

i 
O- S S S S j C ' 7 < S 3 0 

i 
i 
1 

2 0 

l'C)'23S' 

1 • o.:>0 S 

0 - 3 3 3 3 

C ' S S > S € 

C ' 7 7 4 2 

O- ' o S > S 2 

3 0 

t - C 3 S S 

! -O 11 3 

0-B4B'2. 

C>'&G^3 

0 - 7 7 3 I 

O- G S & G 

S O 

l ' 0 5 S 5 

f ' ^ 2 2 / 

0 ' 9 G S C = 

o - 8 7 S / ^ 

O- 7 0 5 '2 

file:///-C05S


PREStNT STUDY R £ F [ 3 S ] -

CLASSICAL T\\\H PLATE Tt^EOQY 

TAfoLE - 7 . 

4& 

=̂t 

o 

0 ' 2 

0 ' 4 

O-G 

O'S 

I 'O 

T* 
T 

i 

0 ' 9 S S ' 2 

O ' 3 5 5 2. 

0 - 9 0 7 2 . 

O ' S S o y 

0 ' 7 3 l 7 

T 

4-
1 

0 ' 3 7 e i 

C) '92 ( O 

0 ' 8 > ^ ^ G 

O - 7 ( S 4 Q 

o- G&78 



41 

PRELSEN.! FtHDlMGS FOR MOVAftLE BDGE5 .(TABLESTO It) 
TAftLE - a 

2a lo 

O 

o-^ 

0-4 

O-iS 

c-B 

I'O 

X ' (O = o - 3 , ' X ^ ^ n ' 8 ] ) 

^(ll) 
2 ' S 

l ' 02GSO 

I'C)'24C)G 

\-n\Go] 

\-0aQ9& 

o'SSsy 

0 - 9 G 4 7 

2 f l 

M 9 7 S O 

1- I 9 3 Q 5 

1- I8C>5G 

| ' ( ( S 0 4 

I -1337G 

1-102Q 

3o 

I 'QSSO 

I -279G 

l ' 2 & 4 l 

1 -2334 

<- 20 7I 

1- ) G 3 3 

S O 

t - 4 4 4 o 

I M 3 C G 

I ' 4 l 4 7 

1 -3SC2 

i-3'5G'2. 

1 - 2 8 5 2 

T A B L t - 9 

1̂  1 

o 

0"2 

0-4 

O'G 

O'B 

(•o 

T 

2 - 5 

l'<::'OG7 

I'OOAQ-

C - 3 3 G G 

^ '9B44 

e'9G7& 

c = ; ' 9 4 S o 

( l ) = 0 - 3 

*r^) 
2o 

i ' D 5 2-5 

l ' C 4 9 9 

1 • c 4 1 2 . 

I ' O Q S / 

1 •QO'^^ 

f ^ ' 9 g 5 ^ 

ATOM'S] ) 

3 0 

i-o/sso 

1-075 a 

I ' C G S B 

] ' 0 5 C 9 

\ ' C - 3 I 0 

1' ccyo 

so 
!• 12754 

1 - I 2 3 3 

• ' 1 1 3 4 

1-0 ^G3 

l 'C73S> 

1-C4G& 

file:///-n/Go


4^ 

Table 10 

l-f 

o 

a-2 

0 ' 4 

O'G 

O ' S 

I 'O 

2 - 5 

\'0030 

\'OOOS 

O'^^30 

c>-3SOB 

0 ' 9 G 4 7 

0-9449 

T 

2o 

l'OQ39 

COQIS 

I - O I 3 2 

| 'C?O03 

o^^^3l 

O-SXSQQ. 

3 0 

l-flSSS" 

l ' 0 5 2 7 

(•C5245 

I 'OIIO 

C5 '3334 

0 - 3 7 2 0 

S O 

1-0585 

\-o^f)5 

l '04G7 

l 'C32© 

i ' 0 l B 3 

O ' e ) 3 l 0 

Table 11 

^ ^ = -

T 

o 

o-a 
0-4 

O-G 

0 ' 8 

o 

0 ' 9 9 7 5 

c=)-3300 

0-3779 

0-9GIG 

0 ' 9 4 I G 

Note tha t absurd r e s u l t s 
are obtained by Berger 's 
method for movable edge 
condi t ions . 



49 

H-hhio 

T* 
FOR 

SIMPLY S U P P O K T L D SSIUAKE. PLATE 

< 1 M M Q V A & L E &DGE.6) 

= REF.[3S3 

• = PRESENT STt/DY. 

*ffe)-30 

n±)-io 

a'2 0-4 0-6 0-8 i-O 

-^;? n c - 3 



50 

X* V5 71 FOR 

SIMPLY SUPPORTED SaU/vt^L PLATE 

C IMMOVABLE IDGES; 

-= PRESENT 5TDDY. 

ki^y^o 



1̂ 

i'5* 

VAOr 

1-3(> 

X* M5 Jh FOR 
T 

SIMPLY aUPPOR-TED SQUARE PLATE 

C M O V A B L E EDGE50. 

2 a 
J. 

Hkh^o 

F I G . - 6 

» 

t'10 + 

o-9i 

20 . 30 

pK(4),20. 

— r 1 f 1 — 
o'2 0-4 0-6 0 -8 

^ ^ 
F i G - e . 

7^ 

M T 2 a 

r^(l^)"2o 
i ' i ( 5 -

'-l^ 

1-0--

O-9-h 

20 

F I G . - 7 



52 

( i i ) Large d e f l e c t i o n s of uniformly loaded e l l i p t i c a l p l a t e 

with clamped edges : 

The p l a t e geometry and 

c o - o r d i n a t e system a r e 

shown in the f i g . 3 

PIG,-9 
The e l l i p t i c a l p l a t e with semi-axes a and b i s clamped along 

the boundary whose equat ion i s given by 

. . . (46) 

For static deflection let us rewrite the differential equation 

18(a) and 18(b) in the following forms by replacing the inertial 

term by the corresponding term due to mechanical loading. 

V'^V\) 
- ; 2 t ^ 

+ 5Cl-v>^ 

+ 3X 
5Cl-v>i) 

,̂.(|_)v=[v-w{(|̂ )V|̂ )̂  

+ 2^--(^1+^(1^)']+4- s îv aio aK) 
'b':K.^y Sy a^c 

^ " 
d'̂ vO 

5 x ' 
6A 4(^r-(w-fi 

44 ^W ^W 3i\' 
ax.ay S x By D 

(47) 
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where o^ is the intensity of continuously distributed LoacL, 

and 

.... (48) 

For movable edge condition 

Let us assume the deflection function in the following form 

W =- ̂ ô x^ y2 
-i2 

a? b^ .. (49) 

Clearly this form of k) satisfies the clamped edge conditions of 

the plate. 

Kow putting (49) in (48) and integrating over the are^ of the 

plate we get, 

r= ̂ ' r-i-+^) (50) 

Inser t ing (49) in (47), remembering (50) and applying Galerking' 

technique, as before, we <get the cubic equation determining the 

deflect ion function -^ 

4 
VOe 

' ^ ^ ^ ^ 'a4"^'b^'^3a^b^L 

IW 
5 0'^^J) <<(k)(4-^) 



3 (-^-t.y 64 

- = ^ 0 -

( i i i ) Lar 

gh t 

(51} 

Her* " ^ lO 
the dp-Ti « 

"' ' ' -^tion i , , , 

' ^ " l ^ J s . V , A:c 

'^"'•'^n in t h e f 

osen in +, 
•̂ n t h e f o i l ^ . 

cv. 

^^^^ for;, of VJ 

^^ ' ^d i t i on 
^^^isf ie^ 

^^^ fol-lov, 

and 

ivhere 

' ^ "5 ^ i ^ p l y s 

(52) 

^PPorted edge 

• (5.3) 

a ^ ^ ^ " ^ - ^ ^ J 
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Putting (5?) in (48) and using the same faethod as in the case 

of e l l i p t i c p la te we get 

2^2. 
.. (54 

Now inse r t ing (52) in (48), remembering (54) and applying 

Galerkin ' s technique as before we get the following cubic 

eqvjation determining {^) 

Vv̂o , fV)c:,\^ + (-^r G.S^G5^(-|^)-^4 4'B75A + 

Gel' cx^ (•2S75 + IS'GOSG ^ ^ ( - J ^ ) -

(55) 

Numerical Resu l ts : 

* Numerical r e su l t s are presented here in tabular foritis 

both for movable as well as immovable edg^s for di f ferent 

moderately thick i so t ropic p la tes and compared with other 

known r e s u l t s . The r e su l t s of the isosceles r ight angled 

t r i angu la r p la tes are new. 

For free v ibra t ions the r a t i o s of the non-linear period 

T* of vibrat ions including the effects of t ransverse shecir 

deformation to the corresponding l inear period T of thie 
i n e r t i a ) 

c l a s s i ca l p la te (not including t ransverse shear and ro ta tory^ 

are computed for various thickness parameter and material 

Constanta at d i f ferent nondimensional amplitudes of v ib ra t ion . 

I t i s to be noted that tb.e effects of ro ta tory iner t ia have 

been neglected in each case brcause these are considered to 
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be small compared with effects due to t ransverse shear 

deformation as the p l a t e i s undergoing f lexural v ib ra t ions . 

To study the non-l inear s t a t i c behaviours of the p la tes 

the nondimensional def lect ion functions at the centre -r^ 

have been obtained for d i f ferent values of the nondimensional 

load parameter —~— , 

I t i s observed tha t for moderately thick p l a t e s , the 

non-l inear periods are dependent on the thickness paraTneter 

whereas they are independent of the same for thin p l a t e s . 
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J ^ vs. - % ' FOR 

STATIC PEFUCTIQNS OF C L A M P E D 

E L L l P T t C A L PLATE . 
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B. ^Vibrations of clemoed circular plates. 

Let us consider a thick circular plate of radius a. The 

origin is located at the centre of the plates. The polar 

co-ordinates4** chosen in the analysis. The deflection of the 

plate is of the same order of magnitude as the thickness of 

the plate. 

For circular plate of radius a, let us choose the 

deflection function in the following form 

w =A.'rci)[i-g']^ ' .... (56) 
c lea r ly t h i s form of IA/ satisfjesthe following clamped edge 

condi t ions , 

^̂ <̂  ^-^jr^oL "^ (-

To evaluate the coupling parameter cC ,let us now recall our 

attention to equation 19(b) of Chapter I. Multiplying this 

equation by the integrating factor Y , putting (56) in this exact 

equation and finally integrating the equation between the limits 

0 and (X , the constant cC is obtained in the following form 

Putting (56) in 19(a) of 1st Chapter, considering (57) and 

applying Galerkin's error minimising technique one gets the 

following differential equation for the time function TC"^) 

* Published in the Journal of Sound and Vibration (U.K.) 

133(1), PP. 185 - 183, 1989 • 
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^ ^ ^ ±.R 
5 tv̂ Cp̂  ^ 5 Go J ^ ̂  3a.-TCi}^-f^TCt) 

+ 
^ C V^ 

0-^^)C^^45)(;^473 Vv̂  a^ 

+ 154 l ' ' 2^ '24- -
kl ^ 

a^K" (0-^3) ( _ ^ 4 s ) ( ; > ) 4 7 ) 

-f I0'Q4XW-
Gcy(i-^^) u^ (xA 

(58) 

The r a t i o of the non-linear and l inea r time period is obtained 

as before in the form 

T ~ TV 
-^ 

4- I44-438G 
^ 

(l.^2)(0 + 5X-^t7) 
^ ^ 

(•>>+3)C'v> + 5)('v>+7) 

40.̂ .06 A_ .k ( | _ ) |^ \o -^6S7o^2A^j 
'h 

•' (59) 

Numerical results : -

Numerical results have been computed here in tabular 

form both for movable as well as immovable edge conditions as 

in the previous case. 
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C. Large Amplitudes, Transverse shear Deformation 

and Rotatory Iner t ia on Free Vibrations of Moderately 

Thick Polygonal p l a t e s * 

Formulation of the d i f f e r e n t i a l equation : 

Let us consider the free v ibra t ions of thick polygonal p l a t e s 

of thickness K . 

In a complex co-ordinate system 2 = x - | - i 7 ^ z - ' X . - t ; / 

the equations 18(a) and 18(b) of t h e 1st chapter change. Lei: 

^ = ' { ( 0 •• • - - ̂  . . . . (601 

be the analy t ic function which maps the given shape in the 

z-plane on t o a unit c i r c l e in the "^ -plane. Subs t i tu t ing 

the r e l a t i on (60) in to the transformed equations in ( 2 , ^ ) 

the following set of d i f f e r e n t i a l equations in ( E , ^ ) 

co-ordinates have been obtained: 

^"K) / J ? \ 3 / d f \ 3 ŝ vo cd^z/c=(i\Vde>3 

^ f a ^ d^M-̂ " /̂ oî  +^ ^1^1 M^/^5^/ 

•Accepted for publicat ion in the Journal of Applied 
Mechanics (ASMt) - U.S.A, Jutie t99o . 
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b^vO Id'^ ^K> cd\ Cii ^cdZ ^̂ vO ^u; Su) d -̂̂  

-bi<l ̂ l^) d^2 d^Z d £ ĉ Z;̂  i^Tv'i / d 2 _ ^ b l̂̂  
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c)^d "̂̂  •f^ft)" 
- % M A ' 

^2 

whereSc' is obtained from the foil 

--0 

(61) 

ovdng ec^^uuxii <yir\ 

/a dV^df ^""'•+^'-<lf/M)HO-)(|f)(; 
2. 

C 
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Here \ = T.<Z^ , ^ = Y. e , r being the radius of the circle. 

Values for 7\ have been obtained from the condition —^r- = 0, 

for minimum potential energy. 

For regular polygons the mapping function is 

where values L and ?̂o are given in a separate table. 

Let us choose the deflection function in the following 

form 

.... (64) 

c lea r ly w i s O dependent and s a t i s f i e s the simply supported edge 

condi t ions , namely, 

Subst i tu t ing equation (63) and (64) in (61) the error fuaction 

€ (^ , ^ , t ) is obtained. Galcrk in ' s technique requires 

.2^ 
I J€a,f,t)wc^,^,-t)rard© -o 
, ^ (65) 

The constant cC is determined by putt ing (64) in (62) 

using (63) and integrat ing over the area of the p l a t e . 

It i s to be noted that for t ransverse vibrat ions the 

normal displacement W ( "̂  ,% , t ) i s our primary interest. 

So, the in-plane displacements U-̂ and U, in equations (62) have 

been eliminated through in tegra t ion by choosing su i tab le 

expressions for them compatible with the i r boundary condi t ions , 

namely, u^a,\;=-aon the boundary for immovable edges. 

For movable edges pC = 0 . . . . (66) 



7e 

Evalua t ing t h e i n t e g r a l s in (65) and cons ider ing t h e 

va lues of oC obtained from ( 6 2 ) ( a f t e r i n t e g r a t i n g over t h e 

area of the p l a t e ) one o b t a i n s t h e Duff ing ' s equat ion as in 

the previous cases in t h e form 

Here t h e ^ i c o n s i s t s of a huge number of t e rms . So t he se 

terms have not been shown. Numerical r e s u l t s coming out from 

t h e s e terms have been p resen ted in t h e t a b l e s . 

The r a t i o of t he non l inea r t ime per iod and l i n e a r tim.e 

per iod in t h i s case i s 

2K r 
T 

•+ '̂ .V 
OC\ 

V2 
. (68) 

where 

Numerical results : -

Numerical results are presented here in the tabular form 

for movable as well as immovable edges, for moderately thick 

polygonal plates. If the mapping function is known, the 

nonlinear behaviours of thick plates of any shape can be 

studied with ease and accuracy by using the proposed differen­

tial equations. 
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RATIO OF HON-LII^JEAR TO LINEAR PERIOD FOR THE FUNDAMENTAL MODE OF 

VIBRATION OF SIMPLY SUPPORTED POLYGomL PLATES (SQUARE OF SIDE 2 a ) . " 
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Observations : 

Numerical results obtained from different tables of this 

chapter show that the new approach presented in the present 

study can be conveniently applied to stud-/ the static as well as 

dynamic behaviours of different thick plates of different shapes 

under different edge conditions with ease and accuracy. 
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COICLUSION OF THE THESIS : 

The p r e s e n t p r o j e c t i s an a t tempt t o offer a nevvf s e t of 

uncoupled d i f f e r e n t i a l equa t ions in the theory of n o n - l i n e a r 

a n a l y s i s of moderately t h i c k i s o t r o p i c p l a t e s . I t i s 

observed t h a t numerical r e s u l t s showing t h e e f f e c t s of shear 

deformation and r o t a t o r y i n e r t i a obta ined from d i f f e r e n t 

t a b l e s for p l a t e s of d i f f e r e n t shapes are in e x c e l l e n t 

agreement with o ther known r e s u l t s . Moreover, r e su l t s , of 

movable as well -az immovable edge cond i t i ons can be obtained 

from a s i n g l e d i f f e r e n t i a l equa t ion . This i s a l s o an a d d i ­

t i o n a l advan tage . Thus the proposed d i f f e r e n t i a l equat ions 

p resen ted in t h e t h e s i s a re able to supply void in tlie 

l i t e r a t u r e of -non-l inear theory of moderately th ick p l a t e s . 
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Abstract—In this paper, using an improved Reissner's variational theorem [E. Reissner, J. math. 
Phys., 90-95 (1950)] along with Banerjee's hypothesis, [B. Banerjee and S. Dutta, Int. J. Non-Linear 
Mech. 16,47-52 (1981)] a new set of governing equations whhich include the effects of transverse shear 
deformation and rotatory inertia is derived for the large amplitude free vibrations of isotropic plates. 
The case of a simply supported square plate has been discussed in detail. Numerical results have 
been computed showing the effect of the transverse shear deformation and compared with other 
known results. 

I N T R O D U C T I O N 

With the advent of modern plate and shell constructions subjected to severe operational 
conditions, the classical linear theory for small deflections is no longer apphcable in many 
cases. Methods of analysis dealing with large deflections, therefore, are of increasingly 
practical importance. It is well-known that the classical plate equations for studying the 
non-Hnear behaviour of thin plates are due to Von Karman [3]. Many works have been 
done on Von Karman equations among which the works of Chu and Herrmann [4] and 
Yamaki [5] need special mention. It is also well-known that Berger [6] offered a simplified 
approach to study the non-linear behaviour of thin plates. The outstanding research 
workers who utihsed Berger's equations in their respective investigations and obtained very 
satisfactory results are Nowinski [7], Nash and Modeer [8] and Wah [9]. Banerjee [10] 
offered a modified strain-energy expression for the investigation of non-hnear behaviour of 
thin elastic plates and obtained satisfactory results both for movable as well as immovable 
edge conditions. 

All these works mentioned above do not take into account the effects of transverse shear 
deformation and rotatory inertia which are important for moderately thick plates. The 
study of the non-linear behaviour of moderately thick plates is gaining momentum day by 
day due to its wide application in modern design. Important works in this field are: Wu and 
Vinson [11] and Kanaka Raju and Venkateswara Rao [12]. Wu and Vinson have applied 
Berger type equations whereas Kanaka Raju and Venkateswara have applied the finite 
element method to obtain their solutions. A discussion on various non-linear theories 
applicable for moderately thick plates can be found in papers by Sathyamoorthy and Chia 
[13] where it has been shown that the effects of transverse shear and rotatory inertia play a 
significant role in the large amplitude vibrations of moderately thick plates of various 
geometries. 

The analytical work so far carried out is based mainly on single mode approximations 
and is often done with the aid of either Von Karman-type non-linear equations or Berger's 
approximation. Finite element methods have recently been used by Reddy et al. [14, 15] in 
the investigations concerning fundamental modes for moderately thick plates. Berger's 
equation is a purely approximate method. It yields accurate results for clamped edges. It 
yields fairly accurate results for simply supported edges and but fails for movable 
edges [16]. 

The present paper deals with the use of Reissner's variational theorem along with 
Banerjee's modified strain-«nergy expression for studying the non-linear behaviour of 
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moderately thick isotropic plates. A new set of decoupled differential equations has been 
formed and solved with the help of Galerkin's procedure. The main advantage of this 
method is that it is simple and a single differential equation for the governing time function 
gives sufficiently accurate results both for movable as well as immovable edge conditions. 
The case of a simply supported square plate has been discussed in detail. Numerical results 
have been computed showing the effect of shear deformation and compared with other 
known results. 

AN.ALVSIS 

Let us consider the free vibrations of a square plate of thickness h and edge length 2a. The 
material is transversely isotropic {such as pyrolytic graphite, for example). The origin of the 
coordinates is located at the centre of the plate. The deflections are considered to be of the 
same order of magnitude as the plate thickness. 

Reissner's strain-energy expression after integrating with respect: to z takes the following 
form [1] 

^ = 
„ [2(1 - V ) ex • cy • \cy ex 

^ , CO) \ ^ ceo 

2£ 

12 , , M > / , v 

5GJ! 
{Q; + Q;)Uxdy (1) 

where 1̂ ,. 11̂  are the first and second invariants of the middle surface strains. These are, 

T, = £A-o+«.Vo; 

II, = £.Vo£yo-£-.Voyo. 

The kinetic energy equation after integrating through the thickness is [11] 

F : 
et et 

cco\' 

It) _ 

+ 
pb' ST^(^ dA-dv . . . . (2) 

In order to derive the equation of motion we now apply Hamilton's principle in conjunction 
with the strain-energy as well as the kinetic energy given by ij/ and T. Therefore, we have to 
minimise the integral, 

4>= {rP-T)dt ... . (3) 

Using now Banerjee's hypothesis, taking the variation of 4>. equating it to zero and finally 
eliminating M .̂, M,.. Â v>. etc., we get the following set of decoupled differential equations 
governing the vibrations of the plates 

5 ( 1 - V - ) \ G J 12 Vr.v- cy-

5 ( l - v ^ ) \G' 
V- H 

, c-cj / rf'j \- ("w / ceo 

ex- \ ex I e\- \ ev 

CO) 

ex + ev 

.^2.^2 i'T'it) 
e-io c'cj 

e.\- c\-

6;. 

c'cj CO) eco 

r.xxv r.v ev 

I , eco \- I eco 

^ (V2^) 
5 G, et 

+ 
c^io I eco 

ey- \c\ 

(-co eco cio 

cxcv ex ev 

ex 

12 eho 

+ 2 
c^ca I eco 

ex- \cx 

(4) 
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where 
0 ^ 

12 
zHt) := 

duQ dvQ 1 fdco 

dx + v 
Sy + 2\ dx 

V fdco 
+ :, 2\8y 

(5) 

We are primarily interested in the fundamental mode of vibrations of the plate. For a square 
plate of side 2a, let us choose the deflection function in the following form: 

nx ny (« =/looi:(OCos—-cos 
2a 2a 

Clearly this form of (o satisfies the following simply supported edge conditions 

(6) 

dha 

cix 

at X = + a. 

at y = + a. 

, y = 0 'dt X = ±a. 

8y^ 
0 at V = ± a. 

Putting (6) in (5) and integrating over the area of the plate one gets 

, , _ 3 / l g o 7 r ^ ( l + v ) 

" 8 a'h' 
(7) 

For transverse vibration the normal displacement a)(x, y, t) is our primary interest. So the 
in-plane displacements have been eliminated through integration by choosing suitable 
expressions for them. Putting (6) in (4), considering (7) and applying Galerkin's error 
minimising technique one gets the following differential equation for the time function z{t) 

12 3 K^p 

h^Cl 5 Cy 
T W + 4 ^ T ( 0 + 

15 71*;.//loo V , 3 7t'*(l +v 
32 a^ 

i2 / / ( \ 2 

32 

+ 
_3_ TT^^/j^Oj^ / ^ \ / / l o o \ ^ 3 An%'-
640 V(l-v2) VGJVV + 28a*'{l 

K i Q O 

(8) x^t) = 0 . . . . 

The solution of the above equation subject to the boundary conditions 

1(0) = 1 

f(0) = 0 

is well-known and is obtained in terms of Jacobic's elliptic function. The ratio of the non­
linear and linear time period is 

r * _2/c 

\ + 
20(1 

E 
h^la^ 

1/2 

^+^4^-i^'+li^+^fp'+-h ^' 
3 .,f E\n^h^{l+v)^-^ 

K 
a^(l-v') 

(9) 

where {] = AQO/H is the ratio of the static deflection to the thickness of the place. 

N U M E R I C A L RESULTS 

Numerical results are presented here in the tabular forms (both for movable as well as 
immovable edges) for moderately thick isotropic square plates and compared with other 
known results. 
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The ratios of the non-linear period T* of vibration including the effects of transverse 
shear deformation and rotatory inertia, to the corresponding linear period Toi the classical 
plate (not including transverse shear and rotatory inertia) are computed for various 

thickness parameters | : ^ = 77;. ^ , — I and material constants (v = 0.3, /. = v^[2'], 
\2a 10 20 30/ 

' ' ^ ( ^ 1 = 0 , 2.5, 20, 30, 50) at different non-dimensional amplitudes vibration | ^ = —^ j . 

For moderately thick plates, the non-linear periods are dependent on the thickness 
parameter whereas they are independent of the same for thin plates. 

Table I. Present findings for immovable edges [11] 

h 1 

2a 10 

/I 
0 
0.2 
0.4 
0.6 
0.8 
1.0 

2.5 

1.0268 
1.0140 
0.9785 
0.9270 
0.8624 
0.8055 

"T* T 
E G, 

20 

1.1976 
1.1774 
1.1228 
1.0469 
0.9636 
0.8809 

30 

1.2850 
1.2602 
IJ940 
1,1066 
1.0113 
0.9123 

50 

1.4440 
1.4092 
1.3187 
1.2012 
1.0819 
0.9678 

2.5 

1.0268 
1.0037 
0.9418 
0.8606 
0.7758 
0.6976 

r* T 
£ C, 

20 

1.1976 
1.1606 
1.068? 
0.9577 
0.8422 
0.7449 

30 

1.2850 
1.2397 
1.1290 
0.9978 
0.8710 
0.7648 

50 

1.4440 
1.3806 
12290 
1.0656 
0.9159 
0.7948 

h 1 

2a~30 

Table 2. Present findings [11] 

h 1 

2a 20 

P 
0 
0.2 
0.4 
0.6 
0.8 
1.0 

2.5 

1.0067 
0.9947 
0.9610 
0.9121 
0.8548 
0.7948 

T* T 
E;G. 

20 

1.0529 
1.0391 
1.0009 
0.9460 
0.8825 
0.8170 

30 

1.0785 
1.0635 
1.0227 
0.9643 
0.8968 
0.8273 

50 

1.1274 
1.1100 
1.0644 
0.9905 
0.9251 
0.8503 

2.5 

1.0067 
0.9846 
0.9270 
0.8487 
0.7670 
0.6900 

T* T 
E C, 

20 

1.0529 
1.0173 
0.9617 
0.8757 
0.7869 
0.7049 

30 

1.0785 
1.0511 
0.9810 
0.8903 
0.7973 
0.7119 

50 

1.1274 
1.0966 
1.0176 
0.9175 
0.8166 
0.7255 

Table 3. Present findings [11] 

p 
0 
0.2 
0.4 
0,6 
0,8 
1.0 

2.5 

1.0030 
0.9912 
0.9578 
0.9093 
0.8525 
0.7930 

T* T 
E G, 

20 

1.0239 
1.0111 
0.9759 
0.9247 
0.8641 
0.8031 

30 

1.0355 
1.0225 
0.9860 
0.9334 
0.8722 
0,8087 

50 

1.0585 
1.0445 
1.0058 
0.9501 
0.8855 
0.8197 

2.5 

1.0030 
0.9811 
0.9172 
0.8464 
0.7630 
0.6889 

T* T 
E 0, 

20 

1.0239 
1.0005 
0.9393 
0.8586 
0.7742 
0.6952 

30 

1.0355 
1.0113 
0.9482 
0.8653 
0.7791 
0.6986 

50 

1.0585 
1.0221 
0.9656 
0.8784 
0.7885 
0.7052 

Table 4. Present study [11]—classical thin 
plate theory 

T* T T*:T 
ji £ G, = 0 £ ; G , = 0 

0 
0.2 
0,4 
0.6 
0.8 
1.0 

1 
0.9882 
0.9552 
0.9072 
0.8507 
0.7917 

1 
0.9782 
0.9210 
0.8446 
0.7640 
0.6878 
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Table 5. Present findings for movable edges 

h 1 

2fl 10 

/; 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

2.5 

1.02680 
1.02406 
1.01601 
1.00298 
0.9857 
0.9647 

20 

1.19760 
1.19325 
1.18056 
1.1604 
1.13376 
1.1022 

r*/T 
E/G, 

30 

1.2850 
1.2796 
1.2641 
1.2394 
1.2071 
1.1693 

50 

1.4440 
1.4366 
1.4147 
1.3802 
1.3362 
1.2852 

Table 6 

h 

la 

1 

20 

/i 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

2.5 

1.0067 
1.0042 
0.9966 
0.9844 
0.9678 
0.9480 

20 

1.0529 
1.0499 
1.0412 
1.0291 
1,0089 
0.9859 

r*/T 
£/G, 

30 

1.07850 
1.0752 
1.0659 
1.0509 
1.0310 
1.0070 

50 

1.12754 
1.1239 
1.1134 
1.0963 
1.0738 
1.0468 

Table 7 

h 1 

2fl 30 

P 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

2.5 

l.(X)30 
1.0005 
0.9930 
0.9808 
0.9647 
0.9449 

20 

1.0239 
1.0213 
1.0132 
1.0003 
0.9831 
0.9622 

r*/T 
E/G, 

30 

1.0355 
1.0327 
1.0245 
1.0110 
0.9934 
0.9720 

50 

1.0585 
1.0555 
1.0467 
1.0326 
1.0139 
0.9910 

Table : 

T*/T 

E/G^ = 0 1^. noon Note that absurd results are obtained 
by Berger's method for movable edge 
conditions. 

p 
0 
0.2 
0.4 
0.6 
0.8 
1.0 

1 
0.9975 
0.9900 
0.9779 
0.9616 
0.9416 

OBSERVATIONS 

(1) It has been observed from the present study that 
E T* h 

(a) for the same value of-^, --;- decreases as - - decreases, both for immovable as well as 
C/f 1 2a 

movable edges. 
h E T* 

(b) for the same r- , as -^ increases -~ increases, both for immovable as well as movable 
la Oj 1 

edges. 
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E T* 
(c) when - ^ = 0. — decreases as p increases. 

G, T 
(2) The results obtained in the present study for immovable edges are in good agreement 

with those obtained by Wu and Vinson [11]. 
(3) It appears from the tables that the effects of rotatory inertia and shear deformation 

are more prominent in the present study than those obtained by Vinson and Wu. This is due 
to the fact that Berger's equations used by them involve the neglect of the membrane shear 
deformation. 

(4) Results for movable edge conditions have also been computed but cannot be 
compared because of the absence of any known results. 

(5) A single differential equation obtained in the present study is able to predict the effect 
of transverse shear deformation and rotatory inertia on large amphtude free vibrations of 
moderately thick plates of movable as well as immovable edges with ease and accuracy 
while Berger's approximation yields fairly good results for similar problems with immov­
able edges only. This is certainly an advantage of the present study. 
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INFLUENCES OF LARGE AMPLITUDES, SHEAR DEFORMATION AND 
ROTATORY INERTIA ON AXISYMMETRIC VIBRATIONS OF 

MODERATELY THICK CIRCULAR PLATES: A NEW APPROACH 

1. INTRODUCTION 

A new approach is presented for the determination of the axisymmetric vibrations of 
moderately thick circular plates by using Reissner's variational theorem [1] along with 

I Banerjee's hypothesis [2,3]. A set of governing equations including the effect of shear 
deformation and rotatory inertia is derived. The case of a clamped circular plate is studied 

, in detail. Numerical results have been computed showing the effects of shear deformation 
and rotatory inertia and these are compared with other known results. The case of a 
simply supported square plate has been discussed in a separate paper [4] and the results 
obtained there have been found to be in excellent agreement with other known results. 

2. ANALYSIS 

Consider a circular plate of radius a. It is assumed that the origin is located at the 
centre of the plate and the deflection is of the same order of magnitude as the plate 
thickness. 

Using Banerjee's hypothesis [2], taking the variation of <̂  as given in reference [1], 
equating it to zero, eliminating M^, My, M^y etc., as given in reference [6] and finally 
transforming the set of equations into polar co-ordinates, one obtains the following set 
of differential equations governing the vibrations of the circular plate: 

d^ 1 d ^ + - — 
dr' r dr 

d w I Bw 

5(1-»^') 
Ki 

r+-
r dr + -5{\-v') 

d W I dw 

(I) 
5 G, dt^ L 

6Ar/aSv 1 dw\/dw 

h^Wdr^ r dr)\dr, 

B' 1 B 
\Br'^ r Br)\dr) Br'^\Br) _ r Br 

•a\\t)r''-' 

'Br' 

B'^w V Bvi 

Br' r Br_ 

>- 12 B'W 

h'Cl Bt 2 

_, d'h' 

12 

(1) 

(2a) 

(2b) 

Of primary interest here is the fundamental mode of vibration of the plate. For a 
circular plate of radius a, the deflection function is taken to be 

For movable edge conditions 

= 0. 

.A,T{t){l-r'/aY (3) 

Clearly this form satisfies the clamped edge conditions (w),=„ = 0 and (flw/flr),=„ = 0. 
Putting expression (3) in equation (2a) and integrating over the area of the plate gives 

d' = {l536v/a-'^\p + 3)(i' + 5)ii' + mAl/h'). (4) 
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Putting expression (3) in equation (1), considering expression (4) and applying Galerkin's 
error minimizing technique then gives the following differential equation for the time 
function T{t): 

r + -
4 p 

5 h^Ci 5 G,J 

32 
T(0+r -5^ ( ' ) + 

3a 
864-79872A: 

E\Al 

4-1541-2224 -+10-24AXI — I 

Gj a ' {\-v^){v + 5){v + l) 

1 Al 

GJ {\~v^-) a' 

A Ao 
+ 7-3142-^-J 

h a 
r^(0 = 0. (5) 

The solution of this equation subject to the boundary conditions T(0) = 1 and f(0) = 0 is 
well known and is obtained in terms of Jacobi's elliptic function. The ratio of the non-linear 
and linear time periods is 

T~ n 

0-9606A 

1 / i 1 + 8M255A: 
E\h 

GJ a^ il-v^)ii' + 5){v + 7)' 

144-4986J' 

U-p') \GJ a'^ {v + Z){v + S)(v + l) fi' 

+ 0-6857062A^' 
1/2 

(6) 

3. NUMERICAL RESULTS 

Numerical results have been computed both for movable as well as for immovable 
edge conditions for clamped circular plates, and are presented in Table 1. The ratios of 
the non-linear time period T* of vibration, including the effects of shear deformation 
and rotatory inertia, to the corresponding linear period T of the classical plate (not 
including shear deformation and rotatory inertia) are shown for various values of the 
thickness parameter (/i/a = 0-20,0-15,0-10,0-05) and material constants ( J' = 0-3, A = 0-18 
[2], X ( £ / G , ) = 8-1971, 8j813339, 10-4869 and 19-3165) at different non-dimensional 
amplitudes of vibration (/8 = AJh). 

4. CONCLUSION 

A single differential equation obtained in the present study is able to predict the effect 
of transverse shear deformation and rotatory inertia on large amplitude free vibrations 
of moderately thick circular plates for immovable as well as for movable edges with ease 
and accuracy. This is certainly an advantage of the present approach. Results for movable 
edges cannot be compared in absence of any known results. 
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