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MCN-LINEAR ANALYSIS OF MODERATELY
THICK PLATES - A NEW APPROACH.

PREFACE

Structural members commnonly known as plates are used in
machine parts, in aircraft design and also in modern structural
design. The study of bending properties of such members is
imperative to a design engineer. The bending properties of a
plate depend greatly on its thickness as compared with its
other dimensions, To study these properties we shall have to
distinguish between two kinds of plates - (A) Thin plates and
(B) Thick plates,

A. Thin plates :

Structural members whose one dimension is small in compa-
rison with other two dimensions are commonly known 3s thin plates
Within the elastic limit, the static, the thermal and the dynamic
behaviours/responses of thin plates are influenced by the follow-

ing factors

(1) Material properties defined by Young's modulus E anc

Poisson's ratio - . E and =) may be variable.

(2) Geometry of plate —
Geometry may be simple such as circular or complicated,

Thickness of the plate may be variable,



(3) Types of loading and
(4) Nature of supports i.e, edge conditions,

It is well-known that if deflections W of a thin plate
are small in comparison with its thickness ik , a very satisfac-
tory approximate theory of bending of the plate under lateral

loads can be developed by making the following assumptions

(a) There is no deformation in the middle plane of the

plate and this plane remains neutral during bending,

(b) Points initially lying on a normal to the middle
plane of the plate remain on the normal to the middle surface

of the plate after bending and

(c) The normal stresses in the direction transverse to

the plate can be disregarded,

The above assumptions constitute the simplest and most

widely used classical small deflection theory developed by

Lagrange /1 /.

The first assumption is completely satisfied only if a plat.
is bent into a developable surface. 1In other cases bending of a
plate is accompanied by strain in the middle plane, but calcula-
tions show that the corresponding stresses in the middle plane
are negligible if the deflections of the plate are small in

comparison with its thickness, If the deflections are not small,



these supplementary stresses must be taken into account in
deriving the differential equations governing the deflections
of the plates. In this way, we obtain non-linear equations

and the solution of the problem becomes much more complicated.

With the advent of modern plate and shell constructions
subjected to severe operational conditions, the classical linear
theory for small deflections is no longer applicable in many
cases. Methods of analysis dealing with large deflections,
therefore, are of increasingly practical importance. It is
well-known that the ¢lassical plate equations for studying the
nonlinear behaviours ot thin plates are due to Von Karman / 2_7.
Von Karman's equations are in the coupled form and hence
difficult to solve, Different numerical methods have been
offered by several authors to solve them. Outstanding research
workers who worked on Von Karman's equations are Chu and
Herrman /3 7, Yamaki / 4_/, Nowiniski / 5_7 and Baur / 6_/.
Other note worthy works in this field are due to Dutta /[ 7_7and
Chowdhury /8_/7, /9_7.

Berger /10_/ offered a simplified approach to study the
nonlinear behaviours of thin plates, According to Berger's
hypothesis the elastic energy due to the second invariant of
the membrane strain may be disregarded as compared to the square
of the first invariant without appreclably impairing the accuracy
of the results. The Euler-lLagrange equations so derived from the
variational equations turn out to be much simpler than those of

Von Karman. Hence, this method gains popularity due to its



simplicity, but its application is limited to the case of immo-
vable edge conditions only /11 /. Successful research workers
who carried out useful investigations on this method are Nash and
Modeer /712 7, Wah /713 7, Nowiniski /714_7, Banerjee /[ 15_7/.
Other interesting works on Berger's equations are due to

Kamaiya /16 7, Karmakar /17 _7 who carried out their investiga-
tions on sandwich plates., Later Banerjee / 18_7/ offered a modi-
fied strain-energy expression for the investigation of the
nonlinear behaviours of thin plates. Banerjee's hypothesis 1is
based on introducing directly the expression for the membrane
stress into the total potential energy of the system. As a
consequence, a new set of differential equations has been obtained

in an uncoupled form. This hypothesis states that the radial

cdw
= hE

2
because the contribution of the term (%%% in the expression

2
stretching is proportional to ( > . This is reasonable as

for the radial term is greater than that of fgﬁ; in bending.
The author has carried out investigations on the nonlinear
analysis of different elastic plates /19_7, / 20_7 and obtained
satisfactory results, Later Banerjee with Sinha Roy extended his
line of thought to the large deflection of shallow shells /21 _7

and obtained excellent results,

Another useful method to carry out the non-linear behaviours
of thin plates is the finite element method. Eminent research
workers in this field are Striz, Jang and Bert / 22/ and Chi-lung

Huang /723 7.



B. Thick plates :

. The approximate theories of thin plafes discussed above,
become unreliable in the case of plates of considerable thick-
ness. In such a case, the thick plate theory should be applied.
This theory considers the problém as a three dimensional prob-
lem of elasticity where the effects of transverse shear deforma-

tions and rotatory inertia are to be considered,

In recent years, a number of plate theories has beén
developed in an effort to extend the range of applicagility of
classical plate theory to that of thicker plates by including
the effects of transverse shear deformation and transverse normal
stress. It has been shown by Reissner /24 7, /25 7 that the
inclusion of transverse shear deformation permits a return to
Ngvier's}three dimensional boundary conditions. Later on;
Reissner / 26_7 proposed a variational principle for the develop-
ment of both the governing equations and the boundary conditions.
Donnell 1727;7 has given a three dimensicnal solution in the form
of an infinite series in the loading functions for plates.
Fredrick / 28_7 investigated stresses on thick plates on elastic
foundation. Donnell and Lee /29 7 have studied the:problem of
thick plates under tangential loads applied on the faces. Rectar
gular plates under different edge conditions have been studied
in detail by many authors among which the works of Salerno and
Goldberg / 30_7/, Volterra ["31;7; Essenburg / 32 7 aﬁd'Volterra
[ 33_/ need special mention. All these authors usedveither



Reissner's theory in their investigation or equations very simil
to those obtained by Reissner, Starting with the assumptions con-
cerning the components of displacements. Ariman [“34;7 quite
successfully investigated stresses of thick plates on elastic
foundation. Lee /357 has given a three dimensional solution fo
simply supported thick rectangular plates by applying the method
followed by Donnell. Goldenviezer / 36_/ has given an approxima:
theory of bending of a plate by the method of asymptotic integra-
tion of the governing equations. A three dimensional elasticity
solution for rectangular plates has been developed by Srinivas

[ 37_7. This paper is also interesting.

The study of the nonlinear behaviours of moderately thick
plates is gaining momentum day by day due to its wide application
in modern structure and design. An attractive work in this fielc
is due to Wu and Vinson /38_/. The authors have used an improvec
Reissner's variational theorem along with Berger's hypothesis to
propose a set of governing equations including the effects of
transverse shear deformation and rotatory inertia for large
amplitude free vibrations of plates composed of transversely
isotropic material. Another important work is due to Iyenger,
Chandrashekhara and Sebastian / 39_/ who carried out the analysis
of thick rectangular plates by using a higher order theory which
is an extension of Reissner's shear deformation theory. Kanaka
Raju and Venkateswara Rao /40_7 have studied the axisymetric
vibrations of circular plates including the effects of geometric

nonlinearity, shear deformation and rotatory inertia by employing



the finite element method to obtain their solution. Another paper
can be located by Kanaka Raju,/ 4l _7 where the nonlinear vibrations
of beams considering shear deformation and rotatory inertia have
been studied in detail. Stresses in a thick plate with a circular
hole under axisymmetric loading have been quite successfully
investigated by Chandrashekhara and Muthannazr12;7. The authors
have obtained an exact theoretical solution in terms of Fourier
-Bessel series and integrals. Kanaka Raju, Venkateswara Raa and
I. S. Raju /437 further studied the geometric nonlinearity on
the free flexural vibrations of moderately thick rectangular
plates. The authors employed finite element formulation to
obtain the non-linear to linear period ratios for rectangular
plates. A conformal finite element of rectangular shape, wherein
the effects of shear deformation and rotatoary inertia are included
is developed and used for the analysis. Another paper by Kanaka
Raju and Hinton, /44_/ needs special mention in which they quite
satisfactorily analysed the non-linearvibrations of thick plates
of different shapes having different boundary conditions by using
Mindlin plate elements.

A discussion on various non-linear theories applicable for
moderately thick plates can be found in papers by Sathyamoorthy
and Chia / 45_/ and Sathyamoorthy /46_7 where it has been shown
that the effects of transverse shear and rotatory inertia play
a significant role in the large amplitude vibrations of moderatel
thick plates of various geometries. Reddy and Chao /47_7 have

studied the finite element analysis of the equations governing



the large amplitude free, flexural oscillations of laminated

anisotropic Trectangular plates,

Very recently Reissner [Tﬁ&_?*&gieralised some formulas of
the theory of moderately thick plates. The author restates
formulas for stresses and stress couples for a theory of isotro-
pic moderately thick plates(in the classical tests of Love and
of Timoshenko) 4in a simplified form. Fuh-Gwa Yuan and Miller
[ 49_7 have presented the development of a straight forward
displacement type rectangular finite element for bending a
flat plate with the inclusion of transverse (or lateral) shear
effects, A simple higher order non-linear shear deformation
plate theory has been proposed by Lee, Senthilnathan, Lim and
Chow /50_7. The Von Karman extension of the theory is found
to be remarkably simple for obtaining the approximate solution
for the nonlinear bending and vibration of thick, isotropic and

transversely isotropic plates.

To sum uwp

(1) Thick plate theory is an extension of the
classical thin plate theory, where the effects of transverse

shear deformation and rotatory inertia are to be included.

(ii) The analytical works so far carried out for

investigation of thenon-linear behaviours of thick plates are
based mainly on single mode approximation and have often been
done with the aid of either Von Karman type nonlinear equations
or Berger type approximation, along with Reissner's variational

principle.



(ii1) Finite element formulation has recently teen

used by some authors,

It is to be noted that Rerger's eguation is 2 purely
apnroximate method. It is meaningful only for immovable edge
conditions., Von Harman equations are in the coupled form and
thus difficult to solve, whereas finite element method needs
much computational labour and lacks in the essence of formu-

lation of the classical plate equations.

Aim of the present project :

o—

The aim of the present thesis is to offer a simplified
approach for the non-linear analysis of thick plates by using
Reissner's variational theorem alorng with Banerjee's hypothesis.
A set of uncoupled differential equations have been formed to
study the non-linear behaviours of different elastic plates
showing the effects of shear deformation and rotatory inertia.
Accuracy of the results obtained from these equations has been
tested for different plates and compared with other known
results. The present study seems to be more advantageous than

the previous investigations, because,

(a) The results can be obtained from a single
differential equation both for movdble as well as immovable

edge conditions.

(b) The results are sufficiently accurate from the

practical point of view.



{(c) 7The proposed differential equations are in the
uncoupled form snd hence easy to solve, Computaticnal labeur
is minimum for its simple form,

The thegis has been divided into three chapters. The

first chapter is devoted to deducing the proposed differential

gquations aoverning the vibrations of thick plates with shear
deformation and votatory inertiz effect. Banerjee's hypothesis

suyggesting 2 wodified strain energy expression along with

ticissner's variational principle has been utilised,

The second chapter deals with the application of Berger's
equation on thick plate theory. Non-linear responses of thick
plates having different shapes placed on elastic foundatieon
have been studied in detail. Numerical results showing the
effects of shear modulus and rotatory inertia for different
values of the foundation modulus have been given in tables and
compared with other known results. The study shows that
Berger's approximate theory cen be conveniently agplled to the
analysis of the thick plates. But it has been shown that for

movable edge conditions Berger's theory fails miserakly.

The third and the concluding chapter is devoted to the
application of the new set cof differential equations proposed in
the present thesis. The non-linear dynamic behaviours of thick

1

vlates of square, circular and have

b

eqular polygonal shapes
been studied in detail. The static behaviours ot eliiptical
and right angled isosceles triangular plates have also been
studied, Different edge conditions have heen considered. Tor

regul

a

T polyaonadl plates conformal mapping fechnique hés been
erployed, !mmerical results showing the yatio of !he non-lirear

time periods to linear time periods for difierent values of



transverse shear deformaetions have been plotted graphically

in few cases and given in takular form for other cases. It
has been observed that the results obtained from the present
study are in very good agreement with other kmown results,

So, the proposed differentisl eaquations of the present project,
showing the effects of shear deformation and rotatory inervtisa,
seem to predict the non-linear behaviours of different thick
elastic plates of both movable as well as immovable edge%,

with ease and sccuracy.
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Glossary of Symbols

Following svmbols have been used in this thesis

E = Young's modulus,

2 = Poisson's ratio.

W = Deflection normal to the middle plane of
the plate.

h = Thickness of the plate,.

G, Gc = Shear module.,

P = Mass density.

A = Material canstant.

Ao = Amplitude of oscillatiocns.

D = ————Eké_~- = Flexural rigidity,
12 Ci-9%) |

F i = Body force components,

T i = surface force components.

u, v, W = Displacements in x, v znd 2z - directicns
respectively,

(Z(t) = Time dependent function,

T = Kinetic energy.

z
3
[}

Strain-energy,



Mx, My, Mxy
Nx' NYQ NXY
Qx, Qy

ol, A

€, Oij

A »™ Kl

T*, T

H

Stress couples,
In-plane stress resultants,
Transverse shear resultants,

Rotational displacements in x and y

- directions respectively.

Strains and stresses respectively,

BC=%)
along the surface of the plate,

E /2
{ S = speed of wave propagation

coupling parameter,
Dimensionless amplitude,
Tracing constant,

Nonlinear and linear time period of

oscillation.
Load function.
Dimension of a plate.

Semi-major and semi-minor axes of the

elliptic plate.



CHAPTER - I.

A NEW APPROACH TO THE NON-LINEAR ANALYSIS

OF MODERATELY THICK ELASTIC PLATES,



CHAFTER - TI.

A  NEW APPROACH TO THE NON-LINEAR ANALYSIS
OF MODERATELY THICK ELASTIC PLATES

ABSTRACT

In this chapter a set of wuncoupled differentigl
equations in cartesian as well as in polar co-ordinates
have been formulated to study the ncn-linear kehavicurs
of thick plates showing the effects of shear deformetion
and rotatory inertia. Banerjee's hypothesis /18 7 along
with Reissner's variational theorem / 26 _/ has been

utilised in the formulation.

FCRMULATION OF THE DIFFERENTIAL EQUATIONS

r—

We consider the free vibration of thick elastic plates
of thickness h., The material 1s +transversely isotropic
(such as pyrolytic graphite, for example). The origin of
the co-ordinates 1is located @t the centre of the plate,
The deflections are considered tc be of the same order of

magnitude as the plate thickness.
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So far as Reissner's variational theorem is applied,

the stresses are taken in the formJ£2€g7

(O-xad'yp(fg):: %(Nx;Ny,Nlﬁ-y %_32_ (M%M\/,M x}’) cees (1)
Z \2

(e o= (5 | (8 ) e 1)
0z2=0 cee. (3)

Note that the expressions of Cﬂczgdyil are assumed to be
the same form as those for small deflection case. Since
free vib:ations are concerned, O3> 1is assumed equal to
zero. The membrane stresses Nx/k , N)’/p\ and NJW/F\ R
involved in the expressions of Gx , Jy and Oﬁgj respec-
tively, which are neglected in the linear theory as outlined
in /26_/, can no longer be disregarded in the analysis of
large deflection problems. The foregoing equations also

satisfy all the stress boundary conditions.

In order to account for transverse shear deformation
and rotatory inertia effects in the plate theory, where the
lateral deflection is comparable with the thickness, the

displacement components are assumed to be of the following
expressions [3 8]

ubeis vi
URivEn T ,
dala R4 HOHU

. 107196
(s RARY ' ]
grgd VT
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U('xajyz,t)_—.uo(xgy,t)-kZOC(Iqj 3’t> v (4)
U (%55 258) =0 (X5 Y1) +28(X5 Yot)  ceee (9)
V\)(?Ca\(j>27“t)=\A)Cx7\J9t) vee. (6)

The subscript O 1is used to associate with the middle
surface. It should be noted that the relations involve
the combined action of bending and stretching which
characterizes the behaviour of the problem. However, the
thickness is assumed to be unchanged during the deformation
procedure, and the elements normal to the middle surface
before deformation are not required to remain perpendicular

to the deformed middle plane,

In view of equations (4) - (6), the strain-displace-

ment relations for large deflection of plates are of the

form

D odx 2 2

36 1 (2w
>y T ey tZ (%S

€ xy= 2<auo+3ve +Z Bo; +7 a,e)+ ~ag»\)*)(aw >
€52 = 7 (-2 +/5)

|
€ A7 :3‘ ".é*‘i + d)

€x‘= a’uo+ :Z BO< +__L_ aV\) )2

€g:O



The membrane stress resultants in terms of strains are given

by :
Eh
Nx = —_—“‘g(éxo‘i-))éyo)
Ny = T:—f<€70+‘>€xo)
hlxdy= '+’) é;to>% cee. (8)
where Cx_ é)’o are the normal strains of the middle

surface in the x and y-directions, respectively; € .,y 1is

the middle surface shearing strain. From (7) it is seen
that

_ bV /du, auo> l<9v\))( av\))
€ %oy=7 +5%/732 >
LIS (9)
Recalling that the normal stress in the transverse direction
is assumed to be zero in equation (3), the strain-stress

relations for a transverse isotropic material, such as a

pyrolytic graphite material, are found to be [38]
| . l .
€x_:—E—— (G-)(_—Q(T'y) ) éy = ?(57 "‘36—7(> 3
éz =0

I l
éxy Yo mx)’ ” é.y = SG. Cyz

_ | )
€xz = 2C. O x % ... (10)



The Reissner's functional as outlined in / 26_/is of the

form

\1/ [ L)étj L\)CG;.J)]C}JJ IFLU‘LO!U fTL U~1_ ds

.oo (11)

It is to be noted that the last two integrations, concerned
with body forces and surface tractions, are eliminated in
this problem. Now, the Reissner's functional ' becomes
3 strain-energy expressiorn as the first term on the right-

hand side of equation (11).

The substitution of equations (7) and (10) into
equation (1l1) gives

159

s | K | 1 /2W\2

.gjk c-x[ax T2 +3(ax)]

4o [3\& 225 L (2uy
REEY DY 2\ DY

e 4 BYo 9K, 2R oW \/ow
+ @,[ ey B 42 (3L 428 )4 ax)(ay)]
Pl

%)

+"“";<O—XZQ+@—7;>J} Ax dy dz ceoee (12
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Integrating equation (12) with respect to z and using
equations (1), (2), (8) and (9) in the preceding, we

obtain [3 5]

¥ ﬂ 20 w[Je - 201-9) T
+M>c +My 2 1My 7( aﬁ()
+Qx< +0(> —ery +/5>

_ [ (M My - 24-&@1&]

- B‘GJ\(Q“QV)} el

. (13)
where Jo , ]l are the first and second invariants of
the middle surface strains., These are
Te=Cuot €, 5 To=€x €, €2
e Ao Jeo ) €T ~Xe-D, Koo
. (14)

Let us now apply Banerjee's hypothesis and rewrite

the expression for Y4/ in the following form :

+ ,U{Q(t ,)z)(fe+ {(aw) })‘)’Mx +Myb/;

+ My i‘f §€)+@x(ax o) +Cy (25 +2)

_ ]2 2y _ 24 Mx M
25[;13<M’”‘M7) . J

_ 3
5Gch

(é:er @f) A xdly cens 15(a)
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where

T U ‘)31/' l aw) 5)( ... 15(b)

=¥ Y

and A is a constant depending onPoisson's ratio of the
plate material / 18 7.

The Kinetic energy equation after integrating through the
thickness is

T”’ﬁ (ék{ 2u)’, 2vs)'y (—%?4—)1
22338 ) e

. (16)

In order to derive the equation of motion we now apply
Hamilton's principle in conjunction with the strain-energy
equation given by (15) as well as the kinetic energy given
by (16). Therefore we have to minimise the integral,

to
& :f (\y_ T)ou e (A7)
{

Taking the variation of_CP , equating it to zero and

eliminating h&x_. PAy , Ddx)r, etc. we get the following
set of decoupled differential equations governing the

vibrations of the plates : ¥

-— - a - - R

*published in the International JouLnAI of Non linear
Kechanics, (U.S.A.) Yol. 24, No. 3.PP. 159 - 164 4 1989,



2|

4 P2 e
v W+5(l 5B k(c;c)oC TV (aa?cf“)aywl)

5300 MDY [TR{R(3)
HREF BTSSR Y
Sl e (W) - dHw[Zh 0 B
- [ T{(30 (3)

Lo {BW( x>1+a“w(aw)1}+4 SW_ 3w oW

dxa* oyZ\ oy oxdy dx T3y
2
12 AW
+.F}<:pl( EYK? o

.o 18(a°

The coupling parameter L2 (e qwen by

KR 2 du 2V

T ::.—————o-— \) ===

12 ) x| oYy

ow Y [dw 2

+-”— ?’X)Jr <3J vev. 18(D

V2
where T (1) is a function of time and C¥>==[?;%%j:$§]

is the speed of wave propagation along the surface of the

plates.



22

For movable edge condition c; = 0 and for immovable

edge condition W,= U, = 0 at the boundary.

In polar co-ordinates the above set of equations are

transformed into the following form : *

(2 drW
+ kchg a_tg_ - o
. 19(a
where
\) 'rL I,\ a )
T ()= gt NE.
- T + (== e
* p”b'"shed in the Jourmal of S(u*d and ° .Dla{;;;-"‘*"““"

(WKLY, 133(1), rr. 185 - 188, 1989



23

For movable edge condition ¢(= O and for immovable edge
condition We= 0 at the boundary. Equationsl&(a) - 19(b)
will be utilised to study the nonlinear behaviours of

different elastic plates.
BERGER'S EQUATICNS

To derive Berger's equations, as outlined by Wu and
Vinson / 38_/, let us now recall our attention to the strain
energy expression given by equation (13). If Tie is
neglected in the expression (13) we shall arrive at the
following set of decoupled equaticns by using the same

procedure as adopted in the previous case.

| + o b £ “(Q(t)] 4w - X2y Olvw
0(1-v2) (&) Vi - (VW)

VAN

6 /O a 2 . = O
5 Ge 5{_2<v W,)+ f,\zqg_ 42
20(a)
where
- 2 2
LQUey DV, 1 fBWY 1 /DW o<£\
le=353 ay*z(‘a'f 2(’@y>‘ D) T
20( k)

Equations 20(a) and 20(b) are well-known Berger's equaticnsg
on the thick plate theory and will now be utilised to
investigate the nondinear behaviours of different elastic

plates.



CHAPTER - II

NON-LINEAR DYNAMIC RESPONSE O(OF MODERATELY THICK

PLATES PLACED ON ELASTIC FOUNDAT ION
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CHAPTER «~ II

" NON-LINEAR DYNAMIC RESPONSE OF MODERATELY THICK

PLATES PLACED ON ELASTIC FOUNDATION

ABSTRACT

In this chapter the nonlinear dynamic response of

thick plates of different shapes placed on elastic founda-
tion of the Winkler-type is investigated by using the appro-
ximate method offered by Berger. Conformal mapping technique
has been utilised in the investigation. The cases of square
plates, rounded cornered plates and circular plates have been
studied in detail. The ratios of the non-lineartime periods
including shear deformation and the linear time period of the
classical plate theory have been computed for these plates
for different values of the foundation modulus %%laﬁ and

discussed,

(2) Vibrations of square plates and square plates with

rounded corners , *

Let us consider the free vibrations of thick plates of thick-
ness h . The deflections are considered to be of the same

order of magnitude as the thickness of the plate., Berger's
equations given by 20(a) and 20(b) (h chapter Icrerewritte

* Accepted for publication in the Journzl of Sound and
Vibration U,K, July 1990,
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in the following form for thick plates placed on elastic
foundation of the Winkler-type (Ariman /34_7 )

Tol-9) Ge -

-2r2 - 2
«h E |lody_ T2 - &2 .2 2
{‘ }V - TW - T o (VW)

12 BN - K. 2-% 2 k. _
al cp® 21 1o D l—va+Bw = <
ee.. (213)

where ££l= foundation modulus

D = flexural rigidity

and the coupling parameter o™ is given by

2L EE Do  DVe |
Try R + Ve y L (2

2 2
. TS éﬁ) .L(BV_\’) vee. (21b)

) Yy

To solve the governing equations let us assume the deflection

in the following form

WCx,¥51) = wCx,y)T(t) cee. (22)

Substituting (22) in 21(a) we get

T4w, Wk, 2-Y VW, k.
[ - T + }_fC{)

Wi W D
(2 & ,D VZW. .
*[recp? -5 Er W, ]m)

-2, 4 _
+[o<f\ . E .V"\)uoc?_YWMJTB@):O cev. (23)
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A solution of equation (%3) is possible if
4

E%Kjriz AT ce.. 24(a)
V\f\)"f‘:-?\? cee. 24(D)
From 24(a) we have
(V5T Dw=0 e ()
and from 24(b) we have
(V4 2PIW, =0 ... 25(b)

It is evident that to get a complete solution it is sufficient

to solve

2 N2
(V+7\.)W, =O ce.. 25(c)
In a complex co-ordinate system,

Z = x+ly and 7 = X~Ly
The equation 25(c¢) changes and

ltet 2 =§(%) , Z ={(%&) e (26)
be the analytic function which maps the given shape in the
Z - plane on to 2 unit circle in the % - plane. After
transforming equation 25(c) intc the complex co-ordinates
(Z ,Z ) and using relation (26) we obtain the following
differential equation in ( % , E )} co=-ordinates for the

deflection function W,

a?'\/\)l + 7\?-0{—2 .C{:E .
3T 2% 4 d% 4%

{
O
)
3
o
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Similarly equation 21(b) changes into

0( ;'\ dz Az aLLo dodz
T (dg'ctg) 2% d§ +a§ az

3% 55 -85

+QaN(.BW1.d2.d§
2% o% <% A%

eess 27(b)

' = -1
¥ and % = Ve 0 , T being the radius of

Here §= e
the ci;cle. For transverse vibrations the inplane displace-
ments Lo and Vs, are of no interest and they have been
eliminated finally through integrations by choosing suitable
expressions for the displacements compatible with their

boundary conditions i.e. (L,= 0, U,= 0 on the boundary.

To solve equation 27(a) let us choose the deflection
function v% ( g,:% ) 4in the following form

wi=aei- 57 ][1- 5 R e (55 E) (e e ]
. (28)

Clearly W, is 6 dependent and satisfies the simply supported

edge conditicns, namely,

V\)‘= 0 at Y = 1

2
0 “9': 0 at 7T= 1

SEDT
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Substituting (28) in 27(a) and inserting the values of g\‘% ’

é%g- from the given mapping functions # = f(@) we get the

error function éf(:ﬁ,%~ ') . Galerkin's technique requires

that
2K . 1

J €(5 5)w (§.F)relrds =0

8=0 Jr=0 eeee (29)

-2
The values of &K have been determined by substituting (28) in
27(b), remembering the values of é%%— , é%%- from the given
mapping functions and finally integrating %ver the area of the

plate. After evaluating the integrals in (29) we get the

2 T4w, . T W

ecessary va £ N . s the values of 'and .

n sary values o ! Thus the valu W n W,
are determined. Inserting 2ll these values in (23) we get
the following cubic equation determining the unknown time

function T(1) in the form

T+ & TCL) +A,T(t) =0 o\ (30)
The solution of the above equation subject to the boundary
conditions
Tl)y= 1
TO= o

is well-known and is obtained in terms of Jaccbi's elliptic

funCtiOn.

The ratio of the non-lineartime periods to the linear

time periods of the classical plate (thin plate) is
2
-

1f—=' A m2 Vﬁ
ST
[|+ e }
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where )é = éic is the ratio of the static deflection to

the thickness of the plate.

X
4
Table I shows different values of J; Vs, %§_0~
different A for the simply supported square and rounded

cornered square plates.,

for



Table - 1

Ratio of the noun-lineer to linear periods for the free vibrations

of simply supported square plates and square plates with rcunded

Immovable edge conditions have been considered.

corners.
: i T b E o=
% -:i.- FOR »D=0'3, —&so~2, E‘C=25.
| WITHOUT ELASTIC [ \wy1i ELASTIC FOUNDATION.
PLATE MAPPING /g Ao FOUNDATION WIT
: = + .
SHAPE FUNCTION i h S = 4 o 4 ! . T 4
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stupy | REF [35]
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04 C 86257 _ ReRCISIcY - 8DD0 | a-Dooc
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} .06 35c 28 - 0 BCCo [ >8c7T7 8094
! ';,__w__ R - _ ; — e & S
. 08 T4 - A TSl eT7Ies | o120
\ } : ;
Lo 06283 - C 330 | 0353 < a37E
. i - I | s
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T vsa
T VS A for

SIMPLY SUPPORTED SQUARE PLATE WITH SIDE 20

AND
ROUNDED CORNERED SQUARE PLATE.

(IMMOVABLE EDGES )

1400+
0090-
ié.a“,ao (SQUARE PLATE)
(e
A
080+
— ié 04_ o ¢sQUARE PLATE).
070 + Ka4 p(seuare pLATE WiTH
D ROUNDED CORNERS)
’l‘S.a‘Lzo(sauz\Rs PLATE WITH
o ROUNDE D CORNERS)
O"() T Y Y Y
02 o 06 o8 10

FIG.-4.
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(b) Vibrations of circular plates.

Let us consider the free vibrations of thick circular
plates of radius a. The deflections are considered to be of

the same order of magnitude as the plate thickness.,

For circular plate of radius a the mapping function

is #Z = Cl?

N

Thus fiZL.= = — = a = constant,
2% d%

On this assumption the equations25(a) and 25(b) namely
2
(72T HAT) W, =0 veos 32(a)
offer an interesting closed form solution. Changing equation

32(a) into complex co-ordinates as shown in the previous case

we héve the following two differential equations

2g2% 4 L
2
37(/\),’1_ _ N O’ZW’{ o I eve. 32(c)
> 4 |
2% 3% J

/ /
where (W, = W, + W,

2
The equation determining o ~given by the equation 27(!

remains same as in the previous case. The solution of the

differential equations32(c) is obtained in terms of Bessel
function in the form



B3

Wl . W‘I +N‘I!

i

AJo (2P/%E )+ Bl (2P/%E)

= AJ(2Pv)+pl, (2PF) ool (33)

p aA,

PRSI

2

where

For clamped edge boundary conditions
W,z 0 at Y = 1
=z 0 at Y= 1.

Thus the frequency equation is obtained in the form
Jo(2p) I.(2p)

= 0 eees (34)

’JnCQt§ IxCQFQ
Solving (34) the value of 2P =3-20 is obtained from the

table / 54_7.

For simply supported edge conditions
W= 0 at v = 1
9% Wy D oW

STZ T v Tor
Thus the frequency equation in this case is

=0 at 'V‘:ﬁ

J.(2b) lo(2b)

= 0 coee (39)
(-9)J,(20)-2pJ(2P)  =(+-N1,2P)+2ple(2P)




34

Solving (33%) we get 2p = 2:22 from table /54_/.

The values of 5~ have been determined as in the
previous case by putting (33) in 27(b) and integrating over
the entire area of the plate. Now knowing the values of

4 2
p=Q& ?\*/Q,the values of VWWJ and ¥ \/3\)'- are determined

g f
in each case. Inserting all these values in equation (23)

we get 3 similar type of cubic equation as equation (30) for

determining the time function Af({) . The solution of this
cubic equation is obtained in terms of Jacobi's elliptic

function as in the previous case.

The following table shows %; \k54%§ a4 for

—

different values of /3
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Ratio of non-linearto linear periods for the vibrations of

circular plates.

[%: O-2 s ‘D=O'3}
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& a4 inlk o e ke g
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!
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Ge |
= 86127 !
}
!

Lo o85S | ©'BO29 | O'BE33 | OT032 | 7238 | 0 741G

|

4

|
|
|
]

e ]

/. PrESENT | REF. [40] |K.ahio koot s ko ot 20
Bl STDY D 5
Simpely o2 OD7Ss G OT4S O 9828 | 0:9850| 098 GT
SUPPORTED‘i ;
CIRCULAR R e S
ce | ©B294 c- 8265|0872 088G | 08372
PLATE | |
£ )
G

o 1 |




Observations

The tables 1 and 2 «clearly show the response of

4
the foundation modulus'kl%S on the ratio of the time pericds

L

- /{(04' «
T for different A . As I=p increases —;—increases.

This is quite expected from the practical point of view.

When '&}%g = 0 1i.e., when there is no elastic foundation,
the results obtained in the present study for square plates

and for circular plates with simply supported as well as

36

clamped edges are found to be in very good agreement with othev

known results. The results of the rounded cornered square

plates are completely new.
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) . T Qa
(C) A comparative study on the time perjod ratlo-?-Vs.‘k.Ts for

different A of the simply supported square plates and square

plates with rounded corners on the basis of the area of

the plates

Table - 2.
- E _.,. h_~
[ ‘/2):!, ~>uOu3’ (—;2—25,.a=02]
Tl
PLATE SHApE T
[SIMPLY SUPPORTED WITHOUT ELASTIC WiTH ELASTIC
EDGE CONDITION] FOUNDATION . FOUNDATION, &, 5210
i - (Ki=o) . _
SQUARE PLATE OF ]
SIDE 20
O'GT23 S-T7387
SQUARE PLATE WITH - B
ROUNDED CORNERS OFSIDE-Da
O B> l O GAZO
i
i
Observation :
Arn interestihg observation on Table - 3 is variation of

*
the time pericd ratio-%;vdjh the area of the respective

”

plates. Tt is observed that 2s the area of the plate increase:
this ratio increases. This is true irrespective of the response
of the foundation modulus., Obviously, the area of the square

plate is greater than that of the rounded cornered square plate,
f
T increases accordingly. This is noteworthy from the prac-

T

tical point of view.
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(d) A useful observation on Berger's equations :

Let us now examine Berger's equations on the movable edge

conditions.

A clamped circular plate of radius a 1is considered
here. The deflection function for the circular plate 1is

.-

assumed as

22 -

W =A°T§*)["id‘zr N 1))

This clearly satisfies the required boundary conditionsof the

clamped edgesf

Before recalling our attention to the original equation
(23) let us turn to the equation 21(b) which reduces (in the

present case) to the following form,

-2 1
T .t)oc h _ A wo o o 1 rdnh\2
% 12 = Ar + T + 2 ow*, eoee (37)

let Wom W (P T2CH) cen e (3700
Putting (36) in (37) multiplying the equation by v we obtain

the following equation after integration

At 1 = 0, = O. Thevefore C:=:0

Hence Uis obtained as

-2 2 ] % - g
ul: Qf__h_-r - B8AS [Y rs 1 J

4 a4 | 4 Y EYE

38(b)
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For movable edge condition at V' =

Aty oy w1 AWt
TV F oy e

Using this condition we obtain the value for 5{2 as

A CIRNEY ] ver. (39)

Inserting now (36) in equation (23), remembering
) .
ol thus evaluated from (39) and applying Galerkin's
technique we get as usual a cubic equation determining

the time function (1) in the form

TA) + 6T ~AT(H) =0 ee. (40)

Which leads to meaningless results because the coefficient

of Tfaci)is negative,

Thus we arrive at the following conclusion :

Although Berger's equation can be conveniently applied to the
nonlinear theory of thick plates, its application is limited

to the immovable edge conditions only.



CHAPTER - III.

INFLUENCES OF LARGE AMPLITUDES, TRANSVERSE
SHEAR DEFORMATION AND ROTATORY INERTIA ON
FREE VIBRATIONS OF TRANSVERSELY ISOTROPIC
PLATES - A NEW APPROACH.
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CHAPTER - III.

INFLUENCES OF LARGE AMPLITUDES, TRANSVERSE
SHEAR DEFORMATION AND ROTATCRY INERTIA ON
FREE VIBRATIONS OF TRANSVERSELY ISOTROPIC
PLATES - A NEW APPROACH.

ABSTRACT

In this Chapter thenon-linear static and dynamic
behaviours of moderately thick plates of different shapes
have been analysed with the help of a new set of uncoupled
differential equations proposed in the chapter I. Numerical
results for different plates with different edge conditions

have been computed and compared with other known results,

A . Non-linean a.né.lysis of square, elliptical and isosceles right

angled triangular plates,

Analysis : =~

Let us consider the free vibrations of thick plates
of thickness h in cartesian co-ordinate system. The material
is transversely isotropic (such as pyrolytic graphite, for
example). The origin of co-ordinates is located at the centre
of the square plate of side 2a and at the centre of the

elliptic plate with semi-axes a and b, For isosceles


http://ouyw.ly.sts
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right angled triangular plate of equal side a, it is located
at one corner. The deflections are considered to be of the

same order of magnitude as the plate thickness,

"
(1) Square plate :
Y
4 For square plate of side 2a, let
3 us choose the deflection function
1\ @]  2C
in the following form
4+
el &l WaAY(t) Cos X, CosRY oo (1)
FIG-2

for fundamental mode of vibrations. Clearly this form of W
salisfies the following simply supported edge conditions

W = 0 at x = + «
W = 0 at 'y = 4+ a
w _ -+

—a ')El— 0 at X = x a.
> +
o= O at = — .
dy? Y

Putting (41) in(18b) of the first chapter and integrating

over the area of the plate one gets

—2 AS (14
X = %%. ;;f;'+ ) cee. (82)

For transverse vibration the normal displacement is our primary
interest,So the inplane displacements have been eliminated
through integration by choosing suitable expression for them
compatible with their boundary conditions i.e, Ll,= 0, Vo= 0

on the boundary.

*Published in the International Journal of Nonlinear Mechanics,

(U.S.A,) Vol. 24, No. 3 PP. 159 - 164 4 1989.
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Now inserting’(4l) in (18a) of the lst chapter,
Considering (42) and applying Galerkin's error minimising
technique one gets the following differential equation for
the time function T (1)

(2 3 R2P (= 4 5 x4 RY
{hzcz +35 OQC{J ) +ag—3‘ T(t) + [—-—L 7\(%—)

32 a4
T4 4DV Ao RS R4  / E V7 Ac\?
t 37 39- 04 ( ) 4O 0C (I ->?) (Gc)( t:)
3 ne k 3
+ (%7\ e’ U ))2) (QC>( > ] C‘t) O ..., (43)
The above equation is of the form
—f(f)-fdﬁT(f)-+B|T3(t> = O el (44)
The solution of equation (44) subject to the {mitial
Aconditions
T (0) = 1
T (0) = 0

is well-known and is obtained in terms of Jacobi's elliptic

function. The ratio of the nonlinear and linear time periods

|+ S N 1"
T* 2K 20C1-»2) Ge a*
T
. A\ 7425 EVRR (149 )72
.!-+e)‘/5 ('*9)/5 +32(» 55 K ’%*leo \/GJ o2(1- t)"‘))

. (45)

. where /3 = J%fis the ratio of the static deflection to the
thickness of the plate.
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PRESENT EINDINGS FOR MOVARLE EDGES (TaslegTolr)
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(ii) Large deflections of uniformly loaded elliptical plate

The
the

For

18(a

with clamped edges
4>

The plate geometry and
a
- co-ordinete system are
b -
ﬁ_/////// shown in the fig.9

FIG,- 2
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elliptical plate with semi-axes 3 and b is clamped along

boundary whose equation is given by

x* v ... (46
-2 -2 -0
e ) 2

\
/

static deflection let us rewrite the differential equation

) and 18(b) in the following forms by replacing the inertial

term by the corresponding term due to mechanical loading.

-2 2.
o( kv (axzwaw

4
VIW 4+ 5y 2

ESC"‘QQ) 1<<.<3c

¢ =2 v 720 (B HE)

%) [dw\? a%s)(avd 2 W 2w 3w
+2{axz<bx)+372 By) +4B’X—By Ay o%

-2 | o'W W | BA | g2 [loW N2, (AW
~a® | e ] [l (3 |+

aw/aw)+a‘w amf g 2w 2w | G
3X*\dx ayﬁ(by dx.2y dx VY -




h3

where g, is the intensity of continuously distributed Load ,

and

X2 Buo L BV 1 3w Y W)
12 >~ 3}""'5(3:4)“"2 ’ay)

(48)
For movable edge condition
oL =o
Let us assume the deflection function in the following form
N=No[l——c§—£]2 coo. (49)
Clearly this form of W satisfies the clamped edge conditions of

the plate,

Now putting (49) in (48) and integrating over the area of the

plate we get,

-2
oL = 4:)7_, a‘2+ ;32> e (50)

Inserting (49) in (47), remembering (50) and applying Galerking's
technique, as befcre, we get the cubic equation determining the

deflection function 'y

3

W w | L

° 4 o1, k( )(——-.;.._.-)

ks [h] A .2__{50 >z) "\a/lar B3
ot TBf Y3222

S ' l+9) R AYE
(af* ot T3 ""25@-9’)— Gc) e oo 9a4b2+9a’b4)



54
+3I(\" +-;%-)2+ 242 7




55

Putting (52) in (48) and using the same method as in the case

of elliptic plate we get

0—52: |2 . gzhn (|+~D> el (54

Now inserting (5%2) in (48), remembering (54) and applying
Galerkin's technigque as before we get the following cubic
equation determining (w"

Wo 3 -
"\ + ) [6 sfccs5 K —w)'a—+48757\ +

2
[+2675 + 18 cose A k(-é?)—c%

48&((*-\)2). qfoa4 .
S5 X 6 E’q“ oo

Numerical Results

Numerical results are presented here in tabular forms
both for movable as well as immovable edges for different
moderately thick isotropic plates and compared with other

known results. The results of the isosceles right angled

triangular plates are new,

For free vibrations the ratics of the non-linear period
T* of vibrations including the effects of transverse shear
deformation to the corresponding linear period T of t
1P“t1a)
classical plate (not including transverse shear and rOLat01y4
are computed for various thickness parameter and material
constants at different nondimensional amplitudes of vibration.

It is to be ncted that the efrects of rotatory inertia have

been neglected in each case hecause these are ¢onsirdered to
g
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be small compared with effects due to transverse shear
deformation as the plate is undergoing flexural vibrations,

To study the non-linear static behaviours of the plates

(=]

the nondimensional deflection functions at the centre‘ﬁ

have been obtained for different values of the nondimensional

. o4

d am
load parameter T

It is observed that for moderately thick plates, the
non-linear pericds are dependent on the thickness parameter

whereas they are independent of the same for thin plates.
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STATIC DEFLECTIONS OF SIMPLY SUPPORTED
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B. #*Vibrations of clamned circular plates,

Let us consider a thick circular plate of radius a, The
origin is located at the centre of the plates. The polar
co-ordinates §re chosen in the analysis., The deflection of the

plate is of the same order of magnitude as the thickness of

the plate,

For circular plate of radius a, let us choose the

deflection function in the following form
242 )
W=A°”c(t)[:—§} coe. (56)

clearly this form of W satisfiesthe following clamped edge

conditions,

(W)r-a =20
EMV)

and —_—

Sr/ir=o =

To evaluate the couplinyg parameter 5?2,let us now recall our
attention to equaticn 19(b) of Chapter I, Multiplying this
eguation by the integrating factor 1”9 , putting (56} in this exact
equation and firally integrating the equation between the limits

0 and Q4. , the constant éZ’ is obtained in the following form

72 =  1B36Y AZ
@tV B+D)I(T+Y) h*

Futting (56} in 19(a) of 1lst Chapter, considering (57) and

(57)

applying Galerkin's error minimising technique one gets the

following differential equation for the time function T (L)

*Published in the Journal of Sound and Vibration (U.K.)
133(1), PP. 185 - 188, 1989.
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[% hg;2+ 4. g JT(t) #2327
+[864'79872'*(2‘%%92)(»1)5)(%7"5" z:: %23
+1541-2224. cﬁiﬁ .(\>+z>) C\D’)+5><§>+;7>

+ 1024 ) - b b4 T2142 —?—2_-—%5]‘(3({) -

(58)

The ratio of the nomlinear and linear time period is obtained

as before in the form

T oy N A
=5 [y{l+at l’255k( )az (- ,)2)2)\>+5)Cs>+7)/32

- \“) -2
L4144+ 498G . (313 (D15 +7) /3

V2
7\ i’\'}. -2
+0'9606 s k(&) B p06as7062 A B
. (39)

Numerical results : =

Numerical results have been computed here in tabular
form both for movable as well as immovable edge conditions as

in the previcus case.
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cC. Large Amplitudes, Transverse shear Deformation

and Rotatory Inertia on Free Vibrations of Moderately

Thick Polygonal Plates *

Formulation of the differential equation :

Let us consider the free vibrations of thick polygonal plates
of thickness h .

In a complex co-ordinate system Z=xXtly, Z = x-ty

the equations 18(a) and 18(b) of the lst chapter change. lel

2g==:f(QE) .. PO eee. (6D)

be the analytic function which maps the given shape in the
z-plane on to a unit circle in the % -plane. Substituting
‘the relation (60) into the transformed equations 1n(12, 2)
the following set of differential equations in ( § , % )

co-ordinates have been obtained:

[ R Az 5 2w 27 d%)% ol2>3

S 5 og‘2% dFI\AE/ iy

_ BBW Az sd > A% d%F (A2 (I Y
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3w A% (o{'é)‘fdz L » 2w _a22>7 43 \4
o ok d%* 4%/ J% DF2F \dg* ct§>

2 -
S TS R OB )

o s e e

» Accepted for publication in the Journal of Applied
Mechanics (ASML) - U.S.A, June 1990,
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Here % = Y:QLQ, 5% =v.e'® , ¥V being the radius of the circle,
Values for A have been cbtained from the conditicn -%%% = 0,
tfor minimum potential energy.
For regular polygors the mapping function is

Z =L% +No%"° . (63)

where values L and Ao are given in a separate table.

Let us choose the deflection function in the following
form
— ] - 2 T2 -
W =ATW[-2E][1-38 8 + L (87 +¥)(-%¢ 5]
(64)
clearly W is © dependent and satisfies the simply supported edge

conditions, namely,
W=O at ’Y':j

Substituting equation (63} and (64) in(6f) the error function

€ (% ,% , t ) is obtained. Galerkin's technique requires

2K . |
f Jecta,%',t)wcafi,t)rdvde o

(65
o Y=0 (65)
The constant o is determined by putting {64) in (62)

using (63) and integrating over the area of the plate.

It is to be noted that for transverse vibrations the
normal displacement W(% ,% , t ) is our primary interest.
So, the in-plane displacements W,and Y, in equations{62) have
been eliminated through integration by choosing suitable
expressions for them compatible with their boundary conditions,
namely, uzoy=aon the boundary for immovable edges.

For movable edges of = 0O cee. (66
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Evaluating the integrals in (65) and considering the
values of o obtained from (62)(after integrating over the
area of the plate)one obtains the Duffing's equation as in

the previous cases in the form

.. {
T+, XYY+, Tt =0 cene (6T
Here the B, consists of a huge number of terms, So these
terms have not heen shown., Numerical results coming out from

these terms have been presented in the tables,

The ratio of the nonlinear time period and linear time

period in this case is

Tt
T =
where

Numerical results : -

Numerical results are presented here in the tabular form
for movable as well as immovable edges, for moderately thick
polygonal plates. If the mapping function 1is known, the
nonlinear behaviours of thick plates of any shape can be
studied with ease and accuracy by using the proposed differen-

tial equations.
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TABLE - 279

MAPPING FUNCTION COEFFICIENTS.[57]

POLYGONS L Ao
SQUARE (0B -o i
 PENTAGON -ofza -0:o70
HEXAGON t-o38Q -0- 0850
HEPTAGON - 1-029a -0'0360
OCTAGON {0220 -0-0280.
TABLE - 26

LINEARTIME PERIOD.

Ti=(THICK PLATE)= 22 (& #0), TL(THIN PLATE) =2 (£:=0)

PoLvcons | T (B=02,E -24) I‘F{
SQUARE 1-5613 Helri-Nl
FPENTAGON fr2921 oz2es
HEXAGON il es 110296 i
HEPTAGON o722 1-0303 T;
OCTAGON 10469 0308 ”
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RATIC OF MNON-LINEAR TO LINEAR FERIOD FOR THE FUNDAMENTAL MODE OF
VIBRATION OF SIMPLY SUPPORTED POLYGONAL PLATES(SQUARE OF SIDE 2a).
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RATIC OF NOCN-LINEAR TO LINEAR PERIOD FOR THE FUNDAMENTAL
MODE OF VIBRATION OF DIFFERENT POLYCONS.
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Observations

Numerical results obtained from different tables of this
chapter show that the new approach presented in the present

study can be conveniently applied to study the static as well as

»

dynamic behaviours of different thick plates of different shapes

2

under different edge conditions with ease and accuracy.
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CCNCLUSION QOF THE THESIS

The present project is an attempt to offer a new set of
uncoupled differential equations in the theory of non-linear
analysis of moderately thick 1isotropic plates, It 1is
observed that numerical results showing the effects of shear
deformation and rotatory inertia obtained from different
tables for plates of different shapes are in excellent
agreement with other known results, Moreover, results of
movable as well 22 immovable edge conditions can be obtained
from a single differential equation., This is also an addi-
tioral advantage. Thus the proposed differential equations
presented in the thesis are able to supply void in the

literature of mon-linear theory of moderately thick plates,

1
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Abstract—In this paper, using an improved Reissner’s variational theorem {E. Reissuer, J. math.
Phys., 90-95 (1950)] along with Banerjee’s hypothesis, [B. Banerjee and S: Dutta, Int. J. Non-Linear
Mech. 16, 47-52 (1981)] a new set of governing equations whhich include the effects of transverse shear
deformation and rotatory inertia is derived for the large amplitude free vibrations of isotropic plates.
The case of a simply supported square plate has been discussed in detail. Numerical results have
been computed showing the effect of the transverse shear deformation and compared with other
known results.

INTRODUCTION

With the advent of modern plate and shell constructions subjected to severe operational
conditions, the classical linear theory for small deflections is no longer applicable in many
cases. Mcthods of analysis dealing with large deflections, therefore, are of increasingly
practical importance. It is well-known that the classical plate equations for studying the
non-linear behaviour of thin plates are due to Von Karman [3]. Many works have been
done on Von Karman equations among which the works of Chu and Herrmann [4] and
Yamaki [5] need special mention. It is also well-known that Berger [6] offered a simplified
approach to study the non-linear behaviour of thin plates. The outstanding research
workers who utilised Berger's equations in their respective investigations and obtained very
satisfactory results are Nowinski { 7], Nash and Modeer {8] and Wah [9]. Banerjee [10]
offered a modified strain—energy expression for the investigation of non-linear behaviour of
thin elastic plates and obtained satisfactory results both for movable as well as immovable
edge conditions.

All these works mentioned above do not take into account the effects of transverse shear
deformation and rotatory inertia which are important for moderately thick plates. The
study of the non-linear behaviour of moderately thick plates is gaining momentum day by
day due to its wide application in modern design. Important works in this field are: Wu and
Vinson [ 11] and Kanaka Raju and Venkateswara Rao [12]. Wu and Vinson have applied
Berger type equations whereas Kanaka Raju and Venkateswara have applied the finite
element method to obtain their solutions. A discussion on various non-linear theories
applicable for moderately thick plates can be found in papers by Sathyamoorthy and Chia
[13] where it has been shown that the effects of transverse shear and rotatory inertia play a
significant role in the large amplitude vibrations of moderately thick plates of various
geomeltries.

The analytical work so far carried out is based mainly on single mode approximations
and is often done with the aid of either Von Karman-type non-linear equations or Berger’s
approximation. Finite element methods have recently been used by Reddy et al. [14, 15] in
the investigations concerning fundamental modes for moderately thick plates. Berger’s
equation is a purely approximate method. It yields accurate results for clamped edges. It
yields fairly accurate results for simply supported edges and but fails for movable
edges [ 16].

The present paper deals with the use of Reissner’s variational theorem along with
Banerjee’s modified strain-energy expression for studying the non-linear behaviour of
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moderately thick isotropic plates. A new set of decoupled differential equations has been
formed and solved with the help of Galerkin's procedure. The main advantage of this
method is that it is sumple and a single differential equation for the governing time function
gives sufficiently accurate results both for movable as well as immovable edge conditions.
The case of a simply supported square plate has been discussed in detail. Numerical results
have been computed showing the effect of shear deformation and compared with other
known results.

ANALYSIS
Let us consider the free vibrations of a square plate of thickness i and edge length 2a. The
material is transversely isotropic (such as pyrolytic graphite, for example). The origin of the
coordinates is located at the centre of the plate. The deflections are considered to be of the
same order of magnitude as the plate thickness.
Reissner’s strain—energy expression after integrating with respect; to - takes the following
form [1]

+a +a E} B _ . . ) .
‘”:f J {7_(*’_[1§~2(1—v)L,]+M,‘.£.—fj+M_,‘fﬁJrMn(f_“ij_ﬁ)

. -3 iy iy Ox
cw Cow 1712 M .M.y
X : - SMI+MH- X
O <€'.\' +1) o (E_\' +ﬁ) 2E [h3( c M) -24 h3 :l
— —— (02 4+ 0 pdxdy ... 1
G tQﬁrQJ} xd) (1)

where 1,. T1, are the first and second invariants of the middle surface strains. These are,

1. =exq+eygs

I, = expery ~— 62X V-
The kinetic energy equation after integrating through the thickness is [11]
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In order to derive the equation of motion we now apply Hamilton’s principle in conjunction
with the strain-energy as well as the kinetic energy given by  and T. Therefore, we have to

minimise the integral.

1

d):j:W—T)dr.... 3)

Using now Banerjee’s hypothesis. taking the variation of ¢. equating it to zero and finally
eliminating M,. M. M, etc.. we get the following set of decoupled differential equations
governing the vibrations of the plates

6k EN%%h? Fo o
4 W 3 - 1,2 { V2 —5 + V-5
VWS ~\'~)(GC> o ((‘.\‘" c_v)
S k(B wend(@Y o 53)}
51 —v¥) G, cx ey »
+ 2{52(3 (rg) A ((Q)} pelo o g} S0 0 ()
Cx* \ (X Cy= A\ (Y CXCy (X (Y 5G, cr
<2 ~2 ; A N2 20\ 2 22 2 \2
I Co o Cot 6_’ 2 yCw cw N o fo
- (r)[(’xl - cy? h? Ve éx * &y ex? A\ ex?

Mo oy o fo fw 12 o
+ o 44— +~2—-2~—,,_T=0... (4)
vEALCY CXCY CX (Y h*Cs ¢t

(39




Transversely isotropic plates 161

a*h?* dug vy | 1{0w 2 v/ow\?
=0 — +-t—1 ... 5
12 ) 0x T 6y + 2\ 0x 2\ dy 3)

We are primarily interested in the fundamental mode of vibrations of the plate. For a square
plate of side 2a, let us choose the deflection function in the following form:

where

w = Ago1(t) Cos il cos 44 Ce (6)
2a 2a

Clearly this form of w satisfies the following simply supported edge conditions
w=0 at x = ta

w=0 aty= ta.

o _y +
—_—= at x = da.
ox? -
3w

-5 =0 at y = t+a.
ay

Putting (6) in (5) and integrating over the area of the plate one gets

22 o 3 AZomA(1 +v)

= .. 7
8 a*h? @

For transverse vibration the normal displacement  (x, y, t) is our primary interest. So the
in-plane displacements have been eliminated through integration by choosing suitable
expressions for them. Putting (6) in (4), considering (7) and applying Galerkin’s error
minimising technique one gets the following differential equation for the time function (t)

12 3 n?p 1S7*A {Ago > 3 m*(1+v)? [ Ay \?
[ — t — A S —_—
l:h2C§+5Gca2:| )+ T() [ ( h) T @ h
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4 ZI_?(_;F_:L K{= )220 4 ATMZ_ K{— Aoo
640 a®(1 —v?%) G, h 128 a®(1 — v?) G, h
2?)=0.... 8)
The solution of the above equation subject to the boundary conditions
{0) =1
#0) = 0

is well-known and is obtained in terms of Jacobic’s elliptic function. The ratio of the non-
linear and linear time period is

E _2k
T T
72 E 1/2
+ ﬁ?m(a)hZ/Gz
] 21,2 2 h2 2
9)

where i = A,o/h is the ratio of the static deflection to the thickness of the place.

NUMERICAL RESULTS

Numerical results are presented here in the tabular forms (both for movable as well as

immovable edges) for moderately thick isotropic square plates and compared with other
known results.
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The ratios of the non-linear period T* of vibration including the effects of transverse
shear deformation and rotatory inertia, to the corresponding linear period T of the classical
plate (not including transverse shear and rotatory inertia) are computed for various

h 1 1 1
thickness t == . i s i =03, A=v?
ness parameters ( 2= 10" 20 3()) and material constants (v =103, vi[2],

E -
K (6) =0, 2.5, 20, 30, 50) at different non-dimensional amplitudes vibration (ﬁ = i};)g>.

C

For moderately thick plates, the non-linear periods are dependent on the thickness
parameter whereas they are independent of the same for thin plates.

Table 1. Present findings for immovable edges [11]

T T =T
EG, EG,

B 25 20 30 S0 25 20 30 50

0 10268  1.1976 12850 14440 10268  1.1976  [.2850  1.4440
B 0.2 10140 11774 12602 14092  1.0037 11606  1.2397  1.3806
——— 04 05785 11228 11940 13187 09418 10683  1.1290  1.2290
2a 10 06 09270  1.0469  1.1066 12012 08606 09577 09978  1.0656
08 08624 09636 10113 10819 07758 08422 08710 09159
1.0 08055 0.8809 09123 09678 06976 0.7449  0.7648  0.7948

Table 2. Present findings [11]

T*'T T* T

E'G, E G,
B 25 20 30 50 25 20 30 50
0 1.0067  1.0529  1.0785 11274  1.0067 1.0529 10785 1.1274

b1 0.2 09947 1.0391 10635  1.1100 09846 10173 1051t 1.0966
—=— 04 09610 1.0009 10227 10644 09270 09617 09810  1.0176
26 20 06 09121 09460 09643 09905  0.8487 08757 08903 09175
08 08548 08825 08968 09251 07670 0.7869 07973  0.8166
1.0 07948 08170 08273 08503 0.6900 07049  0.7119  0.7255

Table 3. Present findings [11]

~™T T*T
E G, E G,
B2 20 30 50 25 20 30 50
0 10030 10239 10355 10385 10030 10239 10355 10585
h 02 09912 10111 10225 10445 09811 10005 10113 1022

— :i 04 09578 09759 09860 10058 09172 09393 09482  0.9656
Za 30 0.6 09093 09247 09334 09501 08464 08586 08653  0.8784
08 08525 08641 08722 08855  0.7630  0.7742 G779t 0.7885
1.0 07930 08031 08087 08197 06889 06952 06986  0.7052

Table 4. Present study [11]—classical thin
plate theory

T T T* T
B EG. =0 E/G,=0
0 1 1
02 0.9882 0.9782
0.4 0.9552 0.9210
0.6 09072 0.8446
08 0.8307 0.7640

10 0.7917 0.6878

—in
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Table 5. Present findings for movable edges

/T
E/G.
B 2.5 20 30 50
0 1.02680 1.19760 1.2850 1.4440
o1 0.2 1.02406 1.19325 1.2796 1.4366
— e 04 1.01601 1.18056 1.2641 1.4147
2a 10 0.6 1.00298 1.1604 1.2394 1.3802
0.8 0.9857 1.13376 1.2071 1.3362
1.0 0.9647 1.1022 1.1693 1.2852
Table 6
T*/T
E/G,
B 25 20 30 50
0 1.0067 1.0529 1.07850 1.12754
h 1 0.2 1.0042 1.0499 1.0752 1.1239
= 0.4 0.9966 1.0412 1.0659 11134
2a 20 0.6 0.9844 1.0291 1.0509 1.0963
0.8 0.9678 1.0089 1.0310 1.0738
1.0 0.9480 0.9859 1.0070 1.0468
Table 7
T*/T
E/G,
B 2.5 20 30 50
0 1.0030 1.0239 1.0355 1.0585
b1 0.2 1.0005 1.0213 1.0327 1.0555
—_—= 0.4 0.9930 1.0132 1.0245 1.0467
2a 30 0.6 0.9808 1.0003 1.0110 1.0326
0.8 0.9647 0.9831 0.9934 1.0139
1.0 0.9449 0.9622 0.9720 09910
Table 8
T*/T
B
0 1
E/G.=0 02 0.9975 Note that absurd results are obtained
0.4 0.9900 by Berger’s method for movable edge
06 09779 conditions.
0.8 09616
1.0 0.9416
OBSERVATIONS
(1) Tt has been observed from the present study that

E T* h .
(a) for the same value of R decreases as % decreases, both for immovable as well as
a

movable edges.
*

h . . .
(b) for the same 20 q Increases T increases, both for immovable as well as movable
¢

edges.
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E T* =
(c) when — =0, - decreases as f3 increases.

(2) The results obtained in the present study for immovable edges are in good agreement
with those obtained by Wu and Vinson [11].

(3) Tt appears from the tables that the effects of rotatory inertia and shear deformation
are more prominent in the present study than those obtained by Vinson and Wu. This is due
to the fact that Berger’s equations used by them involve the neglect of the membrane shear
deformation.

(4) Results for movable edge conditions have also been computed but cannot be
compared because of the absence of any known results.

(5) A single differential equation obtained in the present study is able to predict the effect
of transverse shear deformation and rotatory inertia on large amplitude free vibrations of
moderately thick plates of movable as well as immovable edges with ease and accuracy
while Berger’s approximation yields fairly good results for similar problems with immov-
able edges only. This is certainly an advantage of the present study.
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INFLUENCES OF LARGE AMPLITUDES, SHEAR DEFORMATION AND
ROTATORY INERTIA ON AXISYMMETRIC VIBRATIONS OF
MODERATELY THICK CIRCULAR PLATES: A NEW APPROACH

1. INTRODUCTION

A new approach is presented for the determination of the axisymmetric vibrations of
moderately thick circular plates by using Reissner’s variational theorem [1] along with
1 Banerjee’s hypothesis [2,3]. A set of governing equations including the effect of shear
deformation and rotatory inertia is derived. The case of a clamped circular plate is studied

..in detail. Numerical results have been computed showing the effects of shear deformation

and rotatory inertia and these are compared with other known results. The case of a
simply supported square plate has been discussed in a separate paper [4] and the results
obtained there have been found to be in excellent agreement with other known results.

2. ANALYSIS

Consider a circular plate of radius a. It is assumed that the origin is located at the
centre of the plate and the deflection is of the same order of magnitude as the plate
thickness.

Using Banerjee’s hypothesis [2], taking the variation of ¢ as given in reference [1],
equating it to zero, eliminating M,, M,, M,, etc., as given in reference [6] and finally
transforming the set of equations into polar co-ordinates, one obtains the following set
of differential equations governing the vibrations of the circular plate:

2 2 212
[i;J,li][a w+18_v_v]+ 6 K(E)ah r"_l[aw uaw] 0
orY rarjLer’ ror] S(1-»?) G,/ 12 ar’ r
N N R
5(1-v%) " \G./Lar* ror]l\or®* rar/\or or* \ ar

_QL_[" w+l 6w] & (1) 1[8 w+v aw]

5G. 0t Lor* ro arr r oar
6A[ (w1 aw\[aw\® _&°w[aw\’ 12 &w
-SlH—=+-—=—) +2—=[—) |+=—= —=
hz[(ar2 r ar)((')r) 6r2(6r> +h2C2 ar? 0, (1)
-212
s a@h du, v, 1/ow
) =—4v—+
g 12 (1) ar Vr 2<6r (22)

For movable edge conditions
a=0. (2b)

Of primary interest here is the fundamental mode of vibration of the plate. For a
circular plate of radius a, the deflection function is taken to be

w=Ayr(1)(1=r"/a’)> (3)

Clearly this form satisfies the clamped edge conditions (w),_,=0 and (éw/dr),_,=0.
Putting expression (3) in equation (2a) and integrating over the area of the plate gives

a’={1536v/a"*"(v+3)(v+5)(v +7)}( A}/ h?). (4)
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Putting expression (3) in equation (1), considering expression (4) and applying Galerkin’s
error minimizing technique then gives the following differential equation for the time
function 7(t):

6 a LA A} v
2 ZE )+ 79872 K
[5 h2C2 5G. ]TUH 27(0) [864 o872 (G) S-S +T)
A(Z) 14 < E) 1 AO
+ . +10-24AK iy
1541-2224 ah? (v+3)(v+5)(r+7) (1-v Y a*
A A,
+7- 3142; —] (1) =0. (5)

The solution of this equation subject to the boundary conditions 7(0)=1 and 7(0) =0 is
well known and is obtained in terms of Jacobi’s elliptic function. The ratio of the non-linear
and linear time periods is

T 2K h? v —2
T:—;[l/{l-l—Sl 1755K( )a (1-,,2)(p+5)(v+7)

096062 (_)@_ 144-4986 v -
(1-v?) aZB (v+3)(r+5)(r+7)
1/2
+O-6857062AB2H . (6)

3. NUMERICAL RESULTS

Numerical results have been computed both for movable as well as for immovable
edge conditions for clamped circular plates, and are presented in Table 1. The ratios of
the non-linear time period T* of vibration, including the effects of shear deformation
and rotatory inertia, to the corresponding linear period T of the classical plate (not
including shear deformation and rotatory inertia) are shown for various values of the
thickness parameter (h/a =0-20,0-15,0-10, 0-05) and material constants (v =0-3, A =0-18
[2], K(E/G.)=8-1971, 8-813339, 10-4869 and 19-3165) at different non-dimensional
amplitudes of vibration (8 = Ay/h).

4. CONCLUSION

A single difterential equation obtained in the present study is able to predict the effect
of transverse shear deformation and rotatory inertia on large amplitude free vibrations
of moderately thick circular plates for immovable as well as for movable edges with ease
and accuracy. This is certainly an advantage of the present approach. Results for movable
edges cannot be compared in absence of any known results.

Department of Physics, P.D. Women’s College, R. BHATTACHARYA
Jalpaiguri, West Bengal, India

Education Office, Jalpaiguri Division, B. BANERJEE
Government of West Bengal,
New Circular Road, Jalpaiguri, West Bengal, India

(Received 6 March 1989)

¢ REFERENCES

1. E. REISSNER 1950 Journal of Mathematics and Physics 90-95. On a variational theorem in
elasticity.



188 LETTERS TO THE EDITOR

2.

3.

4.

B. BANERJEE and S. DUTTA 1981 International Journal of Non-linear Mechanics 16, 47-52. A
new approach to the analysis of large deflections of thin plates.

B. BANERJEE 1984 Journal of Thermal Stress 17 (3-4), 285-292. Non-Linear analysis of polygonal
plates under non-stationary temperatures.

B. BANERIJEE and R. BHATTACHARYA, 1989 International Journal of Non-linear Mechanics (to
be published). Influences of large amplitudes, transverse shear deformation and rotatory inertia
on free lateral vibrations of transversely isotropic plates—a new approach.

. K. KANAKA RAJU and RAO VENKATESWARA 1976 Journal of Sound and Vibration 47, 179-184.

Axisymmetric Vibrations of circular plates including the effects of geometric non-linearity, shear
deformation and rotatory inertia.

. C. 1. Wu and J. R. VINSON 1969 American Society of Mechanical Engineers, Journal of Applied

Mechanics 36,254-260. Influences of Jarge amplitudes, transverse shear deformation, and rotatory
inertia on lateral vibrations of transversely isotropic plates.

-

P L



SCHOOL OF

ENGINEERING @
& APPLIED SCIENCE

DEPARTMENT OF APPLIED
MATHEMATICS

University of Virginia

Thornton Hall

Charlottesville, VA 22903-2442
804-924-7201 FAX: 804-924-6270
804-982-HEAR (TDD)

June 12, 1990

Professor Rekha Bhattacharya
Lecturer in Physics

P.D. Women’s College
Jalpaiguir, West Bengal
INDIA

Dear Professor Bhattacharya:

I have today forwarded your MS (#90122) with Banerjee, "Influence of Large Ampli-

tudes ... " to Professor Keer for publication as a Brief Note in the Journal ef Applied
Mechanics. Congratulations.

Sincerely yours,

A3

Ao

. G. Simmonds, Associate Editor
Journal of Applied Mechanics

JGS/kh



JOURNAL OF SOUND AND VIBRATION

Senior Editor: PE. DOAK, Institute of Sound and Vibration Research, The University, Southampion SO9 SNH,
Lugland. lelephone: Southampton (QUS) 392004 Fax: (07655 599959

Editorial Board: CW. BERT  HO. BERKTAY : A. CABELLL: B.L. CLARKSON : DG, CRIGHTON : E.H. DOWELL:
1. ELISHAKOFF : C. GAZANHES : GM.L. GLADWELL : M. HECKL : DJ. JOHNS : AW. LEISSA:
S. LINDBLAD : DJ. MEAD : A. POWELL : CG. RICE : J.B. ROBERTS : D.G. STEPHENS:
W. SZEMPLINSKA-STUPNICKA : §.M.T. THOMPSON : A. TONDL : G.B. WARBURTON: RG. WHITE : G. YAMADA

Please quote in all correspondence:

P/38/90(L) 3ist July 1490

Professor B. Eanerjee

Deputy Regional Education Officer
Jalpaiguri Division

New Circular Road

Jalpaiguri, Wesl Bengal

India,

Dear Professor Banerjee,

Thank you for your letter of 19th May 1990. [ am pleased
to say that the manuscript is acceptable in its present "Letter to
the tiditor"™ form, I have edited it and sent it to the publishers.
Prools should be ready in approximately two months.

A copy of your covering letter has been sent to the second
referee, for his information.

Yours sincerely,

5’7 (N

P.E. Doak



