
CHAPTER-II 

ACTIVE RC REALIZATION OF GROUNDED INDUCTOR WITH 

OPERATIONAL AMPLIFIERS 

2.1 INTRODUCTION 

Inductor simulation in active RC schemes has been of consi

derable significance for designing analogue signal processing net

work of special types and slnewave oscillators for use in the areas 

of instrumentation, communication and control. Considerable number 

of literatures are now available on realization of specific type 

1-A of inductors such as linear, bilinear, ideal etc . These schemes 

use different types of active blocks for the realization. A single 

scheme realizing the different forms of inductors through minor 

modification in passive or active parameters should however be a 

welcome addition to the simulation method. Such a scheme becomes 

not only very versatile, its usefulness is also widened to a large 

extent. Such a scheme is presented here which uses two operational 

amplifiers, one used as an integrating amplifier of low closed 

loop gain and the other as a negative immittance converter (n.i.c). 

The proposed circuit has been analysed to yield linear, bilinear 

inductor and also ideal inductor of arbitrarily large Inductance 

value. The presence of an n.i.c. in an appropriate position allows 

the circuit to behave as an oscillator with a suitable capacitor 

at the input port of the scheme thus demonstrating the usefulness 

of the realized inductor scheme. The experimental results have fully 

corroborated the theoretical calculations for the scheme as an 

inductor or as an oscillator. 

2.2 THE RL IMPEDANCE^* 

The basic circuit of the proposed scheme is shown in figure 2.1. 
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Fig.2«l The schematic circuit 
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Following equation are obtained from this circuit, 

and 

i = (v^ - 7^)72 

(v^ - ^3)72 + (V2 - ^^)y^ " 

<\ - S \ ' 3̂̂3 

V2 = AV-, 

" (V3 - V )1 x'r 

(2.1a) 

(2.1b) 

(2.1c) 

(2.2) 

Since V » V3 from equation (2.1c) one may write 

(2.3) 

Substituting Vg and V from equation (2.2) and (2.3) into equation 

(2.1b) one obtains 

72 ^ Ay^ 

y-i ^ y^ - KT ̂3 

Finally with this V,, equation (2,1a) changes to 

i - v., 
yiy2(i-A) - 7^y2y3 

J -

yi * ̂ 2 - r7 ̂ 3 

Such that the input impedance Z is given by 

To 

^1 

y2{yi(i-A)-^y3J-

If the admittances y^, y2 and ŷ  are of the form 

y^ = a^s + b^ 

i ' ̂ i 
^ 1 

i ^ i » 1, 2 and 3 

(2.4) 

(2.5) 

(2.6) 
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and (1-A) = mj^1, equation (2.5) may be rewritten as 

r r 
(̂1 ^ ̂ 2 - rf ^3^^ " ^N •" ̂ 2 - r f b ^ 

2 = -• • ' .̂  _ •' 

r 2 2 1 
(a^s + b2)'j (ma^ - Y" ^3'^^ "*" ̂ "̂ 1 ' "r" ̂ 3M 

2.2.1 THE BILINEAR RL IMPEDANCE 

For a bilinear inductive impedance function Z can be 

represented as 

(2.7) 

Z - '^11 (^ (2.8) 

with a constraint w \ ]| • 

Comparing equations (2.7) and (2.8) the following identi

fications can be made 

(â  . ^ a ^ ) . B 

(b̂  ^^2 - r7^3^ - ^ 

rp ^ { (2.9) 
b2(ma^- — a3) = H 

^2 

and 
b2(mb^- p- b^) - G 

^2 ' 0 

It may be noted here that for equation (2,7) to represent bilinear 
Tp 

impedance function, either a^ may be made zero or (mâ  - — a,) may 
^ < r̂ . J 

be made zero. When a2 is made zero there is reduction in circuit 

components and no rigid constraint is put on m, rp, r-, â  and a,. 

This obviously is an advantage from the point of view of realization. 
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Where as for the other alternative (mâ  - p- a,) - 0 and a 2 / ̂ ' 

to make the denominator of equation (2.7) compatible, generally 

leads to extra complexity and this may not always be advisable 

for a stable driving point impedance function realization. 

Combining equations (2.6) and (2.9) the impedance function 

Z is obtained in terms of the circuit parameters. Thus 

^2 . ^ . ,. . . ^ ^2 
R̂ R2R3(Ĉ  - -^ 03)5 + R3(R̂  + R2) - ~ ^1^2 

r r 
R̂ R3(mĈ  - ̂  C3)s + mR^ - p^ R̂  

Z = L--- ! (2.10) 
2 „ x_ . _^ ^2 

Choosing now, 
R̂  R2 

R = = R̂  
and r ) (2.11 ) 

1 
C = -7- = C^ 

equation (2.10) may be rewritten as 

^2.^ ,^.^^ . ..,«.../2 

Z-R~^ p :! (2.12) 
•P̂ y3- ffi 4. sy3Rc(^ - mS) 

which may be factored into real and imaginary parts as 

Z = R 

= Rj, + JUL;, (2.13) 
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From equation (2.13) the resistive and inductive components are 

obtained as 

R'u — R — ~ _ 

2 o N2 , 2^2^2„2/2 

and 

.2 ̂
^(^2-8)(;s^..)-^(^ - .s){;s^y. (/«^y)} 

L^ « CR 

Both R, and L. the resistance and inductance of the impedance Z 

are frequency dependent. It can be shown that suitable sets of 
rp 

^f/ifyt S SLĴCI — may be found for stable bilinear RL impedance 

function Z. Figure 2.2 shows R^ - frequency and L - frequency 

curver as obtained from equation (2.14a) and (2.14b) for an 
rp 

identical set of the parameters mj/djy, S â d̂ two values of 
••i • 

and R = 5K ohms and C = 0.094^F. 

The Q factor of this impedance Z is given by 

Q^ =a)CR 
{77/^y- (/3.y)J-(^/3- m) .coyyRV(I^.S)(^. ms 

(2.15) 

^2 Q^ may be increased by adjusting — , m, >6,y and S maintaining 

the condition indicated by equation (2.8), For specific parameters 
^2 
p- > Jn, /̂ , 'V and S , CL is maximum at an angular frequency 

1 /-(^/^y-(/^-y)](7f/^-°) 
"b ' ^ \ ^z . -2 <2-i6) 
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Fig.2.2. The RL ~ Frequency and LL̂  - Frequency curves for 

bilineor cose: (A) tifxy • — ( B) r^/r,»1 
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and the corresponding Q, is given by 
max 

max 

(2.17) 

2.2.2 THE LINEAR RL IMPEDANCE 

It is seen from equation (2,12) that if the capacitance 

C^ is adjusted such that 

S- ^ (2-18) 

the impedance Z is given by 

Z= Rb-^,——£— + sCR'̂  ^ 2 (2.19) 

( ^ s - 1 ) (yds- 1 ) 

Equation (2.19) is linear in R and L and the resistance and 

inductance values are then given respectively by 

^y-^(/*r) 
R, = R S ^ (2.20a) 

^ (/dg-D 
and r̂  r„ 

"i - ™ (^s-1) ''•^°*'^ 

The Q factor of the realized inductor is therefore 

Oi = CR p^ 3 (2.2-1 ) 
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Q-, is a linear function of frequency and is therefore maximum at 

CO-<C , However both R-, and I^ are independent of frequency and 

the simulated inductor has the characteristics of real inductors. 

Adjusting the parametersy3 and y and maintaining A S ^ 1 the resis

tive part of the inductor can be made arbitrarily SBiall and the 

Q factor at any frequency may be made arbitrarily large. Condition 

(2,18) can be realized by varying the phase inverter gain, keeping 

C^ constant, 

2,2,3 THE IDEAL INDUCTOR 

From equation (2.19) it may be observed that if, 

(1.1)=;2 (2.22) 

the simulated inductor is ideal with its inductance value 

L^ = CR^ !-̂ : (2.23) 

(/J-l)(/3-^) 

The ideal inductor has infinite Q-factor at all frequencies. However 

its inductance value can be altered by suitable choice of parameters. 

It is interesting to note that the inductance can have very large 

value including infinity for reasonable values of the parameters. 

Figure 2.3 shows the L^-y^ curves for three different values 

of S and .p-- = 1. The parameters B , V and S can be adjusted within 

reasonable limits to realize a very large value of L.. 
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2.2.4 SENSITIVITY 

The sensitivity study of the realized inductor becomes very 

important as the usefulness the inductor depends much on this sen

sitivity. For brevity the sensitivity of the ideal inductor is 

only considered. Instead of calculating the sensitivities to 

different active and passive parameters, the parasitic concept is 

introduced to obtain the rationalized deviation of the impedance 

when ideal inductor realization constraints are tolerated. From 

equations (2.12) and (2.22) the constraints are, 

r 2 -S 

and {2.2h) 
^ ^ 1 1 

for an ideal inductor of value 

^i = ̂ ^^ FT" (2.25) 
m 

1' 

We now introduce the parasitics 

C = -—- - m S 
' 1̂ 

and { (2.26) 
r ' 

2 r̂  V r 

so that 

Z = R 

r. e ^ sySyCR i^-"^) 

^2 — ^ - m + s^CR^^ 



= R 
^2- jy<^o ( 7 7 - ^ ) 
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(2.27) 

where CO^CR = CÔ  

Ideally €. and t. are nonexistent (i.e.zero). For their tolerance, 

the inductor becomes bilinear. Following the definition of the 

magnitude sensitivity function 

MS tie) 
-he 

6 
TTeT 

one g e t s 

H 1̂ 

^2= 0 
—2 ^ 

o 1 ^^iT/ ' - m)' 

(2.28) 

( 2 . 2 9 ) 

which has a maximum va lue of u n i t y wi th <^ -•• **C and 

Z(^P) MS"^ 2 
n / ^ 2 2 2 / 2 Cx2 

(2.30) 

which has a maximum value of unity with CXi —>• 0. This indicate 

that the sensitivity of the scheme is only nominal. It is interesting 

to note that the sensitivity of the inductance value L. is given by 

MS 4 ( ^1 .2 ' - ' " ^ -0 1 
•1,2 "r~r (2.31) 

( r 7 ^ - - r - ^ o ^ i 

so that, with Cx>̂  6^ <^( l 2 ^ _ ̂ j2^ ̂ 3^1 ^^ ̂ ^^^ 
2 2 

e small. The 





30 

maximum value of MS is 2 when CO -^ «C * 

2.3 FILTER fa:ALIZATION 

To demonstrate the application of the simulated inductor a 

notch filter is realized as shown in figure 2.4, 

The transfer function is easily calculated as 

o (s) « (2.32) 
i 2 9 2 
^ s f CĈ R*̂  + sC R^ + 1 

H O O O 

such that the notch frequency and the selectivity Q are given 

respectively by 

and 

ov o 

It is interesting to note that the Q of such a filter is contro-

lable independent of CO^ by adjusting R . 

2.4 THE OSCILLATOR 

When the realized Inductor Is ideal (Q ="C) and has a 

sufficiently large value, a capacitor C connected across port 

1-1 (figure 2,1; would lead to realization of low frequency 

oscillator with a frequency of oscillation, 

f = 
2riyT7T 

K— / --T: r^ (2.35) 
2»^^R / (̂ -§) CC 
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A separate active device is not necessary but it is necessary 

that the passive parameters adapted in the circuit should lead to 

the condition of oscillation in terms of the circuit stability. 

This however is not difficult to realize in practice and in fact 

is obtained by interchanging the input terminals of the operational 

amplifier used as n.i.c.(cf. figure 2.4). The f-C curves for two 

different values ol (^ are shown in figure 2,5. 
/ 

2.5 RESULTS 

The measured values of L, and R, with varying f, for the 

bilinear case are shown by triangles in figure 2.2 for different 

parameter values along with the theoretical curves. 

With the simulated ideal inductor an oscillator was set-up 

by connecting capacitor C of different values across port 1-1 

(figure 2.1). The measured frequencies indicated by triangles 

are plotted in the f-C coordinates along with the theoretical 

curves in figure 2.5 for two different values ot & . The results 

plotted in the curves show good agreement with the calculated 

values. 

2.6 CONCLUSION 

The proposed circuit is a very generalized scheme of inductor 

realization as may be seen that with passive parameter adjustment 

it is possible to realize bilinear, linear and ideal inductor. In 

the case of ideal inductor it is seen that it is possible to 

simulate Inductance of any value including infinity. Besides, 

realizing typical filters with the simulated Inductor, a variable 
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low frequency sine-wave oscillator very often required in instru

mentation system can also be conveniently constructed with it. 

The tolerance in adjustment and matching of components needed, 

is also shown by the sensitivity analysis to be not very high. 

The circuit is well adaptable for integrated circuit form, with 

only a few external components required to adjust the operation 

in the desired mode. 

The grounded inductor, non-ideal or ideal is not suitable 

to realize an arbitrary filter for signal processing purposes. 

Floating inductor is much more versatile in this respect, A method 

of realizing a low loss floating inductor is described in the 

next chapter. 
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