CHAPTER-VII

NON-LINEAR OSCILLATIONS USING ANTISYMMETRIC TRANSFER
CHARACTERISTICS OF A DIFFERENTIAL PAIR

71 INTRODUCT TON

Oscillations in a regenerative circuit may be either in
harmonic or relaxation mode, generating sinusoidal or non-sinu-
soidal waveforms respectively. The previous chapter has been
devoted on a practical temperature and supply voltage insensitive
sinewave oscillator using the self saturating characteristics of
a transistor differential pailr. The same circuit can be used to
generate quasilinear and relaxation oscillations. Van der Pol1
predicted that it is impracticable to obtain stable harmonic
oscillation as well as relexation oscillation from the same
system as relaxation mode of operation is characterised by high
degree of non~linearity and low order of selectivity and as such
has requirement contrary to harmonic mode operation. Accordingly
oscillators were partitioned into two distinct classes and treated
separately, This precluded the possibility of having an unified
analysis based on which the performance of a regenerative system
could be predicted over the entire range from harmonic to relaxa-
tion mode and the parameters identified for adjustment for a

particular mode of operation and wave form generation,

Adjustment from relaxation mode to stable harmonic mode of
oscillation is, however, possible with a low-gain margin if proper
modification is introduced with the optimized values of load and
coupling elements together with the non-linearity of the antisy-

mmetric trensfer characteristic of a differential pair whereby the
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output approaches the limiting value asymptotically. The
non-linearity of the self-saturating characteristics 1is assumed
to be a transcendental function of hyperbolic tangent type. An
inverse tangent epproximation of the smplifier function2 was
earlier proposed with limited success in predicting the practical
osclllation waveform when operated at large amplitude, The anti-
symmetric transfer characteristics introduces an instantaneous
amplitude defining mechanism with reduced second harmonic distor-
tion and makes the system self~-compensating as regards parameter
variation due to the change in ambient temperature and supply

3

voltage variation”, and much less critical for continuous control

of operation from highly relaxed to harmonic mode, Realization
of such an oscillator is interesting as it has a wide scope of
control of its frequency and waveform making it useful as a test

slgnal generator in varlous areas.

In this Chapter a comprehensive analytical approach to
such a regenerative system with a particular type of non-linearity
'of the active circuit is presentedq*. Tﬁrough this approach its
performance can be predicted over the entire range of operation

and its operation can be controlled in a desired manner,

7.2 THE SYSTEM EQUATION

Instead of single parameter non-linear equation of van der
Pol a more generalised equation of a non-linear oscillator has
been derived here. This equation accounts more closely for the

sharp rise and fall of the output voltage having a semi-exponential

decay in between the relaxation, which cannot be obtained by the
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solution of the van der Pol equation in which the decay shows a
convex nature, For a wide range of operation the non=-linearity
no longer remains restricted to a cubic function and probably
this gives rise to the anomaly. It is now possible to suggest
how the relative values of the two parameters may be changed to
adjust the oscillation in a particular mode and generate a

specific type of‘wavefdrm.

Consider the oscillator shown in figure 7.1. The circuit

equation is

%1{6‘*%.[(.;'2"*(:2%%) d% +C1{%%+%(§5+C2-g%)}

+§'£+C2§%310 (701)
Since the non-~linearity of the self-saturating characteristic of
the amplifier is utilized, the output current io will be a non-

linear function of the input voltage e. Writing

i, = a tanh (be) (7.2)

as assumed and substituting equation (7.2) in equation (7.1) and

differentiating equation (7.1) with respect to time and with the
following substitutions :

(a) R
(b) C1
(c) ¢, 5
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(d) n = N, + N, + NN,
(e) G = é% (1 +m+mn, + mn, ) (7.3).
2 1
(f) ) = — 7
equation (7.1) reduces to
1 d% 2 1 de
a;?- a;g + (G - ab sech be)é;2~;E T +re=0 (7.4)

Using the normalized parameter T = @t equation (7.4) changes to

2
d“e m ab 2 de
—s - (ab - G) R/ = (1 - -a-B—-:T tanh be) a-",,c + e =0 (1-5)

The two parameters € and/3 are defined as

€= (eb-0)r/E (7.68)
A= w2r ab (7.6b)

Normalizing the parameter e = % , equation (7.5) now leads to the

generalized expression of the non-linear differential equation for

the regenerative system as

2

v _ ¢ 2,y dV

dV . €1 - BtannV V=0 7.7
at? ( /Ban ) Tt (7.7)

Since equation (7.7) is a trancendental equation, a closed

form solution is not possible, except for the sinusoidal case when
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€ = 0. The numerical solution of the equation for non-sinusoidal

~

wave is obtained with the help of a computer for different values

of € and/g\

Te3 LIMITS OF PARAMETER VALUES

The parameters lnvolved in constituting €>and/3 are R, m,
n, G and ab, of which R, m, n and G are obtained from the passive
parameter values and the factor ab is the slope of the normalized
non-linear self-saturating transfer characteristics at the origin.
Any values of the above parameters are not permissible and there-
fore it is necessary to set the limits of € and/ﬂ‘values. It can
be seen from the following sections that € and/écannot take~up

any arbitrary value but must bear a relationship amongst themselves.

7.3+1 RATIO OF THE RESISTANCE m

Ideally(3<3n<;0, but for least component spread and brevity,

m is assumed unity. Hence from equation (7.3a)

Ry = R, =R (7.8)

7.3.2 RATIO OF THE CAPACITORS n, and n,

Parameters n, and n, may have any positive value. It is

evident from equation (7.3d) that n will have different values
for various choices of n1 and n2.

It can be easily shown that

J
=

Mooy = g (2 4 n1) when n, 5 (7.9a)
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and
noso =0y when n, = 0 g

(7.9b)
o )

]
3
J

when n1

Rigorous analysis do not permit either n, or n, to take

up a zero value as Cy or C, can never be zero, because even if
<o

lumped capacitors are absent the output, input and stray capa-

citances will contribute to C1 and C,, even though n, and n, may

Fol ,] [o%
be very small,

For simplicity n, has been assumed zero whenever necessary
and a finite positive value has been assigned to N, . This could
also be reversed without affecting the results so long as m is

assumed unity cf, equations (7.3d) and (7.3@)] .

7.3.3 THE CIRCUIT CCONDUCTANC G

From equations (7.%e) and (7.8)

The parameter G is defined as

G =1 (2 ¢ny 4 1) (7.10a)

or

n, +n, =GR - 2 (7.10h)

Thus for n, +n, = constant, G can have only one value larger

“

2 .
than X as n,‘ + n2 70.

For n, + n, = constant, m = 1, conductance parameter G is

also held constant. Accordingly the limits for /and € are evalua-

ted holding this constant.
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7.3.4 THE PARAMETER ﬂ

From equation (7.6a)
A= ~ s (7.11)

where ab is the slope of the antisymmetric self-saturating charac-~
teristics at the origin, this is constent for a particular opera-

ting condition,

Under the assumed conditions it has been shown that G can

have only one value, hence /Bwill also have only one value,

7.3.5 THE PARAMETER €

From equations (7.6a)and (7.8)
€= (ab ~ 00) R\/}]f (7.12)

Under the assumed conditions the value of‘E will only vary

with n and lie within a rang and €
d lie within range Emax 1d nin dependent upon Nin

and n . respectively. Combining equations (7.11) and (7.12) the

maximum and minimum values of 6 are given by

€ - abR 4 (7.13a)
max /4 nmin
abR 1
émin = = n (7’13b)
maxy

From the expressionlgfit is seen that there is another
constraint on the value of ¢, The value of G cannot be more than

ab, in which case € would be negative.
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The parameters G'andlﬂ are quite interlinked. However, the
effect of increasing € is to increase distortion or harmonic
contents of the wave and the effect of increase in/Bluusa more
pronounced effect on amplitude. This is well corroborated by

computer solution,

7.%.,6 EFFECT OF CONTROL OF € and/or/g
Since a two-parameter equation has been derived for the

oscillator system, it may be of interest to note the effect of

(a) Changing € keeping/a constant,

(b) Changing/é keeping € constant,

and the conditions that are required to be met for such cases,

The first case has already been covered in subsection 7.3.5.

For the second case, from equation (7.13) one may write
/Q/n.z-g- = constant, where K = abR (7.14)

Since both /gand n are dependent on n, and n, the range
of wvalues of these two quantities are to be found for which the
product éﬁbﬂrvdll remain constant and equal to K. From equations
(7.10) and (7.11)
abit
ﬁx(ahR- 2) (n, + n,)

[N

(7.15)

The maximum and minimum values of/H are therefore obtained by

varying n, and n, as
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i

_ abR
/gmax = R - 27 - T, when n, = 0 (7.16)

and

B

_ abR N
/3min = TEBR - 2y = mm, MM T M2 (7.47)

Obviously n, in equations (7.16) and (7.17) is not the same. Its
values for the two cases can be evaluated from equations (7.14)
and (7.15) involving € besides a, b and R. Correspondingly /gmax
and /gmin are then obtained as
/g AbR

Mt X - :
(abR = 2) - {2@%—2) + G*}-}ﬂ(abf{-z)e“ +eh

1

(7.18)

abR
min forid et pooy sty S0, SO
ﬁ (abR {Z(abR-—Z)-t- € 2}‘ I\/A(abR-2)62+e“‘-te2(abR-2)2

(7.19)

7.4 THE SOLUTION OF THE DIFFERENTTAL EQUATTON

The computerized solution of the differential equation
/Tequation (7.7)_7 is bused upon the modified Runge-Kutta method
of numerical solution and its flow chart is given in figure 7.2,

=

7e5 COMPUTERIZED SOLUTION AND EXPERIMENTAL RESULTS

Three sets of computerized solutions and experimental results

for verification were obtained for

(a) near sinusoidal oscillation
(b) near relaxation oscillation

(c) hard relaxation oscillation.
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Fig.7.3. The experimental circuit .
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Fig.7.4. The antisymmetric self-saturating
transfer characteristics of the
differential pair.




The experimental circuit, as shown in figure 7.3 wus
initially adjusted for obtaining the slope ab, of the antisy-
mmetric self-saturating characteristic of the differcential palr
shovn in figure 7.4.

The different types of oscillation were obtained by
chenpging the ratios of the capacitors i.e. n, and n, only, and
the following parameters were kept constant at the denoted values

for all the three cases.

-
fty = 1.35k ohms; m = 13 C = 0.013/%F and ab = 27.02 x 10 “mhos.

TABI E=~7,1

CONTROLLED PARAMETER AND DERTVED PARAMETER VALUES

Nature of Controlled Derived Parameters
Oscillation Parameters
™ o n G A €
: . -3
Near Sinusoidal 10 10 120 16,30x10 | 2,520; 1,327
z
-5
Near Relaxation 10 0,0% 10 8.90x10 | 1.490] 7.740
-3
Haord Relaxation 0.1 0.118 0,23 1.63x10] 1.069{ 74 .600

Table=7.1 gives the controlled parameter and derived parameter
values and Table~7,2 compares the calculated and experimental

values of the frequency and amplitude of oscillation for the

thiree cases,
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Fig.7.5. Waveforms for near sinusoidal oscillation.
{a) Theoretical: (b)experimental: amplitude

scale 100 mV per division.
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Fig. 7.6. Woveforms for near relaxotion oscillation.

(o) Theoretical: (b) experimental: amplitude
scale 200 mV per division.
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CALCULATED AND EXPERIMENTAL VALUES OF FREQUENCY AND
AMPLITUDE OF OSCILLATIONS

Amplitude of Oscillation| Frequency of Oscillation
Neture of Volts (Peck) kHz
Oscilletion ¥
Calculated | ExperimentaljCalculated | Experimental
Nezr Sinusoidal 0,087 0,095 0,935 0,980
Necr Relaxation 0,197 0,200 2,050 2.150
Hord Relaxotion 1.340 1.500 5.850 5.850

* Trequencies were measured with a counter

Though the assumed non-linearity gives a transcendental

equation and a closed=form solution of equation (7.7) is not

possible, from the results of Table~7.2, 1t is evident that the

experimental results and theoretical numerical solution agree very

well in all modes of oscillation, which is not so if the non-

linearity is assumed to be of lesser complexity.,

Figures 7.5(a), 7.5(b), 7.6(a), 7.6(b) and 7.7(a), 7.7(b)

show the theoretical and experimental wave shapes for the three

CcCaAsCE

7.6

EFFECTS OF € AND Zg ON DISTORTTION AND AMPL1TUDE

It has been stated that the effect of the parameter/é has a

predominant effect on amplitude and € on distortion and this has

been demonstruted in the curve of figures 7.8 and 7.9, Figures

7.8(a), 7.8(b) and 7.8(c) are plotted for constant /B (/9= 8.,14)
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Fig.7.8. Waveforms obtained for constant

A (L=8.14) and varying: (a)€ =0.818,
(b)€ =0.485; (c) € s0.281.
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and varying € whose possible limits of variation are O.81é>é>0.281.
From the curves it is observed that the amplitude remains constant

but the distortion increases slightly with increasing values of €.

The next set of curves are plotted for constant € (€= 1)
and varying/g over the possible limits 6.7é>/3;> 3.007. Compu=-
terized solutions were obtained for € = 1 and /ﬂ = 3,2 and /6 = 4,8
and have been plotted in figures 7.9(a) and 7.9(b). It is observed

that the amplitude decreases with increase in the value of/é-

5%
7.7 0 THLE VOLTAGE CONTROLI WD OSCTLLATORS

It has been shown so far, that oscillations in the system
described may be controlled over harmonic to relaxation mode by
controlling a passive parameter G obtained from the load and
coupling elements. If G is held constant the mode of operation
can still be controlled by varying the slope ab (at the origin)
of the transfer characteristics. This slope can be varied ouite
cimply by changing the operating blas voltage of one of the
transistors of the differential pair and keeping that of the
other constant. This in effect change the symmetric operation of
the pair to asymmetric operation and the change in the average
slope vories the parcmeter € in equation (7.6a), This is effec-
tively a voltare controlled oscillator (VCO) whose operation is
gradually changed from harmonic mode to quasiharmonic mode,
thereby changing the oscillation frequency due to harmonic
depression ., However for a large frequency deviation, the
distortion level still remains quite low and realization of a

practical VCO is therefore envisaged.
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The relation between the slope and the differential change
in the bias voltage has been derived from the transfer character-
istics /Tequation (7.2)_7 where e now represents the differential
change in voltage and is replaced by u in subsequent discussion
for clarity. Using this, a computerised solution of ecuation (7.7)
is performed to obtain the frequency of VCO, The frequencies are
also measured, The results are prescnted in Table-7.3 along with
the results obtained by using the method of small parameters6.

TABLE=7.%
1050pF, R_= 2K, Ry = 3.78K, R,= 2K, n = 9.476, m = 0,654,
8.509x10 uho, R, = 2500, hy = 500, 1,,=0.77mA; Ref.Fig.7.10(a)}

o fe)
U

]

¥
Normulized frequency f/f
milli milli 0 Measured
Volts Siemen Computer| Method of} Experi- distor-
Solutliont small mentol tion
parameter dB
1.78 10,240 0.,9683% 0.,948% 00,9691 20
7480 10,353 0.9579 0,9417 0.9527 28
1%.90 104591 0.9435 0,9252 0.93%0 25
19.97 10,980 0.9241 | 0,8947 0,9034 22
26,06 11.527 0.9029 0.8428 0.8870 20

* f, = Sinusoidnl mode frequency wt balanced
operation /T cf., enuation (7.22) 7.

7.7.17 THE CIRCUIT AND THUE ANALYSIS

The circuilt using a matched peir of transistors (TD 101)
and its partial equivalent for deriving the expression for the

differential voltage in relation to the constant emitter current



Fig.7.10 {(a) VCO circuit

(b) Partial equivalent circuit

of 7.10 (a)
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and quiescent condition are shown in figures 7.10(a) and (b)

respectively., The voltage source V1 and resistance mR are the
Thevenin generator and resistance as seen by the base of the

transistor Q1. The differential voltage is easily derived as

(see appendix 7.1).

uEVym Vo I SR T IEE TT R, (7.20)

where hfe is the common emitter current gain of the transistor.

From the lofical development laid out above and from the

transfer characteristics the desired relation is easily obtained
as

2
£ = ab = g  cosh™bu (7.21)

where Eq is the slope at the origin for balanced operation with
rciven operating conditions, Combining equation (7.20) and (7.21),
g can be obtained for different u, the correspondines € and /Qare
evaluated by using equation (7.6a) and (7.6b) and equation (7.7)
is solved to obtain the frequencies. Tt should be remembered that
every differential change in u produces a new asymmetric operating
point with the changed value of g, Parameter g is obtained by

considering average fixed value of b obtained from the balanced

operating condition,

The asymmetric points may be obtained from the intersections
of the graphs of equations (7.2) and (7.21). Presumably this shift
in the operating points leads to distortion in waveform; however

when the shift is kept small, sufficiently wide frequency variation
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with low distortion is obtainable, With asymmetry thus limited
the assumption of balanced operation shows good correlation

between theoretical and experimental results as shown in Table-=7.3,

Since operation is limited to the near harmonic mode, one
is tempted to approximate equation (7.7) to classical van der Pol
equation. In such cases one can have an approximate solution for

frequency by using the method of small parameters6, the frequency

relation in which case is given by

- 1 2 .
f = fo Z_1 - ‘1‘6‘ 6 + enew __7 (7'22)
where
£, = L
27 RC [ mn

The frequencies are calculated by using equation (7.7) for
different values of u., Table~7.3 shows the results along with the
measured distortion figures, For the variation of frequencies with
respect to u given in Table=7.3 the distortion level is seen to be
quite low. Further, it may be noted that the results are same,

irrespective of the direction of change of u.

7.7.2 PRACTICAL SCHEME

As a practical utilization scheme to telemeter process data
the variable voltage V, is replaced by a data-to-voltage source,
The partial scheme is shown in figure 7.11. Test results have shown

the same accuracy as obtained in Table=7.3,



Fig.711. Scheme of o VCO using Resistance
Thermometer for temperature telemetering
RA-‘- RB', RC= RTn is the resistance of the

thermometer at reference temperature




g8

Transistor base leakapge currents have not been considered
in deriving equation (7.20); this is quite Jjustified for the
silicon planar transistor used (TD 101). Results obtained with
a pair of germanium transistors (2N483%) show that, when leakage
current is not necligible and the transistors have a low value of
hfe’ a wider and a more linear frequency variation is obtailnable
for the same level of distortion with a larper variation of u,
However, the analysis in this case becomes quite involved and
as the leakage currents have to be accurately known, no attempt

has been made to accommodate these in equation (7.20).

7.8 CONCLUSION

A nonlinear oscillatory system using the self-saturating
antisymmetric transfer characteristic (ASTC) of an emitter coupled
differential pair has been presented with a comprehensive analysis
showing adjustability from sinusoldal to hard relaxation mode by
two=parameter control, unlike the existing types of van der Pol
oszcillators where 4 single-parameter control is.used. This approach
completely explains the mode, frequency and waveform, and furnishes

information as to selection ronges of the paraneter values,

It should however be noticed that the two-parameter control
can be effected by the varistion of n, and n, the capacitor ratios,
or ab the slope of the ASTC or by m the ratio of the resistors
alone, Table~7.1 shows that even N, alone could change the mode
from near sinusoidal to near relaxation oscillation, This implies

the adaptability of such an oscillator to instrumentation system
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with C2 replaced by a capacitive transducer7 to monitor a process

7

variable. Differential capacitive transducer’ could as well be

used in place of C1 and C and/or C2 and C as each of the pair has
a common terminal, The change in both frequency or amplitude
could be a measurc of the variable, The utility of this type of

a renerator is more as a waveform generator, as the change in
waveformmay not be quite acceptable for the signal processing
purpose . TInterestingly however if the operating slope ab is
changed by changing the bias vnltage of one of the transistors a
wide frequency variation is obtained with very little waveform
distortion and giveg rire to a VCO with this differential pair,
Such a VCO has also been studied and the results are given in
Table=~T7¢%« A portial preoctical scheme to replace the control bilas
source by a data-to-voltage source has also been shown indicaeting
boprocticel vtdlication schoeme of the VOO 1o telemetlor process
data and test results heve shown the same accuracy as obtained

in Table~7.%.

It is interesting to note that the hord relaxation mode
only, can be analysed with an approximation that derives the
frequency analyticelly within % to 10% tolerance @nd such an

approximate analysis is discusced in the next chepter,
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APPENDTX=~7,1

From figure 7.10(b) the loop equations for loop 1 and

loop 2 are

Vipg ¥ TppBp = Vy + TIgq mR = 0 (4=7.1)
Vepo * Jppfp - Vot Tpo fs = 0 (8=7.2)

Subtracting equation (A-7.2) from equation (A-7.1) the differential

bace veltage u is obtalned as

W= Vpgg = Vppp = Vq =V, + Ipoflg = TgymR (A=7.3)
The two transistors and Q2 being matched the common emitter
current gain /9 /3 , hence equation (A-7.3) is written as
1 : .
wo=Vy o= Vv o (ICZRS - Ty mi) (A=7.7)

A

For en emitter coupled differential transistor pair

ke = g * lm2 (A=7.4)
or
Toy =&y = Tep (4=7.5)

where o( is the common base current gain,

From equotion (A-7.5) and equation (A-7.3)

L .
u o=V, -V, +ﬁ[IC3 (R5 + mR) - D(IEPI mR_7

R5 + mR R
"Nt Vot oo TR 7 ke TR (A=7.6)

where A = /;3+ ———— and /@ = hpg -
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