
CHAPTER~VII 

NON-LINEAR OSCILLATIONS USING ANTISYMMETRIC TRANSFER 

CHARACTERISTICS OF A DIFFERENTIAL PAIR 

7.1 INTRODUCTION 

Oscillations in a regenerative circuit may be either in 

harmonic or relaxation mode, generating sinusoidal or non-sinu

soidal waveforms respectively. The previous chapter has been 

devoted on a practical temperature and supply voltage insensitive 

sinewave oscillator using the self saturating characteristics of 

a transistor differential pair. The same circuit can be used to 
-I 

generate quasilinear and relaxation oscillations. Van der Pol 

predicted that it is impracticable to obtain stable harmonic 

oscillation as well as relaxation oscillation from the same 

system as relaxation mode of operation is characterised by high 

degree of non-linearity and low order of selectivity and as such 

has requirement contrary to harmonic mode operation. Accordingly 

oscillators were partitioned into two distinct classes and treated 

separately. This precluded the possibility of having an unified 

analysis based on which t±ie performance of a regenerative system 

could be predicted over the entire range from harmonic to relaxa

tion mode and the parameters identified for adjustment for a 

particular mode of operation and wave form generation. 

Adjustment from relaxation mode to stable harmonic mode of 

oscillation is, however, possible with a low-gain margin If proper 

modification is introduced with the optimized values of load and 

coupling elements together with the non-linearity of the antisy

mmetric transfer characteristic of a differential pair whereby the 
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output approaches the limiting value asymptotically. The 

non-linearity of the self-saturating characteristics is assumed 

to be a transcendental function of hyperbolic tangent type. An 
2 

inverse tangent approximation of the amplifier function was 

earlier proposed with limited success in predicting the practical 

oscillation waveform when operated at large amplitude. The anti

symmetric transfer characteristics introduces an instantaneous 

amplitude defining mechanism with reduced second harmonic distor

tion and makes the system self-compensating as regards parameter 

variation due to the change in ambient temperature and supply 

voltage variation , and much less critical for continuous control 

of operation from highly relaxed to harmonic mode. Realization 

of such an oscillator is interesting as it has a wide scope of 

control of its frequency and waveform making it useful as a test 

signal generator in various areas. 

In this Chapter a comprehensive analytical approach to 

such a regenerative system with a particular type of non-linearity 

of the active circuit is presented . Through this approach its 

performance can be predicted over the entire range of operation 

and its operation can be controlled in a desired manner, 

7.2 THE SYSTEM EQUATION 

Instead of single parameter non-linear equation of van der 

Pol a more generalised equation of a non-linear oscillator has 

been derived here. This equation accounts more closely for the 

sharp rise and fall of the output voltage having a semi-exponential 

decay in between the relaxation, which cannot be obtained by the 
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solution of the van der Pol equation in which the decay shows a 

convex nature. For a wide range of operation the non-linearity 

no longer remains restricted to a cubic function and probably 

this gives rise to the anomaly. It is now possible to suggest 

how the relative values of the two parameters may be changed to 

adjust the oscillation in a particular mode and generate a 

specific type of wavef6rm. 

Consider the oscillator shown in figure 7.1. The circuit 

equation is 

1 , f ^ rjc^ ̂  ^2 P 4 ' "'{^ ' ̂ %̂ ^ "' ^^ 
* % -̂  2̂ HI =" ô ('̂•'' ) 

Since the non-linearity of the self-saturating characteristic of 

the amplifier is utilized, the output current i will be a non

linear function of the input voltage e. Writing 

IQ = a tanh (be) (7.2) 

as assumed and substituting equation (7.2) in equation (7.1) and 

differentiating equation (7.1) with respect to time and with the 

following substitutions : 

(a) R2 = mR^ = mR j 

(b) Ĉ  = n^C 

(c) C2 = n^C 
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(d) n = n̂  + np + n^n2 

(e) G = j^ (1 + m + n̂  + mn2) 
(7.3). 

^ mnC^R^ 

equation (7.1) reduces to 

J^ 1-| + (G - ah sech^be) -^— || + e = 0 (7.4) 
Oy dt^ cj^ nC 
o o 

Using the normalized parameter 'T = c^t equation (7.4) changes to 

§ 2 - (* - «) «yi" 0 - 5 B ^ tar*' be) §1 . e = 0 (7.5) 

The two parameters £ and yS are defined as 

^= (ab - G) Ry^ (7.6a) 

V / \ 

Normalizing the parameter e "= r » equation (7.5) now leads to the 

generalized expression of the non-linear differential equation for 

the regenerative system as 

^ - 6 (1 -yBtanh^V) ̂  + V = 0 (7.7) 

Since equation (7.?) is a trancendental equation, a closed 

form solution is not possible, except for the sinusoidal case when 
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^ = 0. The numerical solution of the equation for non-sinusoidal 

wave is obtained with the help of a computer for different values 

of 6 and p ̂  

7.3 LIMITS OF PARAMETER VALUES 

The parameters Involved in constituting t and ^ are R, m, 

n, G and ab, of which R, m, n and G are obtained from the passive 

parameter values and the factor ab is the slope of the normalized 

non-linear self-saturating transfer characteristics at the origin. 

Any values of the above parameters are not permissible and there

fore it is necessary to set the limits of € and /lvalues. It can 

be seen from the following sections that £ and A cannot take-up 

any arbitrary value but must bear a relationship amongst themselves. 

7.3.1 RATIO OF THE RESISTANCE m 

Ideally 0 \^ \oC , but for least component spread and brevity, 

m is assumed unity. Hence from equation (7.3a) 

R̂  » R2 = R (7.8) 

7.3.2 RATIO OF THE CAPACITORS n^ and n^ 

Parameters n^ and n^ may have any positive value. It is 

evident from equation (7.3d) that n will have different values 

for various choices of n^ and n^. 

It can be easily shown that 

"max ' "1 (2 + n^) when n̂  = n^ (7,9a) 



and 

ri„-!„ = n-i when n,. = 0 m m I d 

= n^ when n̂  = 0 ) 
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(7.9b) 

Rigorous analysis do not permit either n̂  or n„ to take 

up a zero value as Ĉ  or C^ can never be zero, because even if 

lumped capacitors are absent the output, input and stray capa

citances will contribute to C., and C9, even though n and n^ may

be very small. 

For simplicity n^ has been assumed zero whenever necessary 

and a finite positive value has been assigned to n^. This could 

also be reversed without affecting the results so long as m is 

assumed unity cf. equations (7.3d) a nd (7.3e)3 . 

7.3.3 THE CTRCUIT CONDUCTANC!' G 

From equations (7.3e) and (7,8) 

The parameter G is defined as 

G = |!j (2 f n,, + n.J (7.10a) 

or 
n̂  + n^ = GR - 2 (7.10b) 

Thus for n. + n^ = constant, G can have only one value larger 
2 >̂  

than n as n. + n^ > 0, 

For n^ + n^ = constant, m = 1, conductance parameter G is 

also held constant. Accordingly the limits for /"and £ are evalua

ted holding this constant. 
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7.3.4 THE PARMETER J^ 

From equation (7.6a) 

where ab is the slope of the antisymmetric self-saturating charac

teristics at the origin, this is constant for a particular opera

ting condition. 

Under the assumed conditions it has been shown that G can 

have only one value, hence ^will also have only one value, 

7.3.5 THE r̂ AFlAMETER £ 

From equations (7.̂ ia)and (7.8) 

£= (ab - G) R / 1 (7.12) 

Under the assumed conditions the value of £ will only vary 

with n and lie within a range € and ^^\^ dependent upon n , 

and n„,.̂  ̂  respectively. Combining equations (7.11) and (7.12) the 

maximum and minimum values of £ are given by 

(7.13a) 
min 

P \J max 

From the expression ql̂ it i.s seen that there Is another 

constraint on the value of G. The value of G cannot be more than 

ab, in which case £ would be negative. 
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The parameters € and P are quite interlinked. However, the 

effect of increasing € is to increase distortion or harmonic 

contents of the wave and the effect of increase in A has a more 

pronounced effect on amplitude. This is well corroborated by 

computer solution, 

7.3o6 EFFECT OF CGMTROI. OF € and/or/^ 

Since a two-parameter equation has been derived for the 

oscillator system, it may be of interest to note the effect of 

(a) Changing € keeping A constant, 

(b) Changing A keeping ^ constant. 

and the conditions that are required to be met for such cases. 

The first case has already been covered in subsection 7.3."5, 

For the second case, from equation (7.13) one may write 

/ / ^ 
n = - = constant, where K = abR (7.1^0 

Since both & and n are dependent on n̂  and n--> the range 

of values of these two quantities are to be found for which the 

product ^y3/n will remain constant and equal to K. From equations 

(7.10) and (7.11) 

abR 

/ 4 = — ; — (7.15) 
/ (abR- 2) (n̂  + np) 

The maximum and minimum values of A are therefore obtained by 

varying n^ and n^ as 
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and 

y^max ~ (abR - 2} - n^ 

Q abR 
yOmin ~ (abR - 2j - 2n^ 

when n^ = 0 

when n^ = x\^ 

(7.16) 

(7.17) 

Obviously n^ in equations (7.16) and (7.17) is not the same. Its 

values for the two cases can be evaluated from equations (7.1^) 

and (7.15) involving £ besides a, b and R, Correspondingly B^-^y^ 

and 
^ mln 

a r e then obta ined as 

/ 

abR 
max 

(abR - 2) 12(abR-2) + € V ±y4(abR--2) £ ' ^€' 

(7 .18) 

/ 

abR 
mm 

7 .A 

(abR - 2) - 2 ff2(abR-2)4-6^}:^A(abR-2)6^-<-£S6^-(abR>2)^ 

L A - € " 

(7 .19) 

THE SOLUTION OF THE DTFF'ERENl'TAL EQUATION 

The computerized solution of the differential equation 

_̂ "~equation (7.7)_7 is based upon the modified Runge-Kutta method 

of numerical solution and its flov/ chart is given in figure 7.2. 

7.S COMPUTERIZED SOLUTION AND EXPERIMENTAL RESULTS 

Three sets of computerized solutions and experimental results 

for verification were obtained for 

(a) near sinusoidal oscillation 

(b) near relaxation oscillation 

(c) hard relaxation oscillation. 
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Fig,7 .3 .Th« exp«rim«ntol c i rcui t . 
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The experimental circuit, as shown in figure 7.3 was 

initially adjusted for obtaining the slope ab, of the antisy-

nimetrlc self-saturating characteristic of the differential pair 

shovm in figure 7.4. 

The different types of oscillation were obtained by 

changing the ratios of the capacitors i.e. n̂  and n^ only, and 

the following parameters were kept constant at the denoted values 

for all the three cases. 

n̂  = 1.35k ohms; m = 1; C = 0,O^^UF and ob = 27.02 x 10"-̂ mhos 

TABLE-7.1 

CONTROIJ.ED PAR/J4ETE:h AND DJ'iRlVED PARAMETER VALUED 

Nature of 
O s c i l l a t i o n 

Near S i n u s o i d a l 

Near Re laxa t ion 

hard Re1axat ion 

Con t ro l l ed 
Parameters 

n^ n., 

10 10 

10 0.03 

0.1 0.118 

Derived Parameters 

n 

120 

10 

0.23 

G 

- 3 
16.30x10 

- 3 
8.90x10 

1 .63x1 o' 

A 

2.520 

1.^90 

1.069 

6 

1 .-32? 

7.740 

74.600 

Table-7.1 gives the controlled parameter and derived parameter-

values and Table-7.2 compares the calculated and experimental 

values of the frequency and amplitude of oscillation for the 

three cases. 
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TABLE-7.2 

CALCULATED AND EXPEFlIMENTAL VALUES OF FREQUENCY AND 
AMF'LITUDE OF OSCILLATIONS 

Nature of 
Oscillation 

Near Sinusoidal 

Near Relaxation 

Hard Relaxation 

Amplitude of Oscillation 
Volts(Peak) 

Calculated 

0.087 

0.197 

1.3 AO 

Experimental 

0.095 

0.200 

1.300 

Frequency of Oscillation 
kHz 

Calculated 

0.935 

2.050 

5.050 

Experimental 

0.980 

2.150 

5.850 

* Frequencies were measured with a counter 

Though the assumed non-linearj.ty gives a transcendental 

equation and a closed-form solution of equation (7.7) is not 

possible, from the results of Tab]e-7.2, it is evident that the 

experimental results and theoretical numerical solution agree very 

well in all modes of oscillation, which is not so if the non-

linearity is assumed to be of lesser complexity. 

Figures 7.5(a), 7.5(b), 7.6(a), 7.6(b) and 7.7(a), 7.7(b) 

show the theoretical and expf-r-iment;.il wave shapes for tyie three 

cases. 

7.6 EFFECTS OF 6 AMD ̂  ON DISTORTION AND AyiPLTTUDE 

It has been stated that the effect of the parameter y5 has a 

predominant effect on amplitude and € on distortion and this has 

been demonstrated in the curve of figures 7.8 and 7.9. Figures 

7.8(a), 7.8(b) and 7.8(c) are plotted for constant S (/3 = B.lA) 
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and varying £- whose possible limits of variation are 0,81fyO0.28l, 

From the curves it is observed that the amplitude remains constant 

but the distortion increases slightly with increasing values ofS. 

The next set of curves are plotted for constant ̂  (€= 1) 

and varying/3 over the possible limits 6,76^/3/ 3.007. Compu

terized solutions were obtained for £" = 1 and jS = 3.2 and /3 = 4.8 

and have been plotted in figures 7.9(a) and 7.9(b), It is observed 

that the amplitude decreases with increase in the value of /3 • 

7 - 7 • TiiiL voLTAfiE coN'[Ttoi..U':r) o::;r:]LLATOi("'^ 

It has been shown so far, that oscillations in the system 

described may be controlled over harmonic to relaxation mode by 

controlling a passive parameter G obtained from the load and 

coupling elements. If G is held constant the mode of operation 

can still be controlled by varying the slope ab (at the origin) 

of the transfer characteristics. This slope can be varied quite 

simply by changing the operating bias voltage of one of the 

transistors of the differential pair and keeping that of the 

other constant. This in effect change the symmetric operation of 

the pair to asymmetric oper'ation anci the change in the average 

slope varies the parcsmeterf In equation (7,6a). This Is effec

tively a voltage controlled oscillator (VCO) whose operation is 

gradually changed from harmonic mode to quasiharroonic mode, 

thereby clianging the oscillation frequency due to harmonic 

depression . However for a large frequency deviation, the 

distortion level still remains quite low and realization of a 

practical VCO is therefore envisaged. 
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The relation between the slope and the differential change 

in the bias voltage has been derived from the transfer character

istics jr"equation (7.2)__7 where e now represents the differential 

change in voltage and is replaced by u in subsequent discussion 

for clarity. Using this, a computerised solution of equation (7.7) 

is performed to obtain tlie frequency of VCO. The frequencies are 

also measured. The results are presented in Table-7.3 along with 

the results obtained by using the method of small parameters , 

TABLE-7.3 
RE:SIJLTS 

{c = 1050pF, R = 2K, R, » 3.7flK, R^= 2K, n = 9.^76, m = 0.654, 

G = 8.509x10~^mho, Rr, = ?-5-ri., h^^= 500, Igg=0.77mAj Ref .Fig.7.10(a)). 

rnilli 
Volts 

mill 1 
Siemen 

Normalized frequency f / f 

Computer 
S o l i i t J.on 

Method of 
sma ] 1 
parameter 

Experi-
mo'tital 

Measured 
distor
tion 

dB 

1.78 

7.80 

13.90 

19.97 

26.06 

10.240 

10.353 

10.591 

10.980 

11.527 

0.9683 

0.9579 

0.9435 

0.9241 

0.9029 

0.9483 

0.9̂ 1̂3 

0.9252 

0.8947 

0.8428 

0.9691 

0.9527 

0.9330 

0.9034 

0,8870 

30 

28 

25 

22 

20 

* f = Sinusoidal mode frequency at balanced 
o 

operation /_ cf, equation (7.22)_7. 

'̂ •7.1 THE CIRCUIT AMD THE ANALYSIS 

The circuit using a matched pair of transistors (TD 101) 

and its partial equivalent for deriving the expression for the 

differential voltage in relation to the constant emitter current 
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Fig.7.10 (a) VCO circuit 

(b) Partiol equivalent circuit 
of 7.10(a) 



96 

and quiescent condition are showi In figures 7.10(a) and (b) 

respectively. The voltage source V̂  and resistance mR are the 

Thevenln generator and resistance as seen by the base of the 

transistor Q^. The differential voltage is easily derived as 

(see appendix 7.1). 

where h^ Is the common emitter current gain of the transistor. 

From the logical development laid out above and from the 

transfer characteristics the desired relation is easily obtained 

as 
o 

G = ab r-. g^ cosh^bu • (7.21) 

where g is the slope at the origin for balanced operation with 

given operating conditions. Combining equation (7.20) and (7.21), 

g can be obtained for different u, the corresponding ^ and /3 are 

evaluated by using equation (7.6a) and (7.5b) and equation (7.7) 

is solved to obtain the frequencies. Tt should be remembered that 

every differential change In u produces a new asymmetric operating 

point with the changed value of g. Parameter g is obtained by 

considering average fixed value of b obtained from the balanced 

operating condition. 

The asymmetric points may be obtained from the intersections 

of the graphs of equations (7.2) and (7.21). Presumably this shift 

in the operating points leads to distortion in waveform; however 

w}ien tl'ie shift is kept small, sufficiently wide frequency variation 
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with low distortion is obtainable. With asymmetry thus limited 

the assumption of balanced operation shows good correlation 

between theoretical and experimental results as shown in Table-7.3. 

Since operation is limited to the near harmonic mode, one 

is tempted to approximate equation (7.7) to classical van der Pol 

equation. In such cases one can have an approximate solution for 

frequency by using the method of small parameters , the frequency 

relation in which case is given by 

where 

^o = 
ZflKC Prnx 

The frequencies are calculated by using equation (7.7) for 

different values of u, Table-7.3 shows the results along with the 

measured distortion figures. For the variation of frequencies with 

respect to u given in Table-7.3 the distortion level, is seen to be 

quite low. Further, it may be noted that the results are same, 

irrespective of the direction of change of u, 

7.7.2 PRACTICAL SCHEME 

As a practical utilization scheme to telemeter process data 

the variable voltage Vo is replaced by a data-to-voltage source. 

The partial scheme is shown in figure 7.11. Test results have shown 

the same accuracy as obtained in Table-7.3. 



Fig.7.11. Scheme of a VCO using Resistance 

Thermomefer for temperature telemetering 

K* D̂ / '̂ ^̂  ^T •* ^^^ resistance of the 
A D L Tn 
thermometer at reference temperoture 
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7.7.3 DISCUSSIONS 

Transistor base leakag:e currents have not been considered 

in deriving equation (7.20); this is quite justified for the 

silicon planar transistor used (TD 101). Results obtained with 

a pair of germanium transistors (2N483) show that, when leakage 

current is not ne,'̂ ;ligible and the transistors have a low value of 

h^ , a wider and a more linear frequency variation is obtainable 
I e 

for the same level of distortion with a larger variation of u. 

However, the analysis in this case becomes quite involved and 

as the leakage currents have to be accurately known, no attempt 

has been made to accommodate these in equation (7.20), 

7.8 CONCLUSION 

A nonlinear oscillatory system using the self-saturating 

antisymmetric transfer characteristic (ASTC) of an emitter coupled 

differential pr-lr has been presented with a comprehensive analysis 

showing adjustability from sinusoidal to hard relaxation mode by 

two-parameter control, unlike the existing types of van der Pol 

oscillators where a single-parameter control is-used. This approach 

completely explains the mode, freq\jency and waveform, and furnishes 

information as to select.ion ranges of the parameter values. 

It should however be noticed that the two-parameter control 

can be effected by the variation of n. and n„ the capacitor ratios, 

or ab the slope of the ASTC or by m the ratio of the resistors 

alone. Table-7.1 shows that even n^ alone could change the mode 

from near sinusoidal to near relaxation oscillation. This implies 

the adaptability of such an oscillator to instrumentation system 



99 

7 
with Cp replaced by a capacitive transducer to monitor a process 

7 
variable. Differential capacitive transducer could as well be 

used in place of C, and C and/or Cr, and C as each of the pair has 

a common terminal. The change in both frequency or amplitude 

could be a measure of the variable. The utility of this type of 

a generator is more as a v/avef orm generator^ as the change in 

waveform may not be quite acceptable for the signal processing 

p urxJose , Interestingly hov/ever if the operating slope ab Is 

changed by changing the bias voltage of one of the transistors a 

wide frequency variation is obtained with very little waveform 

distortion and givoi;, rice to & VCO with this differential pair. 

Such a VCO has also been studied and the results aj-c given in 

Toble~7.3e A partial pr;:ctjcal scheme to replace the control bias 

source by a data~to-voltage source has also been shovm indicating 

;i |ir'.>ctic.'.̂l iili] ! ration .'ich</irie of tiif; VCO to telemrf.er procesi. 

data and test results have shown tlie same accuracy as obtained 

in Table-7,3. 

It is interesting to note th.at the hi-rd relaxation mode 

only, can be analysed with an approximation that derives the 

frequency analytically wlthi.n 5 to 10% tolerance and such an 

jq)proximute analysis is discussed in the next chapter. 
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A ITEM n ix -7 .1 

From figxire 7 .10 (b ) the loop equa t ions for loop 1 and 

loop 2 a re 

\ B 1 ^ hll^E - h ' hi "'̂  - 0 ^'-^''^ 

S u b t r a c t i n g equat ion (A-7 .?) from ecjuation (A-7.1 ) t h e d i f f e r e n t i a l 

base v o l t a g e u i s ob ta ined as 

^ = VgB^ - % i 2 = ^1 - ^̂ 2 " ^ 3 2 ^ - Tg/^R (A-7.3) 

The two t r a n s i s t o r s Q. and Qp being matched t h e conunon e m i t t e r 

c u r r e n t ga in 6^ = /9^ = ^ , hence equat ion (A-7.3) i s v / rJ t ten as 

u " ^1 ~ '''2 "• J (̂ C2̂ S • ^C1 "'*'̂  (A-7.?) 

or 

For an emitter' coupix-'d differentJal transistor pair 

ÊE = hi ^ Ê2 (A-.7.M 

Ĉ1 = A : E - ̂ C2 (̂ -̂7.3) 

where 6\ is the common base current gain. 

From equation (A-7.5) and equation (A-7,3) 

- V^ - Vp + ̂  if 1^0 (Rc3 + mR) - «<l£p, mR_7 u 

where o( = /i + -]' ^'^^^ j5 = h 
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