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Abstract 

Polyamines (PAs) are aliphatic nitrogenous bases containing two or more amino 

groups. These organic compounds have a low molecular weight and play essential 

role in the growth and development of plants. They contribute to the tolerance of 

plants against all abiotic and biotic stresses. They occur in the free form as cations, 

but are often found in the conjugated form to different macromolecules such as 

proteins and nucleic acids and to small molecules like phenolic acids. They are 

produced by plants during metabolism and are ubiquitous in plant cells. They are 

considered to be a new kind of plant biostimulant because they are intimately 

associated with a wide range of metabolic process in plants, ranging from cell 

division and organogenesis to protection against abiotic and biotic stress. Their 

chemistry, biosynthetic pathway and metabolism are now well characterized. Their 

titer varies and depends on the environmental conditions, especially stress. With the 

development of molecular biotechnology, genes for several key biosynthetic 

enzymes of the PA pathway have been cloned from different plants species, and 

antibodies to some of the genes are now available. The antisense transgenic 

approaches and over-expressed PA biosynthetic genes have given further evidence 

that PAs are required for plant growth, productivity and development of stress 

tolerance. This paper aims to review the various physiological responses of plants to 

PA with special emphasis to abiotic stress response and to provide a basis for future 

research on the role of polyamines in plant physiology. 
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Introduction 

Polyamines are widely distributed in eukaryotic and 

prokaryotic cells (Liu et al., 2017; Mustafavi et al., 

2018). PAs have low molecular weight and are 

aliphatic nitrogenous bases containing two or more 

amino groups which have potent biological activity 

(Xu et al., 2009; Vuoksu et al., 2018). They may 

exist freely in living organisms (F-PAs) or in 

covalently conjugated form (CC-PAs) or non-

covalently conjugated (NCC-PAs) forms (Gholami 

et al., 2013). The history of PA biochemistry goes 

back to more than 300 years. It was Antoni van 

Leeuwenhoek who first observed depositions of 

star shaped crystals in aging sperms when he was 

observing human semen through his primitive 

microscopic lenses in 1678. Almost more than 200 

years later, the basic component of these star 

shaped phosphate crystals was named Spermine. By  

 

 

 

 

mid 1920s the correct chemical composition and 

structure was determined. Spermidine was also 

discovered around the same time. Since then, PAs 

remained interesting mainly to chemists for about  

next half a century. Later Cohen’s book directed the 

attention to possible biological importance of these 

compounds and initiated research in many areas, 

including plant physiology. A definitive work on 

plant polyamine biochemistry came from Terence 

A Smith at Long Ashton Research Station of the 

University of Bristol. Later in 1973, a paper 

delivered at plant growth hormone symposium in 

Tokyo suggested that polyamines have a regulatory 

action in plants. Since then, research on polyamines 

has spread to many countries of the world.                                                                             

Polyamines are essential for the growth and 

development in prokaryotes and eukaryotes (Tabor 

and Tabor, 1984; Tiburcio et al., 1990). In plant 
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cells, the diamine putrescine (Put), triamine 

spermidine (Spd) and tetramine spermine (Spm) 

constitute the major PAs. They remain associated 

with macromolecules such as proteins and nucleic 

acids and stimulate DNA replication and protein 

synthesis. They participate in wide range of 

biological processes related to growth and 

development of plants such as senescence, embryo 

development, environmental stress and also biotic 

stress such as infection by fungi and viruses. Their 

biological activity is mainly attributed to their 

cationic nature. Recently use of PA biosynthetic 

inhibitors has shown a causal relationship between 

changes in the endogenous levels of PA and growth 

responses in pants. These observations have 

enhanced further studies in understanding the mode 

of PA action. Since PAs are involved in numerous 

biological interactions in plant systems like 

stabilizing membranes, scavenging free radicals, 

affecting nucleic acid and protein synthetics, 

enzyme activities, hormone interactions etc, it has 

been difficult to determine their precise role in 

plant growth and development. However recent 

investigations into the molecular genetics of plant 

PAs helped to isolate number of genes encoding 

enzymes of PA biosynthetic pathway. Antibodies of 

some of the genes have also been developed. 

Genomic and proteomic approaches are being used 

to find out the role of PAs in plant developmental 

processes. This review article highlights the role of 

PAs in plants with particular emphasis on its role in 

abiotic stress responses. 

 

Distribution of Polyamines 

 

Polyamines are ubiquitous in eukaryotic and 

prokaryotic cells (Liu et al., 2016, 2017). They are 

also found in plant tumors and in plant RNA 

viruses. PAs exist in variety of forms with potent 

biological activities. In higher plants, PAs are 

present in their free form. The most common types 

of PAs found in higher plants include Put, Spd, 

Spm, Tspm (thermospermin) etc. (Kim et al., 2014; 

Takahashi et al., 2017) and also Cadaverine (cad) 

(Regla – Marquez et al., 2015; Nahar et al., 2016). 

Other types of PAs are found only in certain plants 

or may be under special conditions only. The 

polyamines are organ specific and tissue specific in 

distribution. It was found that the most abundant 

PA in leaves was Put whereas Spd was found at 

elevated levels in other organs (Takahashi et al., 

2017). Different type of PAs shows different 

localization pattern within cells. In the cells of 

carrot, Put was found to accumulate in the 

cytoplasm and Spm in the cell wall (Cai et al, 

2006). It is concluded that the distribution pattern 

of PAs is very much related to its unique functions. 

The more vigorous plant growth and metabolism is 

directly proportional to greater PA biosynthesis 

(Zhao et al., 2004; Cai et al., 2006). 

 

Metabolism of polyamines 

 

The central product of the common PA biosynthetic 

pathway is Putrescine which contains two amino 

groups and is a synthetic precursor of Spd and Spm 

(Xu et al., 2009). Basically there are three different 

routes of Put biosynthesis in plants. In the first 

route, Arginine (Arg) loses its No. 8 carbon atom 

by arginine decarboxylase to from agamatine 

(Agm) and CO2. Agmatine next loses Nitrogen at 

No.2 position to from N- carbamoyl Put (NCPA) 

and ammonia. NCPA is further hydrolyzed by N- 

carbamoyl putreseine amidohydrolase (NCPAH) 

and its carbamoyl is removed to form Put, CO2 and 

NH3. This is the main Put synthesis pathway in 

plants (Docimo et al., 2012; Pegg, 2016). In the 

second route, Arginine is converted to Ornithine 

(Orn) by Arginase and then ornithine decarboxylase 

removes the carboxyl group of No.1 carbon atom of 

ornithine to produce Put and CO2 (Hanfrey et al., 

2010). In the third route Arginine is first converted 

to Citrulline (Cit) which is further decarboxylated 

by citrulline decarboxylase to form Put (Han, 

2016). The first two pathways are more common in 

plants. The third Citrulline pathway has been found 

only in sesame, till date. Spd and Spm are produced 

from Put and Amino propyl residues, which are 

gradually provided by methionine (Vuosku et al., 

2018). The PAs are broken down in plants by the 

action of amine oxidases (Agudelo-Romero et al., 

2013). The diamine oxidase (DAO) and PA oxidase 

(PAO) are the key players.DAO catalyses the 

formation of H2O2, ammonia and 4-aminobutanal 

from Put. The 4-aminobutanal undergoes 

cyclization to form pyrroline (PYRR), which is 

next converted to ɣ- amino butyric acid (GABA) by 

the action of pyrroline dehydrogenase (Hu et al., 

2015). Finally GABA is converted into Succinate 

which enters into Krebs cycle in mitochondria. 

Dicots contain high levels of DAO (Cona et al., 

2006) and PAO is found at elevated levels in 

Monocots (Tian, 2012; Takahashi et al., 2017). Its 

substrates are Spd, Spm and Tspm. There are 

multiple PAO families in plants (Tian, 2012; Liu et 

al., 2014, Takahashi et al., 2017). The metabolism 

of PAs in plants has quite significance. The H2O2 

produced by oxidation of PA functions in the signal 
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transduction process in plants during biotic and 

abiotic stress responses (Freitas et al., 2017; 

Mellidou et al., 2017). It also affects stomatal 

closure induced by Abscisic acid. (Cona et al., 

2006; Tim et al., 2006; An et al., 2008). The S-

adenosyl methionine produced in the PA 

biosynthesis route is also a precursor for ethylene 

synthesis (Chen et al., 2014). In addition, PA 

metabolism is related to NO production (Pal et al., 

2015). NO is an essential signaling component for 

plant growth (Krasuska et al., 2013; Agurla et al., 

2017). So the roles of PAs in plant growth and 

development and the mechanism of how they 

function can be discovered by studying the 

relationship of plant hormones and PA metabolism 

and also the effect of the later on plant signaling 

substances. 

 

Polyamines in plant growth and development 

 

PAs are involved in many plant developmental 

processes. With the availability of specific 

inhibitors of PA biosynthesis, it became easy to 

investigate the mechanisms involved in PA 

interactions to some extent. Clearly, PAs are 

involved in developmental processes like cell 

division, embryo development, reproductive organ 

development, growth of root, floral initiation and 

development, fruit development and ripening, leaf 

senescence and abiotic stresses (Sawhney et al., 

2003). It has been found that changes in free and 

conjugated PAs and their biosynthetic enzymes like 

ADC, ODC and SAMDC have been found to occur 

during these developmental processes. In general, 

cells undergoing division have high levels of free 

PAs synthesized via ODC, and cells undergoing 

expansion and elongation contain low level of free 

PAs synthesized via ADC. High levels of 

endogenous PAs and their conjugates have also 

been found in apical shoots and meristems before 

flowering (Cabbane et al., 1981) and flower parts of 

many plants (Martin-Tanguy, 1985; Ahmed et al., 

2017). Callus cultures derived from explants of 

tobacco inflorescence show that endogenous Spd 

increases more rapidly than other PAs in floral buds 

than in vegetative buds. Addition of 

Cyclohexylamine (CHA), an inhibitor of Spd 

synthesis, switches vegetative bud development 

instead of floral bud (Sawhney et al., 2003). This 

inhibition could be reversed by addition of 

exogenous Spd (Kaur-Sawhney et al., 1988). 

Flower bud differentiation is a complex process of 

morphogenesis. It is triggered by various factors 

such as photoperiod, nutrition, vernalization and 

water status, and is accomplished by the interaction 

and coordination of hormones and PAs (Xu, 2015). 

Exogenous PAs accelerate the process of flower 

bud differentiation. In Arabidopsis, PAs were found 

to be more abundant in flowers than in other organs 

and addition of exogenous PAs stimulated 

flowering response (Applewhite et al., 2010). 

Lower content of PAs, mainly Put & Spd, were 

found to lower floral bud initiation in rapeseed 

while increased PA content promoted 

differentiation of floral bud. Many growth and 

developmental processes of plants regulated by 

phyto hormones such as Auxins, 2, 4-D, GA and 

ethylene have also been correlated with PA 

metabolism (Sawhney et al., 2003). These changes 

occur both on the endogenous levels of PAs and 

also in the level of their biosynthetic enzymes and 

appears to be tissue specific. Thus PAs which may 

or may not migrate can serve as intracellular 

mediators of hormone actions (Galston and Kaur- 

Sawhney, 1995). Amongst these, ethylene has been 

most extensively studied with respect to PA 

metabolism. PAs and ethylene play antagonistic 

roles in plant processes. While PAs inhibit 

senescence in leaves and fruit ripening, ethylene 

promotes these processes. PAs and ethylene 

regulates each other’s synthesis, either directly or 

through metabolic competition for SAM, a common 

precursor for their biosynthesis. PAs inhibit 

ethylene biosynthesis perhaps by blocking the 

conversion of SAM to ACC and of ACC to 

ethylene (Apelbaum et al., 1981; Suttle 1981). 

During senescence, chlorophyll content decreases, 

activities of ADC and ODC decrease, while 

activities of PAO and hydrolases like Proteases and 

Ribonuclease increases rapidly( Bagni and Tassoni, 

2006; Chen et al, 2019). All these changes can be 

inhibited by application of exogenous PAs (Duan, 

2000, Cai, 2009). So polyamines delay senescence 

by inhibiting ethylene biosynthesis (Woo et al., 

2013, Anwar et al., 2015).            

Polyamines bind to negatively charged nucleic 

acids, proteins and phospholipids by ionic and 

hydrogen bonds through their amino and imino 

groups and help in establishing the zygote polarity 

during embryo development and also promotes cell 

layer differentiation and establishment of the 

meristem (Chen et al, 2019; Chen and Lv, 2000). 

Polyamines are considered to regulate the 

embryogenesis in both gymnosperms and 

angiosperms (de Oliveira et al., 2016; Kevers et al., 

2000) and an increase in PA content is required for 

the process. However, the types and abundance of 

PAs vary in different stages of embryonic 
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development. PAs more abundant in embryogenic 

callus and somatic and zygotic immature embryos 

than in mature and germinating embryos (Cao, 

2010). Putrescine stimulates somatic 

embryogenesis and reduced level of Put and Spd 

result in fewer somatic embryos (Chen et al, 2019). 

Polyamines and abiotic stress responses: 

Polyamines play a crucial role in the physiological 

responses of plant against stress. Stress may be 

either biotic or abiotic in nature. In fact there are 

several factors that causes abiotic stress in plants- 

 

i) Polyamines and Temperature Stress 

 

Temperature stress is generally of two categories- 

low and high temperature stress. Low temperature 

stress is again of two types- cold stress and freezing 

stress. Few studies have been conducted till date to 

focus on the physiological functions of PAs in 

plants under high temperature stress (Chen et al, 

2019). High temperature stress affects PA synthesis 

in the leaves by increasing the Put content but the 

increase is not sustained for a longer period of time 

(Yang and Yang, 2002). PAs promote 

photosynthesis and increases antioxidant capacity 

and osmotic adjustment capabilities of plants under 

high temperature stress (Tian, 2012; Guo et al., 

2015). The antioxidant enzymes scavenge ROS to 

prevent membrane lipid per oxidation and stabilize 

membrane structure (Zhuo et al., 2018). Shao et al. 

(2015) reported that heat tolerance of alfalfa was 

because of higher Spd content and lower Put and 

Spm content (Shao et al., 2015). However, the main 

physiological mechanism of high temperature 

tolerance differs among plant species. PAs can bind 

to the phospholipid site of the cell membrane to 

prevent cyclosis and improve cold resistance (Li 

and He, 2012). However, the relationship between 

Put and plant chilling stress is debatable. Sweet 

pepper and Zucchini fruits, when stored in chilling 

temperature, shown an exponential increase in Put 

content accompanying by chilling damage. Again 

increased Spm level may be a defense response to 

cold damage by lowering Put accumulation and 

thereby reducing chilling damage (Zhan et al., 

2000; Roy and Wu, 2001). Sun et al. studied the 

effect of Put and D-Arg on the physiological and 

biochemical indexes of Anthurium andraeanum 

under chilling stress at 6° C in winter. They found 

that Put application resulted in increased 

antioxidant enzyme activities, nitrogen metabolism, 

chlorophyll and proline content. Similar results are 

found in Stevia plants where PA supplementation 

increases tolerance to cold conditions (Peynevandi 

et al., 2018). Recent studies suggest that abiotic 

stress tolerance is mainly affected by role of PAs in 

signal transduction rather than their accumulation. 

(Pal et. al., 2015). 

 

ii) Polyamines and Water Stress  

 

Majority of the work on the relationship between 

PAs and water stress has focused on drought 

resistance (Ebeed et al., 2017) and little attention 

has been given on water logging resistance. 

Polyamines have been found to regulate the size of 

K+ channel and pore size in the plasma membrane 

of the guard cells, thereby regulating the opening 

and closing of the pore. This is how PAs can 

control water loss in plants (Liu et al., 2000). 

Several other studies have shown that application of 

Put, at an appropriate level can affect the 

biosynthesis of osmotic adjustment substances like 

soluble sugars, amino acids and proline.  This may 

compensate for the negative impacts of drought 

stress on plant biomass. In  alfalfa, treatment with 

Put have shown to improve seed germination, 

growth of hypocotyl length etc. under drought 

stress caused by various concentrations  of 

polyethylene glycol (PEG), both invitro and in a pot 

experiment (Zeid and Shedeed, 2006). A mutant of 

Arabidopsis acl5/spms was cured which is 

hypersensitive to drought due to Spm deficiency. 

(Yamaguchi et al., 2007). These results indicate 

that function of PAs differs amongst different 

plants and even in different parts of the same plant, 

whether under osmotic stress of water stress (Sun et 

al., 2018). It can be concluded that response of 

plants to exogenous PAs under water stress and 

osmotic stress is species specific. 

 

iii) Polyamines and Salt Stress  

 

Like drought stress, salt stress also lead to reduced 

water potential in plants. Salinity is a complex 

environmental constraint on plants. A higher 

concentration of salt reduces membrane integrity, 

decreases the activity of various enzymes and also 

harms the function of photosynthesis apparatus. So 

plants adjust to such extreme environmental 

conditions by accumulating osmolytes of low 

molecular weight like PAs and proline. The 

application of different types of exogenous PAs, at 

different concentrations, have shown to reverse the 

effects of NaCl stress and reduce damage in various 

plants (Verma and Mishra, 2005, Li et al., 2008). 

Plants rich in PAs have strong salt tolerance.  Li 

and He (2012) suggested that Spm level in plants is 
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an important indicator of salt tolerance. Exogenous 

PAs especially Spm and Spd increases the 

metabolism of reactive oxygen and photosynthesis, 

thereby improving plant growth and reduces the 

inhibitory effects of salt stress (Meng et al., 2015; 

Baniasadi et al., 2018). Li et al. produced a 

cucumber line with greater SAMDC expression and 

lower ADC and ODC expression, resulting in 

greater Put accumulation during salt stress. As a 

result, inhibition of plant growth under salt stress 

was reversed in transgenic seedlings (Li et al., 

2011; Takahashi et al., 2017; Takahashi et al., 

2017b). Sun et al. showed that PAs and ABA 

together alleviated salt stress in grape seedlings 

(Sun et al., 2018). Recent studies have discovered 

the relationship between PAs and salt stress 

resistance by using genetic engineering techniques. 

Malabika et al. transformed the ADC gene of oat 

into rice and found that ADC activity, biological 

yield and Put contents were higher in transgenic 

rice and its progeny under NaCl stress (Roy and 

Wu, 2001). 

 

iv) Polyamines and Oxidative Stress 

  

Polyamines play a very complicated role in plant 

oxidative stress. (Minocha et al., 2014). Polyamines 

increase the activity of various antioxidant enzymes 

in plants which can effectively regulate oxidative 

stress caused by several environmental factors. 

Increased tolerance to oxidative stress induced by 

paraquat was overcome by pretreatment of leaves 

with Spm and Put in Maize (Durmu and Kadioglu, 

2005). Application of Spd significantly increase 

Spd and Spm levels and reduce Put level in roots of 

cucumber seedling under hypoxia stress. An 

increased antioxidant enzyme activity, enhanced 

ROS scavenging ability and less membrane lipid 

per oxidation were some of the changes which 

ultimately led to increased hypoxia stress tolerance 

(Jia et al., 2008; Wu et al., 2018). It was reported 

that during cadmium and copper induced oxidative 

stress, lipid per oxidation increases in sunflower 

leaf and activities of glutathione reductase and 

superoxide dismutase decreases (Groppa et al., 

2001; Gholami et al., 2013). On the other hand, 

PAs are also source of ROS because their 

catabolism produces strong oxidizers H2O2 and 

acrolein. So PAs can cause cellular harm under 

stress condition (Minocha et al., 2014. However 

H2O2 being a signal molecule enter stress signal 

transduction chain and activate antioxidant defense 

response (Groppa and Benavides, 2008). Therefore 

we can say that PAs are regulators of the redox 

homeostasis that play a dual role in plant oxidative 

stress (Saha et al. 2015). Besides the above 

mentioned abiotic stresses, plants can be affected 

by acid, radiation, wound and heavy metal stress.  

Few studies have been conducted on these topics, 

but the current idea is that PAs are important in the 

response to these stresses. Applications of 

exogenous Put regulates the balance of active 

oxygen metabolism under acid stress and stabilizes 

membrane system structure and hence protect plant 

from acid stress and improve acid resistance (Li et 

al., 1995). Mechanical injury and wounding of the 

leaves have shown to increase expression of ADC2 

(Perezamador et al., 2002) and increase in free Put 

content (Cowley and Walters, 2010). Treatment 

with heavy metals Hg2+ and Cr6+ led to reduction in 

Spm and Spd content with decreased activities of 

SOD, catalase and peroxidase leading to excessive 

accumulation of membrane lipid peroxides and 

sharp decrease in chlorophyll and soluble protein 

contents. Application of exogenous Spd helped to 

overcome these negative effects of Hg2+ and Cr6+ 

(Wang et al., 2003; Wang and Shi, 2004). 

 

Conclusion 

 

This article represents a detailed and 

comprehensive review of the published literature 

dealing with the relationship between PAs and plant 

growth, development and abiotic stress tolerance. 

The role of polyamines in plant developmental 

processes ranging from flowering to senescence, 

embryo development has been discussed. These 

informations will surely provide a reference for 

future research work on the regulatory mechanism 

of PAs and on the significance of the use of 

exogenous PAs to regulate plant growth and 

production. Application of the technique of 

endogenous PA production is becoming 

increasingly popular via genetic manipulation to 

regulate plant growth. Still many questions are left 

to be answered regarding the roles of PAs in 

regulating plant growth and development. 

Knowledge about the different biosynthetic and 

catabolic pathways and their regulation at differ 

levels are yet to be deciphered. Further research to 

uncover the exact mechanism of PA accumulation, 

in order to improve plant stress resistance needs to 

be done. Moreover, there is still much left to be 

discovered about the metabolic relationship 

between PAs and other phytohormones during 

growth and development of higher plants, more 

specifically the relationship between PAs and 

ethylene. With the advancement of molecular 
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biology techniques and transgenic methods, PA 

metabolism can now be manipulated and has 

become a good tool to study the physiological 

responses of PAs in higher plants. Besides the 

known PAs, many unusual PAs are found in nature 

too like the Tspm from bacteria residing in hot 

springs having enzymes resistant to heat 

denaturation. Future research on this aspect could 

also be eye opener. 
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