Table of Contents

Topics	Page No.
Abstract	
Preface	1
Acknowledgement	2-3
Abbreviation	4-6
Table of Contents	7-12
List of Tables	12-14
List of Schemes	14-20
List of Figures	20-23
List of Appendices	23

Chapter I : Brief idea about the synthetic approaches towards 26-47 the synthesis of heterocyclic moieties of bioactive heterocyclic compounds and brief idea about the heterogeneous catalyst for catalysis

I.1	Introduction	26-27
I.2	Sources of bioactive heterocyclic compounds	27-28
I.3	Bio active compounds and their activities	28-36
I.4	Precursor of bioactive compounds	36
I.5	Some synthetic approaches towards the precursor of bioactive compounds	37-43

	10.16
I.6 Catalyst	43-46
I.7 Conclusion	46-47
I & Deference	17
1.0 Kelelelle	4/
I.8 Reference	47

Chapter II : A green synthetic approach towards one pot multi 50-150 component synthesis of hexahydroquinoline and 9arylhexahydroacridine-1,8-dione derivatives catalyzed by sulphonated rice husk

II.1 Introduction	50-54
II.2 Quinoline	54-57
II.3 Biological importances of quinolines	57-59
II.4 Previous methods of synthesis of quinoline derivatives	59-68
II.5 Acridine	69-70
II.6 Biological importance of Acridines	70-72
II.7 Previous methods synthesis of acridine derivatives	72-84
II.8 II.8 Present work	85
II.8.A Result & discussion	85
II.8.A .1 Catalyst Characterisation	85-88
II.8.A.2 Optimisation of the reaction condition for the synthesis of	89-90
substituted 5-oxo-1,4,5,6,7,8-hexahydroquinolines. ^a	
II.8.A.3 Synthesis of substituted 5-oxo-1,4,5,6,7,8- hexahydroquinoline derivatives.	90-95
II.8.A.4 Comparison of efficiency of the catalyst	95-96
II.8.A.5 Plausible Mechanism	96-97
II.8.A.6 Optimisation of the reaction condition for the	98-100
Synthesis of substituted 9-arylhexahydroacridine- 1,8-dione derivatives	90-100

II.8.A.7 Synthesis of substituted 5-oxo-1,4,5,6,7,8- hexahydroquinoline derivatives	100-102
II.8.A.8 Plausible Mechanism	102-103
II.8.A.9 Catalyst Recyclability Experiment	104-106
II.8.A.10 Conclusion	107
II.8.A.11 Acknowledgement	107
II.8.A.12 Experimental	107-150
II.9 References	150

Chapter III : A design for convenient and greener root towards one pot multi-component synthesis of substituted pyrano-dichromeneo-dione and chromeno-pyrido- pyrimidinone derivatives using rice husk based heterogeneous catalyst	153-247
III.1 Introduction	153-156
III.2 Chromene	156-157
III.2.A Coumarine	157-158
III.3 Biological importances of chromenes and coumarines	158-161
III.4 Previous methods for synthesis of chromene and coumarine	161-169
derivatives	
III.5. Pyrido-pyrimidine	169-172
III.6. Biological importance of pyrido-pyrimidines	172-173
III.7. Previous works on synthesis of pyrido-pyrimidine	174-180
derivatives	
III.8 Present work	181
III.8.A Results and discussion	181

III.8.A.1 Catalyst Characterisation	181-184
III.8.A.2 Optimisation of the reaction condition for the synthesis	184-187
of 7-aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -pyrano[3,2- <i>c</i> :5,6-	
c']dichromene-6,8-dione derivatives	
III.8.A.3 Synthesis of 7-aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -pyrano[3,2-	187-191
<i>c</i> :5,6- <i>c</i> ']dichromene-6,8-dione derivatives	
III.6.A.4 Comparison of efficiency of the catalyst	191-193
III.8.A.5 Plausible Mechanism	193-194
III.8.A.6 Optimisation of the reaction condition for the	195-197
synthesis of 7-aryl/heteroaryl-6a,13a-dihydro-	
6H,7H-chromeno[4,3-d]pyrido[1,2-a]pyrimidin-	
6-one derivatives	
III.8.A.7 Synthesis of 7-aryl/heteroaryl-6a,13a-dihydro-6H,7H-	197-200
chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one	
derivatives	
III.8.A.8 Plausible Mechanism	200-201
III.8.A.9 Catalyst Recyclability Experiment	201-203
III.8.A.10 Conclusion	204
III.8.A.11 Acknowledgement	204-205
III.8.A.12 Experimental	205-247
III.9 References	247
Chapter IV : A collective laboratory studies on one pot multi-	250-354
component synthesis of a few varieties of heterocyclic	
compounds following greener approach using rice husk based	
greener catalyst	
IV.1 Introduction	250-255

IV.2 1,4-dihydropyridine	255-257
IV.3 Biological importance of 1,4-dihydropyridines and dihyro-	257-258
chromeno-pyridines	
IV.4 Previous works on synthesis of dihydro-dichromeno-	258-263
pyridine-6,8-diones derivatives	
IV.5 Tetrazole	263-264
IV.6 Quinazolinone	264-266
IV.7 Biological importance of tetrazole and quinazolinone	266-268
derivatives	
IV.8 Previous works on synthesis of tetrahydrotetrazolo[5,1-	268-275
<i>b</i>]quinazolinone derivatives	
IV.9 2,4-diaryl hexahydroquinoline-5-one	275-276
IV.10 Biological importance of 2,4-diaryl hexahydro quinoline-5-	276-278
one derivatives	
IV.11 Previous works on synthesis of 2,4-diaryl	278-284
hexahydroquinoline-5-one derivatives	
IV.12 Present work	284
IV.12.A. Result and discussion	285
IV.12.A.1 Catalyst characterisation	285-287
IV.12.A.2 Optimisation of the reaction condition for the synthesis	287-289
of dihydro-dichromeno-pyridine-6,8-dione	
IV.12.A.3 Synthesis of dihydro-dichromeno-pyridine derivatives	289-292
IV.12.A.4 Plausible Mechanism	292-293
IV.12.A.5 Optimization of synthesis of substituted	294-296
tetrahydrotetrazolo[5,1-b]quinazolinone derivatives	
IV.12.A.6 Synthesis of Synthesis of substituted	296-299

tetrahydrotetrazolo[5,1-b]quinazolinone derivatives	
IV.12.A.7 Plausible Mechanism	299-300
IV.12.A.8 Optimization of synthesis of substituted 2,4-	301-303
diarylhexahydroquinoline-5-one derivatives	
IV.12.A.9 Synthesis of 2,4-diaryl hexahydroquinoline-5-one	303-306
derivatives	
IV.12.A.10 Plausible Mechanism	306-307
IV.12.A.11 Catalyst Recyclability Experiment	307-309
IV.12.A.12 Conclusion	310
IV.12.A.13 Acknowledgement	310
IV.12.A.14 Experimental	310-354
IV.13 References	354
Concluding Remarks	355-356
Appendix	357-358
Bibliography	359-399
Index	400-402