
# **Dedicated**

# to My

# **Beloved Parents**

#### **DECLARATION**

I declare that the thesis entitled "SYNTHESIS OF BIOACTIVE ORGANIC HETEROCYCLIC COMPOUNDS USING NOVEL CATALYSTS" has been prepared by me under the guidance of Dr. Pranab Ghosh, Professor of Chemistry, University of North Bengal. No element of this thesis has formed the origin for the award of any degree or fellowship earlier.



SOURAV DEY Department of Chemistry University of North Bengal Darjeeling-734013 West Bengal, India

Date:

14/09/2022

### UNIVERSITY OF NORTH BENGAL

Accendited by NAAC with grade "B++"

Prof. P. Ghosh Department of Chemistry University of North Bengal Darjeeling – 734013, India



Ph: +91 3532776381 (off) +91 9474441468 (M) Fax: +91 3532699001 Email: pizy12@yahoo.com

#### **CERTIFICATE**

I certify that Mr. Sourav Dey has prepared the thesis entitled "SYNTHESIS OF BIOACTIVE ORGANIC HETEROCYCLIC COMPOUNDS USING NOVEL CATALYSTS" for the award of Ph.D. degree of the University of North Bengal, under my supervision. He has carried out the research work at the Department of Chemistry, University of North Bengal. No part of this thesis has formed the basis for the award of any degree or fellowship previously.

= 14/09/2022

Prof. Pranab Ghosh Department of Chemistry University of North Bengal Darjeeling - 734013 West Bengal, India

Prof. Prenab Ghosh Department of Chemistry University of North Bengal Darjeeling - 734013, India

### Ouriginal

#### Document Information

| Analyzed document | SOURAV_DEY_chemistry.pdf         |
|-------------------|----------------------------------|
| Submitted         | ID142962000) 2022-08-16 08:48:00 |
| Submitted by      | University of North Bengal       |
| Submitter email   | nbupig@nbu.ac.in                 |
| Similarity        | ox                               |
| Analysis address  | nbupig.nbuganalysis.urkund.com   |
|                   |                                  |

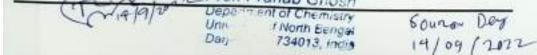
#### Sources included in the report

#### **Entire Document**

SYNTHESIS OF BIOACTIVE ORGANIC HETEROCYCLIC COMPOUNDS USING NOVEL CATALYSTS A thesis submitted to the UNIVERSITY OF NORTH BENGAL For the award of DOCTOR OF PHILLOSOPHY IN CHEMISTRY By SOURAW DEY [Muse in Chemistry] Supervised by Prot. PRANAB GHOSH DEPARTMENT OF CHEMISTRY UNIVERSITY OF NORTH BENGAL JULY 2022

Dedicated to My Beloved Parents

DECLARATION I declare that the thesis entitled "SYNTHESIS OF BICACTIVE ORGANIC HETEROCYCLIC COMPOUNDS USING NOVEL CATALYSTS" has been prepared by me under the guidance of Dr. Pranab Ghosh, Professor of Chemistry, University of North Bengal. No element of this thesis has formed the origin for the award of any degree or fellowship earlier. \_\_\_\_\_\_\_SOURAV DEY


Department of Chemistry University of North Bengal Darjeeting-734013 West Bengal, India Date:

UNIVERSITY OF NORTH BENGAL Accredited by NAAC with grade "B++" CERTIFICATE I certify that Mr. Sourav Day has prepared the thesis entitled "SYNTHESIS OF BIOACTIVE ORGANIC HETEROCYCLIC COMPOUNDS USING NOVEL CATALYSTS" for the award of Ph.D. degree of the University of North Bengal, under my supervision. He has carried out the research work at the Department of Chemistry. University of North Bengal. No part of this thesis has formed the basis for the award of any degree or fellowship previously. Prof.

Pranab Ghosh Department of Chemistry University of North Bengal Darjeeting - 734013 West Bengal, India Prof. P. Ghosh Department of Chemistry University of North Bengal Darjeeting - 734013, India ENU/GHTENMENT TO PERFECTION Ph: +91,3532776381 (off) +91 9474441468 (M) Fax: +91 3532699001 Email: pizy128yahoo.com Date:

about bioactive compound. The area of application of bioactive compounds are wide such as: plant science, modern pharmacology, geo-medicine, agrochemicals, cosmetics, food industry, nano-bioscience,\_etc. Thus it is a very promising area in full development, which has resulted in research works more and more numerous, designed to diversity the resources of bioactive compounds and improve their salvage pathways or synthesis. At first we need to prepare the synthesis of such bioactive compound. As their natural availability is not so promising, henceforth we feel to pursue our research interest to synthesize the precursor of bioactive compounds in a novel way. In Chapter II, It deals with green synthetic approach towards one pot multi component synthesis of hesahydroquinoline and 9arythesahydroacridine-1,8- dione derivatives catalyzed by suphonated rice husk. An efficient, straight

Prof. Pranab Ghosh

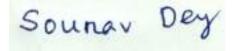


#### PREFACE

Bioactive compounds have broad periphery of applications: plant science, modern pharmacology, geo-medicine, agrochemicals, cosmetics, food industry, nanobio-science... etc. Bioactive compounds contain chemicals that are found in small quantities in plants. As their natural availability is not so hopeful, researchers feel to prepare such compounds in a synthetic manner. The thesis starts with Chapter I, discussed about brief idea about the synthetic approaches towards the synthesis of heterocyclic moieties of bioactive heterocyclic compounds and brief idea about the heterogeneous catalyst for catalysis. Chapter II, deals with green synthetic approach towards one pot multi component of hexahydroquinoline and 9-arylhexahydroacridine-1,8-dione synthesis derivatives catalyzed by sulphonated rice husk. Chapter III, describes about convenient and greener root towards one pot multi-component synthesis of substituted pyrano-dichromeneo-dione and chromeno-pyrido-pyrimidinone derivatives using rice husk based heterogeneous catalyst. Lastly, Chapter IV deals with collective laboratory studies on one pot multi-component synthesis of a few varieties of heterocyclic compounds following greener approach using rice husk based greener catalyst.

#### <u>Acknowledgement</u>

First, foremost, I would like to express my heartfelt gratitude to Almighty God, for his showers of blessings by providing me the strength, patience and required courage throughout my research work after all the challenges and difficulties.


I feel great pleasure to express my deep and sincere gratitude to my supervisor **Prof. Pranab Ghosh Sir**, Professor, Department of Chemistry, University of North Bengal for his dynamism, vision, valuable guidance, constructive criticisms, insightful suggestions, continuous encouragement and unfailing patience over the years at every stage of my research work.

I am also thankful to UGC, New Delhi, India for financial support.

I am highly obliged to **Prof. B. Sinha Sir**, HEAD, Department of Chemistry, N.B.U. It was a great privilege and honor to study under **Prof. B. Basu Sir**, **Prof. M. N. Roy Sir**, **Prof. P. S. Roy**, **Prof. A. Misra Sir**, **Dr. P. Bandhyapadhay Sir**, **Prof. A. K. Nanda Sir**, **Prof. A. K. Panda Sir**, **Dr. S. Das Sir**, during my post graduation. Their motivation deeply inspired me to do my research work. I also sincerely express my deep sense of gratitude to the other faculty members and the non-teaching staffs of the Department of Chemistry, N.B.U for their cordial support during my research period.

I would like to express my thanks to all the researchers of the Lab no.107, Dept. of Chemistry, NBU where I have done my research work and also my fellow labmates Jayanta da, Antara di, Mahua di, Raju da, Gyan da, Mainul da, Bittu da, Rabindra da, Bijeta di, Subhodip da, Aminul, Denobandhu da, Kumaresh, Sharmistha, Manishita di, Biswajit, Subhankar, Koushik for stimulating discussions, valuable suggestions and cooperation at during my experiments and data analysis.

I would like to express special thanks to my **Puja di** and **Niloy** for supporting in various technical issues during my research progress. I am extremely grateful to my parents, Smt. Anita Dey and Sri. Swapan Kumar Dey for their love, caring, understanding, encouragement, belief and sacrifices for educating me. They are my source of energy, motivation and patience. Also I express my thanks to entire family and my friends for their moral support throughout my research period. There are so many others like all my fellow research mates whom I may have inadvertently left out and I sincerely thank all of them for their help.



Mr. Sourav Dey Research Scholar Department of Chemistry University of North Bengal Darjeeling -734013, INDIA

## **Abbreviations**

| Å              | Angstrom                             |
|----------------|--------------------------------------|
| Acac/acac      | Acetylacetonate                      |
| AcOH           | Acetic acid                          |
| <sup>0</sup> C | Degree Celsius                       |
| Cm             | Centimeter                           |
| Су             | Cyclohexyl                           |
| d              | Doublet                              |
| DBH            | Dibenzoylhydrazine                   |
| DCE            | 1, 2-Dichloroethane                  |
| DCH            | 1,2-diaminocyclohexane               |
| DMAP           | 4-dimethylaminopyridine              |
| DME            | 1, 2–Dimethoxyethane                 |
| DMF            | N, N–Dimethylformamide               |
| DMSO           | Dimethyl sulfoxide                   |
| Dppe           | 1, 2-Bis(diphenylphosphino)ethane    |
| Dppf           | 1, 1-Bis(diphenylphosphino)ferrocene |
| DS             | Dodecyle sulphate                    |
| Eqv.           | Equivalent                           |
| EtOH           | Ethanol                              |

| EDX<br>ray | Energy dispersive X-                                     |
|------------|----------------------------------------------------------|
| FT-IR      | Fouriertransform infraredspectroscopy                    |
| g          | Gram/grams                                               |
| h          | Hour/hours                                               |
| HRMS       | High-resolution mass spectroscopy                        |
| ILS        | Ionic liquides                                           |
| m          | Multiplet                                                |
| m          | Meta                                                     |
| MHz        | Mega hertz                                               |
| min.       | Minute/Minutes                                           |
| mL         | Milliliter                                               |
| mmol       | Millimole                                                |
| MNP        | Metal nao-particles                                      |
| Mole%      | Mole percent                                             |
| mp         | Melting point                                            |
| MSAIm      | 3-methyl-1-sulphonic acid                                |
| MW<br>nm   | -imidazolium hydrogen sulphate<br>Microwave<br>Nanometer |
| NMR        | Nuclear magnetic resonance                               |
| 0          | ortho                                                    |
| р          | para                                                     |
| PEG        | Polyethylene glycol                                      |

| Ph      | Phenyl                                  |
|---------|-----------------------------------------|
| Pr      | Propyl                                  |
| RT/rt   | Room temperature                        |
| S       | Singlet                                 |
| SEM     | Scanning electron microscope            |
| t       | Triplet                                 |
| t-BuOCl | tert-butyl hypochlorite                 |
| TEA     | Triethylamine                           |
| ТЕМРО   | (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl |
| TfOH    | Triflic acid                            |
| THF     | Tetrahydrofuran                         |
| TLC     | Thin-layer chromatography               |

### **Table of Contents**

| Topics             | Page<br>No. |
|--------------------|-------------|
| Abstract           |             |
| Preface            | 1           |
| Acknowledgement    | 2-3         |
| Abbreviation       | 4-6         |
| Table of Contents  | 7-12        |
| List of Tables     | 12-14       |
| List of Schemes    | 14-20       |
| List of Figures    | 20-23       |
| List of Appendices | 23          |

Chapter I : Brief idea about the synthetic approaches towards 26-47 the synthesis of heterocyclic moieties of bioactive heterocyclic compounds and brief idea about the heterogeneous catalyst for catalysis

| I.1 | Introduction                                                           | 26-27 |
|-----|------------------------------------------------------------------------|-------|
| I.2 | Sources of bioactive heterocyclic compounds                            | 27-28 |
| I.3 | Bio active compounds and their activities                              | 28-36 |
| I.4 | Precursor of bioactive compounds                                       | 36    |
| I.5 | Some synthetic approaches towards the precursor of bioactive compounds | 37-43 |

| I.6 Catalyst   | 43-46 |
|----------------|-------|
| I.7 Conclusion | 46-47 |
| I.8 Reference  | 47    |
|                | • /   |

Chapter II : A green synthetic approach towards one pot multi 50-150 component synthesis of hexahydroquinoline and 9arylhexahydroacridine-1,8-dione derivatives catalyzed by sulphonated rice husk

| II.1 Introduction                                                                                                                     | 50-54  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------|
| II.2 Quinoline                                                                                                                        | 54-57  |
| II.3 Biological importances of quinolines                                                                                             | 57-59  |
| II.4 Previous methods of synthesis of quinoline derivatives                                                                           | 59-68  |
| II.5 Acridine                                                                                                                         | 69-70  |
| II.6 Biological importance of Acridines                                                                                               | 70-72  |
| II.7 Previous methods synthesis of acridine derivatives                                                                               | 72-84  |
| II.8 II.8 Present work                                                                                                                | 85     |
| II.8.A Result & discussion                                                                                                            | 85     |
| II.8.A .1 Catalyst Characterisation                                                                                                   | 85-88  |
| II.8.A.2 Optimisation of the reaction condition for the synthesis of                                                                  | 89-90  |
| substituted 5-oxo-1,4,5,6,7,8-hexahydroquinolines. <sup>a</sup>                                                                       |        |
|                                                                                                                                       |        |
| II.8.A.3 Synthesis of substituted 5-oxo-1,4,5,6,7,8-<br>hexahydroquinoline derivatives.                                               | 90-95  |
| II.8.A.4 Comparison of efficiency of the catalyst                                                                                     | 95-96  |
| II.8.A.5 Plausible Mechanism                                                                                                          | 96-97  |
| II.8.A.6 Optimisation of the reaction condition for the<br>Synthesis of substituted 9-arylhexahydroacridine-<br>1,8-dione derivatives | 98-100 |

| II.8.A.7 Synthesis of substituted 5-oxo-1,4,5,6,7,8-<br>hexahydroquinoline derivatives | 100-102 |
|----------------------------------------------------------------------------------------|---------|
| II.8.A.8 Plausible Mechanism                                                           | 102-103 |
| II.8.A.9 Catalyst Recyclability Experiment                                             | 104-106 |
| II.8.A.10 Conclusion                                                                   | 107     |
| II.8.A.11 Acknowledgement                                                              | 107     |
| II.8.A.12 Experimental                                                                 | 107-150 |
| II.9 References                                                                        | 150     |

| Chapter III : A design for convenient and greener root<br>towards one pot multi-component synthesis of substituted<br>pyrano-dichromeneo-dione and chromeno-pyrido-<br>pyrimidinone derivatives using rice husk based<br>heterogeneous catalyst | 153-247 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| III.1 Introduction                                                                                                                                                                                                                              | 153-156 |
| III.2 Chromene                                                                                                                                                                                                                                  | 156-157 |
| III.2.A Coumarine                                                                                                                                                                                                                               | 157-158 |
| III.3 Biological importances of chromenes and coumarines                                                                                                                                                                                        | 158-161 |
| III.4 Previous methods for synthesis of chromene and coumarine                                                                                                                                                                                  | 161-169 |
| derivatives                                                                                                                                                                                                                                     |         |
| III.5. Pyrido-pyrimidine                                                                                                                                                                                                                        | 169-172 |
| III.6. Biological importance of pyrido-pyrimidines                                                                                                                                                                                              | 172-173 |
| III.7. Previous works on synthesis of pyrido-pyrimidine                                                                                                                                                                                         | 174-180 |
| derivatives                                                                                                                                                                                                                                     |         |
| III.8 Present work                                                                                                                                                                                                                              | 181     |
| III.8.A Results and discussion                                                                                                                                                                                                                  | 181     |

| III.8.A.1 Catalyst Characterisation                                                 | 181-184 |
|-------------------------------------------------------------------------------------|---------|
| III.8.A.2 Optimisation of the reaction condition for the synthesis                  | 184-187 |
| of 7-aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -pyrano[3,2- <i>c</i> :5,6- |         |
| c']dichromene-6,8-dione derivatives                                                 |         |
| III.8.A.3 Synthesis of 7-aryl/heteroaryl-6H,7H,8H-pyrano[3,2-                       | 187-191 |
| <i>c</i> :5,6- <i>c</i> ']dichromene-6,8-dione derivatives                          |         |
| III.6.A.4 Comparison of efficiency of the catalyst                                  | 191-193 |
| III.8.A.5 Plausible Mechanism                                                       | 193-194 |
| III.8.A.6 Optimisation of the reaction condition for the                            | 195-197 |
| synthesis of 7-aryl/heteroaryl-6a,13a-dihydro-                                      |         |
| 6H,7H-chromeno[4,3-d]pyrido[1,2-a]pyrimidin-                                        |         |
| 6-one derivatives                                                                   |         |
| III.8.A.7 Synthesis of 7-aryl/heteroaryl-6a,13a-dihydro-6H,7H-                      | 197-200 |
| chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one                                         |         |
| derivatives                                                                         |         |
| III.8.A.8 Plausible Mechanism                                                       | 200-201 |
| III.8.A.9 Catalyst Recyclability Experiment                                         | 201-203 |
| III.8.A.10 Conclusion                                                               | 204     |
| III.8.A.11 Acknowledgement                                                          | 204-205 |
| III.8.A.12 Experimental                                                             | 205-247 |
| III.9 References                                                                    | 247     |
| Chapter IV : A collective laboratory studies on one pot multi-                      | 250-354 |
| component synthesis of a few varieties of heterocyclic                              |         |
| compounds following greener approach using rice husk based                          |         |
| greener catalyst                                                                    |         |
| IV.1 Introduction                                                                   | 250-255 |

| IV.2 1,4-dihydropyridine                                                                                  | 255-257            |
|-----------------------------------------------------------------------------------------------------------|--------------------|
| IV.3 Biological importance of 1,4-dihydropyridines and dihyro-                                            | 257-258            |
| chromeno-pyridines                                                                                        |                    |
| IV.4 Previous works on synthesis of dihydro-dichromeno-                                                   | 258-263            |
| pyridine-6,8-diones derivatives                                                                           |                    |
| IV.5 Tetrazole                                                                                            | 263-264            |
| IV.6 Quinazolinone                                                                                        | 264-266            |
| IV.7 Biological importance of tetrazole and quinazolinone                                                 | 266-268            |
| derivatives                                                                                               |                    |
| IV.8 Previous works on synthesis of tetrahydrotetrazolo[5,1-                                              | 268-275            |
| <i>b</i> ]quinazolinone derivatives                                                                       |                    |
| IV.9 2,4-diaryl hexahydroquinoline-5-one                                                                  | 275-276            |
| IV.10 Biological importance of 2,4-diaryl hexahydro quinoline-5-                                          |                    |
| one derivatives                                                                                           |                    |
| IV.11 Previous works on synthesis of 2,4-diaryl                                                           | 278-284            |
| hexahydroquinoline-5-one derivatives                                                                      |                    |
| IV.12 Present work                                                                                        | 284                |
| IV.12.A. Result and discussion                                                                            | 285                |
| IV.12.A.1 Catalyst characterisation                                                                       | 285-287            |
| IV.12.A.1 Catalyst characterisation<br>IV.12.A.2 Optimisation of the reaction condition for the synthesis | 287-289            |
|                                                                                                           | 201-209            |
| of dihydro-dichromeno-pyridine-6,8-dione                                                                  | 200 202            |
| IV.12.A.3 Synthesis of dihydro-dichromeno-pyridine derivatives                                            | 289-292            |
|                                                                                                           | A0A A0A            |
| IV.12.A.4 Plausible Mechanism                                                                             | 292-293            |
| IV.12.A.5 Optimization of synthesis of substituted                                                        | 292-293<br>294-296 |
|                                                                                                           |                    |

| tetrahydrotetrazolo[5,1-b]quinazolinone derivatives        |         |  |  |
|------------------------------------------------------------|---------|--|--|
| IV.12.A.7 Plausible Mechanism                              | 299-300 |  |  |
| IV.12.A.8 Optimization of synthesis of substituted 2,4-    | 301-303 |  |  |
| diarylhexahydroquinoline-5-one derivatives                 |         |  |  |
| IV.12.A.9 Synthesis of 2,4-diaryl hexahydroquinoline-5-one | 303-306 |  |  |
| derivatives                                                |         |  |  |
| IV.12.A.10 Plausible Mechanism                             | 306-307 |  |  |
| IV.12.A.11 Catalyst Recyclability Experiment               | 307-309 |  |  |
| IV.12.A.12 Conclusion                                      | 310     |  |  |
| IV.12.A.13 Acknowledgement                                 | 310     |  |  |
| IV.12.A.14 Experimental                                    | 310-354 |  |  |
| IV.13 References                                           | 354     |  |  |
| Concluding Remarks                                         | 355-356 |  |  |
| Appendix                                                   | 357-358 |  |  |
| Bibliography                                               | 359-399 |  |  |
| Index                                                      | 400-402 |  |  |

# List of Tables

| Table                                                                                                                     | Page<br>No. |
|---------------------------------------------------------------------------------------------------------------------------|-------------|
| Table I.1 Examples of some bio-active compounds and their bio activity                                                    | 28-36       |
| Table I.2 Difference between homogeneous and heterogeneous catalyst                                                       | 45-46       |
| Table II.1 Optimisation of the reaction condition for the synthesis of substituted 5-oxo-1,4,5,6,7,8-hexahydroquinolines. | 90          |

| Table II.2 Synthesis of substituted 5-oxo-1,4,5,6,7,8-<br>hexahydroquinolines using sulphonated rice husk                                                                                                  | 91-95   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table II.3 Comparison of efficiency of the catalyst for the synthesis of substituted 5-oxo-1,4,5,6,7,8-hexahydroquinolines                                                                                 | 95-96   |
| Table II.4 Optimisation of the reaction condition for the synthesis of hexahydroacridine-1,8-dione                                                                                                         | 99-100  |
| Table II.5 Synthesis of substituted 9-<br>arylhexahydroacridine-1,8-dione derivatives<br>using sulphonated rice husk                                                                                       | 100-102 |
| Table II.6 Table for the amount of recovered catatyst with isolated product yield in successive runs                                                                                                       | 105     |
| Table III.1 Optimisation of the reaction condition for the synthesis<br>of 7-aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -pyrano[3,2- <i>c</i> :5,6-<br><i>c</i> ']dichromene-6,8-dione derivatives | 186-187 |
| Table III.2 Synthesis of 7-aryl/heteroaryl-6H,7H,8H-pyrano[3,2-c:5,6-c']dichromene-6,8-dione derivatives                                                                                                   | 189-191 |
| Table III.3 Comparison of catalyst efficiency for the synthesis of 7-<br>aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -pyrano[3,2- <i>c</i> :5,6-<br><i>c</i> ]dichromene-6,8-dione derivatives      | 191-192 |
| Table III.4 Optimisation of the reaction condition for the synthesis<br>of Synthesis of 7-aryl/heteroaryl-6a,13a-dihydro-<br>6H,7H-chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one<br>derivatives              | 196-197 |
| Table III.5 Table for synthesis of 7-aryl/heteroaryl-6a,13a-dihydro-<br>6H,7H-chromeno[4,3-d]pyrido[1,2-a]pyrimidin-6-one<br>derivatives using sulphonated rice husk                                       | 198-200 |
| Table III.6 Table for the amount of recovered catatyst with isolated product yield                                                                                                                         | 202-203 |

| Table IV.1 Optimisation of the reaction condition for the synthesis<br>of dihydro-dichromeno-pyridine-6,8-dione                     | 289     |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table IV.2Synthesis of dihydro-dichromeno-pyridine-6,8-dione<br>derivatives using sulphonated rice husk                             | 290-292 |
| Table IV.3 Optimisation of the reaction condition for the synthesis of tetrahydrotetrazolo[5,1- <i>b</i> ]quinazolinone derivatives | 295-296 |
| Table IV.4 Synthesis of tetrahydrotetrazolo[5,1- <i>b</i> ]quinazolinone derivatives                                                | 297-299 |
| Table IV. 5 Optimization of the reaction condition for the synthesis of 2,4-diaryl hexahydroquinoline-5-one derivatives             | 302-303 |
| Table IV.6 Synthesis of 2,4-diaryl hexahydroquinoline-5-one derivatives                                                             | 304-306 |
| Table IV.7 Table for the amount of recovered catatyst with isolated product yield                                                   | 308-309 |

## List of Schemes

| Table                                                                           | Page<br>No. |
|---------------------------------------------------------------------------------|-------------|
| Scheme I.2 Synthesis of nitriles from aldehydes                                 | 37          |
| Scheme I.2 Synthesis of nitriles from aldehydes                                 | 38          |
| Scheme I.3 Synthesis of substituted anilines from substituted nitobenzaldehydes | 38          |
| Scheme I.4 Synthesis of substituted triazoles from $\beta$ -nitrostyrines       | 39          |

| Scheme 1.5 Synthesis of substituted tetrazoles from nitriles 39   Scheme 1.6 Synthesis of substituted dihydropyridines from aromatic aldehydes 40   Scheme 1.7 Synthesis of substituted imidazoles from aromatic aldehydes 40   Scheme 1.8 Synthesis of substituted coumarine derivatives from aromatic aldehydes from 41   Scheme 1.9 Synthesis of substituted indoles from o-iodoanilines and aryl substituted keto-methyl compounds 41   Scheme I.10 Synthesis of substituted benzimidazoles from o-iodoanilines and aryl substituted keto-methyl compounds 42   Scheme I.11 Modified Skraup reaction and Bamberger rearrangment reported by Saggadi <i>et al.</i> 59   Scheme II.2 Base promoted cycloaddition reaction under microwave reported by Yu <i>et al.</i> 60   Scheme II.3 Base catalyzed Domino reaction under microwave reported by Yu <i>et al.</i> 61   Scheme II.4 Nano-Fc <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported by Esfahani <i>et al.</i> 62   Scheme II.5 Silica based catalyst induced reaction for octahydroquinolines by Ziarani <i>et al.</i> 63   Scheme II.6 MNP-L-Leucine based reaction protocol reported by Khaligh <i>et al.</i> 63   Scheme II.6 MSAIm catalysed Solvent free reaction reported by Khaligh <i>et al.</i> 64   Scheme II.9 Microwa                                                                                                                                                                                                              |                                                                       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----|
| aromatic aldehydes40Scheme I.7Synthesis of substituted imidazoles from aromatic<br>aldehydes41Scheme I.8Synthesis of substituted coumarine derivatives from<br>aromatic aldehydes from41Scheme I.9Synthesis of substituted indoles from o-iodoanilines<br>and aryl substituted keto-methyl compounds41Scheme I.10Synthesis of substituted benzimidazoles from o-<br>iodoanilines and aryl substituted keto-methyl compounds42Scheme I.110Synthesis of substituted benzimidazoles from o-<br>iodoanilines and aryl substituted keto-methyl com-<br>pounds59Scheme II.1Modified Skraup reaction and Bamberger<br>rearrangment reported by Saggadi et al.59Scheme II.2Base promoted cycloaddition reaction under<br>microwave condition reported by Li et al.60Scheme II.3Base catalyzed Domino reaction under microwave<br>reported by Yu et al.61Scheme II.4Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported<br>by Esfahani et al.62Scheme II.5Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani et al.63Scheme II.6MNP-L-Leucine based reaction protocol reported by<br>Arabpoor et al.63Scheme II.7Catalyst free synthesis protocol reported by Patil et al.63Scheme II.9Microwave assisted solvent free reaction reported by<br>Khaligh et al.65Scheme II.9Microwave assisted solvent free reaction reported by<br>Liberto et al.66Scheme II.10Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor et al.66Scheme II.11 | Scheme I.5 Synthesis of substituted tetrazoles from nitriles          | 39 |
| Scheme I.7 Synthesis of substituted imidazoles from aromatic aldehydes 40   Scheme I.8 Synthesis of substituted coumarine derivatives from aromatic aldehydes from 41   Scheme I.9 Synthesis of substituted indoles from o-iodoanilines and aryl substituted keto-methyl compounds 41   Scheme I.10 Synthesis of substituted benzimidazoles from o-iodoanilines and aryl substituted keto-methyl compounds 42   Scheme II.1 Modified Skraup reaction and Bamberger rearrangment reported by Saggadi <i>et al.</i> 59   Scheme II.2 Base promoted cycloaddition reaction under microwave condition reported by Li <i>et al.</i> 60   Scheme II.3 Base catalyzed Domino reaction under microwave reported by Yu <i>et al.</i> 61   Scheme II.4 Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported by Estahani <i>et al.</i> 61   Scheme II.5 Silica based catalyst induced reaction for octahydroquinolines by Ziarani <i>et al.</i> 62   Scheme II.6 MNP-L-Leucine based reaction protocol reported by Arabpoor <i>et al.</i> 63   Scheme II.8 MSAIm catalysed Solvent free reaction reported by Arabpoor <i>et al.</i> 64   Scheme II.9 Microwave assisted solvent free reaction reported by Khaligh <i>et al.</i> 65   Scheme II.9 Microwave assisted solvent free reaction reported by Libert <i>al.</i> 64                                                                                                                                                                                        | 5 5 15                                                                | 40 |
| aromatic aldehydes from41Scheme I.9 Synthesis of substituted indoles from o-iodoanilines<br>and aryl substituted keto-methyl compounds42Scheme I.10 Synthesis of substituted benzimidazoles from o-<br>iodoanilines and aryl substituted keto-methyl com-<br>pounds42Scheme II.1 Modified Skraup reaction and Bamberger<br>rearrangment reported by Saggadi et al.59Scheme II.2 Base promoted cycloaddition reaction under<br>microwave condition reported by Li et al.60Scheme II.3 Base catalyzed Domino reaction under microwave<br>reported by Yu et al.61Scheme II.4 Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported<br>by Esfahani et al.61Scheme II.5 Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani et al.63Scheme II.6 MNP-L-Leucine based reaction protocol reported by<br>Arabpoor et al.63Scheme II.7 Catalyst free synthesis protocol reported by<br>Khaligh et al.64Scheme II.9 Microwave assisted solvent free reaction reported by<br>Khaligh et al.65Scheme II.10 Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor et al.66Scheme II.11 Solvent free reaction reported by Davoodnia et al.<br>and Khaligh.66                                                                                                                                                                                                                                                                                      | Scheme I.7 Synthesis of substituted imidazoles from aromatic          | 40 |
| Scheme I.9 Synthesis of substituted indoles from o-iodoanilines and aryl substituted keto-methyl compounds 41   Scheme I.10 Synthesis of substituted benzimidazoles from o-iodoanilines and aryl substituted keto-methyl compounds 42   Scheme II.1 Modified Skraup reaction and Bamberger rearrangment reported by Saggadi <i>et al.</i> 59   Scheme II.2 Base promoted cycloaddition reaction under microwave condition reported by Li <i>et al.</i> 60   Scheme II.3 Base catalyzed Domino reaction under microwave reported by Yu <i>et al.</i> 61   Scheme II.4 Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported by Esfahani <i>et al.</i> 61   Scheme II.5 Silica based catalyst induced reaction for octahydroquinolines by Ziarani <i>et al.</i> 62   Scheme II.6 MNP-L-Leucine based reaction protocol reported by Arabpoor <i>et al.</i> 63   Scheme II.7 Catalyst free synthesis protocol reported by Patil <i>et al.</i> 63   Scheme II.9 Microwave assisted solvent free reaction reported by Khaligh <i>et al.</i> 64   Scheme II.10 Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines in ethanol reported by Mansoor <i>et al.</i> 66   Scheme II.11 Solvent free reaction reported by Davoodnia <i>et al.</i> 66                                                                                                                                                                                                                                                     | •                                                                     | 41 |
| iodoanilines and aryl substituted keto-methyl compoundsScheme II.1Modified Skraup reaction and Bamberger<br>rearrangment reported by Saggadi <i>et al.</i> 59Scheme II.2Base promoted cycloaddition reaction under<br>microwave condition reported by Li <i>et al.</i> 60Scheme II.3Base catalyzed Domino reaction under microwave<br>reported by Yu <i>et al.</i> 61Scheme II.4Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported<br>by Esfahani <i>et al.</i> 61Scheme II.5Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani <i>et al.</i> 62Scheme II.6MNP-L-Leucine based reaction protocol reported by<br>Arabpoor <i>et al.</i> 63Scheme II.7Catalyst free synthesis protocol reported by Patil <i>et al.</i> 63Scheme II.8MSAIm catalysed Solvent free reaction reported by<br>Khaligh <i>et al.</i> 64Scheme II.9Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> 65Scheme II.10Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> 66Scheme II.11Solvent free reaction reported by<br>Liberto <i>et al.</i> 66                                                                                                                                                                                                                                                                                                                                                          | Scheme I.9 Synthesis of substituted indoles from o-iodoanilines       | 41 |
| Scheme II.1Modified Skraup reaction and Bamberger<br>rearrangment reported by Saggadi et al.59Scheme II.2Base promoted cycloaddition reaction under<br>microwave condition reported by Li et al.60Scheme II.3Base catalyzed Domino reaction under microwave<br>reported by Yu et al.61Scheme II.4Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported<br>by Esfahani et al.61Scheme II.5Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani et al.62Scheme II.6MNP-L-Leucine based reaction protocol reported by<br>Arabpoor et al.63Scheme II.7Catalyst free synthesis protocol reported by<br>Khaligh et al.63Scheme II.8MSAIm catalysed Solvent free reaction reported by<br>Khaligh et al.64Scheme II.9Microwave assisted solvent free reaction reported by<br>Liberto et al.65Scheme II.10Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor et al.66Scheme II. 11Solvent free reaction reported by Davoodnia et al.<br>and Khaligh.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iodoanilines and aryl substituted keto-methyl com-                    | 42 |
| microwave condition reported by Li <i>et al.</i> Scheme II.3Base catalyzed Domino reaction under microwave<br>reported by Yu <i>et al.</i> 61Scheme II.4Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported<br>by Esfahani <i>et al.</i> 61Scheme II.5Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani <i>et al.</i> 62Scheme II.6MNP-L-Leucine based reaction protocol reported by<br>Arabpoor <i>et al.</i> 63Scheme II.7Catalyst free synthesis protocol reported by Patil <i>et al.</i> 63Scheme II.8MSAIm catalysed Solvent free reaction reported by<br>Khaligh <i>et al.</i> 64Scheme II.9Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> 65Scheme II.10Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> 66Scheme II. 11Solvent free reaction reported by Davoodnia <i>et al.</i> 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scheme II.1 Modified Skraup reaction and Bamberger                    | 59 |
| reported by Yu <i>et al.</i> Scheme II.4Nano-Fe <sub>3</sub> O <sub>4</sub> catalysed solvent free reaction reported<br>by Esfahani <i>et al.</i> <b>61</b> Scheme II.5Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani <i>et al.</i> <b>62</b> Scheme II.6MNP-L-Leucine based reaction protocol reported by<br>Arabpoor <i>et al.</i> <b>63</b> Scheme II.7Catalyst free synthesis protocol reported by Patil <i>et al.</i> <b>63</b> Scheme II.8MSAIm catalysed Solvent free reaction reported by<br>Khaligh <i>et al.</i> <b>64</b> Scheme II.9Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> <b>65</b> Scheme II.10Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> <b>66</b> Scheme II. 11Solvent free reaction reported by Davoodnia <i>et al.</i> <b>66</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1                                                                   | 60 |
| by Esfahani <i>et al.</i> 62Scheme II.5Silica based catalyst induced reaction for<br>octahydroquinolines by Ziarani <i>et al.</i> 63Scheme II.6MNP-L-Leucine based reaction protocol reported by<br>Arabpoor <i>et al.</i> 63Scheme II.7Catalyst free synthesis protocol reported by Patil <i>et al.</i> 63Scheme II.8MSAIm catalysed Solvent free reaction reported by<br>Khaligh <i>et al.</i> 64Scheme II.9Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> 65Scheme II.10Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> 66Scheme II. 11Solvent free reaction reported by Davoodnia <i>et al.</i> 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                     | 61 |
| octahydroquinolines by Ziarani et al.Scheme II.6 MNP-L-Leucine based reaction protocol reported by<br>Arabpoor et al.63Scheme II.7 Catalyst free synthesis protocol reported by Patil et al.63Scheme II.8 MSAIm catalysed Solvent free reaction reported by<br>Khaligh et al.64Scheme II.9 Microwave assisted solvent free reaction reported by<br>Liberto et al.65Scheme II.10 Gd(OTf)3 catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor et al.66Scheme II. 11 Solvent free reaction reported by Davoodnia et al.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | 61 |
| Arabpoor <i>et al.</i> 63Scheme II.7 Catalyst free synthesis protocol reported by Patil <i>et al.</i> 63Scheme II.8 MSAIm catalysed Solvent free reaction reported by<br>Khaligh <i>et al.</i> 64Scheme II.9 Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> 65Scheme II.10 Gd(OTf)_3 catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> 66Scheme II. 11 Solvent free reaction reported by Davoodnia <i>et al.</i> 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                     | 62 |
| Scheme II.8 MSAIm catalysed Solvent free reaction reported by<br>Khaligh <i>et al.</i> 64Scheme II.9 Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> 65Scheme II.10 Gd(OTf)3 catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> 66Scheme II. 11 Solvent free reaction reported by Davoodnia <i>et al.</i> 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 63 |
| Khaligh <i>et al.</i> 65Scheme II.9 Microwave assisted solvent free reaction reported by<br>Liberto <i>et al.</i> 65Scheme II.10 Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines<br>in ethanol reported by Mansoor <i>et al.</i> 66Scheme II. 11 Solvent free reaction reported by Davoodnia <i>et al.</i><br>and Khaligh.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scheme II.7 Catalyst free synthesis protocol reported by Patil et al. | 63 |
| Liberto <i>et al.</i><br>Scheme II.10 Gd(OTf) <sub>3</sub> catalysed synthesis of polyhydroquinolines <b>66</b><br>in ethanol reported by Mansoor <i>et al.</i><br>Scheme II. 11 Solvent free reaction reported by Davoodnia <i>et al.</i> <b>66</b><br>and Khaligh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • •                                                                 | 64 |
| in ethanol reported by Mansoor <i>et al.</i><br>Scheme II. 11 Solvent free reaction reported by Davoodnia <i>et al.</i> <b>66</b><br>and Khaligh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2                                                                   | 65 |
| and Khaligh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       | 66 |
| Scheme II.12Synthesis of functionalized polyhydroquinolines67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                                                                   | 66 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scheme II.12 Synthesis of functionalized polyhydroquinolines          | 67 |

|              | reported by Paplal <i>et al</i> .                                                                                    |    |
|--------------|----------------------------------------------------------------------------------------------------------------------|----|
| Scheme II.13 | Three-component cyclocondensation with TEA in ethanol reported by Abdelhamid <i>et al.</i>                           | 67 |
| Scheme II.14 | Solvent free reaction reported by Alizadeh et al.                                                                    | 68 |
| Scheme II.15 | Ferrite nano-particles catalysed facile synthesis of acridinediones by Sunkara <i>et al</i> .                        | 73 |
| Scheme II.16 | Ultasound sonication induced synthesis of acridinedione derivatives by Sudha <i>et al.</i>                           | 74 |
| Scheme II.17 | Nano-ZrO <sub>2</sub> -SO <sub>3</sub> H catalysed synthesis of acridinedione derivatives by Amoozadeh <i>et al.</i> | 75 |
| Scheme II.18 | Ionic liquids catalysed synthesis of acridinedione derivatives by Zhu <i>et al.</i>                                  | 76 |
| Scheme II.19 | Base catalysed synthesis of acridinedione derivatives by Djemoui <i>et al.</i>                                       | 76 |
| Scheme II.20 | Vanadate sulfuric acid catalysed synthesis of acridinedione derivatives by Nasr-Esfahani <i>et al.</i>               | 77 |
| Scheme II.21 | Et <sub>3</sub> N catalysed synthesis of acridinedione derivatives by Naouri <i>et al</i> .                          | 78 |
| Scheme II.22 | Ionic liquid catalysed synthesis of acridinedione derivatives by Mazloumi <i>et al.</i>                              | 79 |
| Scheme II.23 | Ionic liquid catalysed synthesis of acridinedione derivatives by Vahdat <i>et al</i> .                               | 80 |
| Scheme II.24 | $B(C_6F_5)_3$ catalysed synthesis of acridinedione derivatives by Chandrasekhar <i>et al.</i>                        | 81 |
| Scheme II.25 | PEG-400 catalysed synthesis of acridinedione derivatives by Kidwai <i>et al</i> .                                    | 82 |

| Scheme II.26   | Hollow Fe <sub>3</sub> O <sub>4</sub> supported dopamine sulfamic acid<br>catalysed solvent free synthesis of acridine dione<br>derivatives by Mirhosseyni <i>et al.</i> | 82  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme II.27   | Silica coated magnetic nanoparicles catalysed solvent free synthesis of acridine dione derivatives by Maleki <i>et al</i> .                                              | 83  |
| Scheme II.28   | DBH or DCH catalysed solvent free synthrsis of acridine dione derivatives by Maleki <i>et al.</i>                                                                        | 84  |
| Scheme II.29   | Synthesis of substituted 5-oxo-1,4,5,6,7,8-<br>hexahydroquinoline derivatives using sulphonated<br>rice husk <sup>a</sup>                                                | 85  |
| Scheme II.30   | Synthesis of substituted 9-arylhexahydroacridine-1,8-<br>dione derivatives using sulphonated rice husk <sup>a</sup>                                                      | 98  |
| Scheme III.1   | One pot synthesis of benzo[g]chromene derivatives by Shaabani <i>et al</i> .                                                                                             | 161 |
|                | One pot synthesis of chromene heterocycles derivatives by Rajguru <i>et al</i> .                                                                                         | 162 |
|                | One pot synthesis of chromene heterocycles derivatives by Khurana <i>et al</i> .                                                                                         | 163 |
|                | One pot synthesis of chromene heterocycles derivatives by Khan <i>et al</i> .                                                                                            | 164 |
| Scheme III.5   | One pot synthesis of chromene heterocycles derivatives by Bihani <i>et al</i> .                                                                                          | 165 |
| Scheme III.6   | One pot synthesis of chromene heterocycles derivatives by Chen <i>et al</i> .                                                                                            | 166 |
| Scheme III.7 ( | One pot synthesis of chromene heterocycles derivatives by Pradhan <i>et al.</i>                                                                                          | 167 |
|                | One pot synthesis of chromene heterocycles derivatives by Deacamin <i>et al</i> .                                                                                        | 168 |

| Scheme III.9 One pot synthesis of chromene heterocycles derivatives by Bramhachari <i>et al.</i>                                                                                                                                 | 169 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme III.10 One pot synthesis of pyrido-pyrimidine derivatives by Jadav <i>et al.</i>                                                                                                                                          | 174 |
| Scheme III.11 One pot synthesis of pyrido-pyrimidine derivatives by Yang <i>et al</i> .                                                                                                                                          | 175 |
| Scheme III.12 One pot synthesis of pyrido-pyrimidine derivatives by Mohssenimehra <i>et al</i> .                                                                                                                                 | 176 |
| Scheme III.13 One pot synthesis of pyrido-pyrimidine derivatives by Adib <i>et al</i> .                                                                                                                                          | 176 |
| Scheme III.14 One pot synthesis of pyrido-pyrimidine derivatives by Majumdar <i>et al</i> .                                                                                                                                      | 177 |
| Scheme III.15 One pot synthesis of pyrido-pyrimidine derivatives by Abdolmohammadi <i>et al.</i>                                                                                                                                 | 178 |
| Scheme III.16 One pot synthesis of pyrido-pyrimidine derivatives by Kidwai <i>et al.</i>                                                                                                                                         | 179 |
| Scheme III.17 One pot synthesis of pyrido-pyrimidine derivatives by Khalaj <i>et al.</i>                                                                                                                                         | 179 |
| Scheme III.18 One pot synthesis of pyrido-pyrimidine derivatives by Bramhachari <i>et al.</i>                                                                                                                                    | 180 |
| Scheme III.19 Synthesis of 7-aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -<br>pyrano[3,2- <i>c</i> :5,6- <i>c</i> ']dichromene-6,8-dione<br>derivatives <sup>a</sup>                                                      | 181 |
| Scheme III.20 Synthesis of 7-aryl/heteroaryl-6 <i>a</i> ,13 <i>a</i> -dihydro-<br>6 <i>H</i> ,7 <i>H</i> -chromeno[4,3- <i>d</i> ]pyrido[1,2- <i>a</i> ]pyrimidin-6-<br>one derivatives using sulphonated rice husk <sup>a</sup> | 195 |
| Scheme IV.1 One pot synthesis of dihydro-dichromeno-pyridine-<br>6,8-diones derivatives Zeynizadeh <i>et al.</i>                                                                                                                 | 259 |

| Scheme IV.2  | One pot synthesis of dihydro-dichromeno-pyridine-<br>6,8-diones derivatives Gilanizadeh <i>et al</i> .                                                                                   | 260 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme IV.3  | One pot synthesis of dihydro-dichromeno-pyridine-<br>6,8-diones derivatives Kidwai <i>et al</i> .                                                                                        | 261 |
| Scheme IV.4  | One pot synthesis of dihydro-dichromeno-pyridine-<br>6,8-diones derivatives Saffarian <i>et al.</i>                                                                                      | 261 |
| Scheme IV.5  | One pot synthesis of dihydro-dichromeno-pyridine-<br>6,8-diones derivatives Shaabani <i>et al</i> .                                                                                      | 262 |
| Scheme IV.6  | One pot synthesis of dihydro-dichromeno-pyridine-<br>6,8-diones derivatives Brahmbhatt <i>et al</i> .                                                                                    | 263 |
| Scheme IV.7  | One-pot synthesis of tetrazolo[1,5- <i>a</i> ]pyrimidine derivatives by Basha <i>et al</i> .                                                                                             | 268 |
| Scheme IV.8  | One-pot synthesis of tetrahydrotetrazolo [5,1-<br><i>b</i> ]quinazolinones derivatives by Basha <i>et al.</i>                                                                            | 269 |
| Scheme IV.9  | A facile synthesis of tetrahydrotetrazolo<br>[1,5- <i>b</i> ]quinazolines and tetrahydrobenzo<br>[ <i>h</i> ]tetrazolo[5,1- <i>b</i> ] quinazolines by<br>Ghorbani-Vaghei <i>et al</i> . | 270 |
| Scheme IV.10 | ) A facile synthesis of tetrazolo[1,5- <i>a</i> ]pyrimidine derivatives by Raju <i>et al</i> .                                                                                           | 271 |
| Scheme IV.1  | A facile synthesis of dihydrotetrazolo[1,5- <i>a</i> ]pyrimidines by Zeng <i>et al</i> .                                                                                                 | 272 |
| Scheme IV.12 | 2 Synthesis of dihydrotetrazolo[1,5- <i>a</i> ]pyrimidine and tetrahydrotetrazolo[5,1- <i>b</i> ]quinazolinone derivatives by Zeng <i>et al</i> .                                        | 273 |
| Scheme IV.1  | 3 Synthetis of tetrahydrotetrazolo[5,1-b]quinazoli-<br>none derivatives by Hassankhani <i>et al</i> .                                                                                    | 274 |
| Scheme IV.14 | 4 One pot synthesis of dihydrotetrazolo[1,5-<br><i>a</i> ]pyrimidines and tetrahydrotetrazolo[1,5-<br><i>a</i> ]quinazolinones by Kour <i>et al</i> .                                    | 275 |
| Scheme IV.1  | 5 One pot synthesis of<br>2,4- diarylhexahydroquinolines by Zarghia <i>et al.</i>                                                                                                        | 278 |
|              |                                                                                                                                                                                          |     |

| Scheme IV.16  | One pot synthesis of 2,4-diarylhexahydroquinolines by Ray <i>et al</i> .                                                   | 279 |
|---------------|----------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme IV.17  | One pot synthesis of 2,4-diarylhexahydroquinolines by Wang <i>et al.</i>                                                   | 280 |
| Scheme IV.18  | One pot synthesis of 2,4-diarylhexahydroquinolines by Hua <i>et al.</i>                                                    | 281 |
| Scheme IV.19  | One pot synthesis of 2,4-diarylhexahydroquinolines by Tu <i>et al</i> .                                                    | 282 |
| Scheme IV. 20 | One pot synthesis of 2,4-diarylhexahydroquinolines by Karimi-Zaberi <i>et al.</i>                                          | 283 |
| Scheme IV.21  | One pot synthesis of 2,4-diarylhexahydroquinolines by Wang <i>et al.</i>                                                   | 283 |
| Scheme IV.22  | One pot synthesis of 2,4-diarylhexahydroquinolines by Safari <i>et al.</i>                                                 | 284 |
| Scheme IV.23  | Synthesis of substituted dihydro-dichromeno-<br>pyridine-6,8-dione derivatives using sulphonated<br>rice husk <sup>a</sup> | 285 |
| Scheme IV.24  | Synthesis of substituted tetrahydrotetrazolo[5,1-<br>b]quinazolinone                                                       | 294 |
| Scheme IV.25  | Synthesis of substituted 2,4-diaryl<br>hexahydroquinoline-5-onederivatives using<br>sulphonated rice husk <sup>a</sup>     | 300 |
|               |                                                                                                                            |     |

## **List of Figures**

| Table                                                           | Page<br>No. |
|-----------------------------------------------------------------|-------------|
| Figure I.1 Some examples of precursors of bioactive compounds   | 36          |
| Figure II.1 Structures and resonating structures of quinonoline | 55          |

| Figure II.2 Diverse synthetic routes for the synthesis of quinoline structures                                                   | 57  |
|----------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure II.3 Some important pharmaceutically active drug molecules                                                                | 58  |
| Figure II. 4 Diverse synthetic routes for the synthesis of acridine structures                                                   | 70  |
| Figure II.5 Some important pharmaceutically active drug molecules                                                                | 72  |
| Figure. II.6 (a) SEM image of rice husk(RH) (b) SEM<br>image of sulphonatrice husk (SRH)<br>(c)EDX of RH (d) EDX of SRH          | 87  |
| Figure II.7 Powder XRD plot of SRH                                                                                               | 88  |
| Figure II.8 FTIR of RH and SRH                                                                                                   | 88  |
| Figure II.9 The plausible mechanism for the synthesis of hexahydroquinoline                                                      | 97  |
| Figure II.10. The plausible mechanism for the synthesis of hexahydroacridine-1,8-dione                                           | 103 |
| Figure II.11 FTIR spectra of reused catalysts after 1 <sup>st</sup> , 3 <sup>rd</sup> , 5 <sup>th</sup> and 7 <sup>th</sup> run. | 106 |
| Figure II.12 Recyclability experiment of catalyst                                                                                | 106 |
| Figure III.1 Different types of chromene scaffolds                                                                               | 157 |
| Figure III.2 Diverse synthetic routes for the synthesis of coumarine structures                                                  | 158 |
| Figure III.3 Some important pharmaceutically active drug molecule containing chromene structural skeletons                       | 159 |
| Figure III.4 Some important pharmaceutically active drug molecule containing coumarine structural skeletons                      | 160 |
| Figure III. 5 Various types of pyrido-pyrimidine skeleton                                                                        | 170 |
| Figure III. 6 Various types of fused pyrimidine skeleton                                                                         | 171 |
| Figure III. 7 Some important pharmaceutically active drug                                                                        | 173 |

### molecule

| molecule                                                                                                                                                                                  |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure III. 8. (a) Powder XRD image of SRH. (b) FTIR images of RH & SRH                                                                                                                   | 183 |
| Figure III. 9. (a) SEM image of SRH. (b) SEM image of RH.<br>(c) EDX image of SRH. (d) EDX image of RH.                                                                                   | 183 |
| Figure III.10 . The plausible mechanism for the synthesis of 7-<br>aryl/heteroaryl-6 <i>H</i> ,7 <i>H</i> ,8 <i>H</i> -pyrano[3,2- <i>c</i> :5,6-<br><i>c</i> ']dichromene-6,8-dione      | 194 |
| Figure III.11 The plausible mechanism for the synthesis 7-<br>aryl/heteroaryl-6a,13a-dihydro-6 <i>H</i> ,7 <i>H</i> -chromeno[4,3-<br>d]pyrido[1,2- <i>a</i> ]pyrimidin-6-one derivatives | 201 |
| Figure III.12 FTIR spectra of reused catalysts after 1 <sup>st</sup> , 3 <sup>rd</sup> and 5 <sup>th</sup> and run                                                                        | 203 |
| Figure III.13 Recyclability experiment                                                                                                                                                    | 203 |
| Figure IV.1 Diverse synthetic routes for the synthesis of 1,4-dihydropyridine structures                                                                                                  | 256 |
| Figure IV.2 Some important pharmaceutically active drug molecules                                                                                                                         | 258 |
| Figure IV.3 Structures of 3 types of tatumeric tetrazoles                                                                                                                                 | 263 |
| Figure IV.4 Diverse synthetic routes for the synthesis of 1,4-<br>dihydropyridine structures                                                                                              | 264 |
| Figure IV. 5 Different types of quinazoline scaffolds                                                                                                                                     | 265 |
| Figure IV. 6 Different synthetic routes of quinazolinone skeleton                                                                                                                         | 266 |
| Figure IV.7 Some important pharmaceutically active drug molecule                                                                                                                          | 267 |
| Figure IV.8 Diverse synthetic route for the synthesis of 2,4-<br>diarylhexahydroquinoline ring synthesis                                                                                  | 276 |
| Figure IV.9 Some important pharmaceutically active drug molecule                                                                                                                          | 277 |
| Figure IV.10 (a) FTIR spectra of RH and SRH. (b) Powder XRD spectra of RH and SRH                                                                                                         | 286 |

| FigureIV.11 (a) SEM image of SRH. (b) SEM image of RH. (c)<br>EDX-image of SRH. (d) EDX-image of RH           | 287 |
|---------------------------------------------------------------------------------------------------------------|-----|
| FigureIV.12 The plausible mechanism for the synthesis of dihydro-<br>dichromeno pyridine-6,8-dione            | 293 |
| FigureIV.13 The plausible mechanism for the synthesis of tetrahydrotetrazolo[5,1-b]quinazolin-8(4H)-one       | 300 |
| Figure IV.14 The plausible mechanism for the synthesis of 2,4-<br>diaryl hexahydroquinoline-5-one derivatives | 307 |
| Figure IV.15 FTIR spectra of reused catalysts after 2 <sup>nd</sup> , 4 <sup>th</sup> and 6 <sup>th</sup> run | 309 |
| Figure IV. 16 Recyclability experiment of catalyst                                                            | 309 |

# List of Appendices

| Appendix                                                | Page<br>No. |
|---------------------------------------------------------|-------------|
| I: List of Publication                                  | 357         |
| II: List of seminar, symposium and conventions attended | 358         |
|                                                         |             |